timing.cc (2923:db8a876258df) timing.cc (2948:ae26cf37957c)
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/utility.hh"
32#include "cpu/exetrace.hh"
33#include "cpu/simple/timing.hh"
34#include "mem/packet_impl.hh"
35#include "sim/builder.hh"
36#include "sim/system.hh"
37
38using namespace std;
39using namespace TheISA;
40
41Port *
42TimingSimpleCPU::getPort(const std::string &if_name, int idx)
43{
44 if (if_name == "dcache_port")
45 return &dcachePort;
46 else if (if_name == "icache_port")
47 return &icachePort;
48 else
49 panic("No Such Port\n");
50}
51
52void
53TimingSimpleCPU::init()
54{
55 BaseCPU::init();
56#if FULL_SYSTEM
57 for (int i = 0; i < threadContexts.size(); ++i) {
58 ThreadContext *tc = threadContexts[i];
59
60 // initialize CPU, including PC
61 TheISA::initCPU(tc, tc->readCpuId());
62 }
63#endif
64}
65
66Tick
67TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
68{
69 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
70 return curTick;
71}
72
73void
74TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
75{
76 panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
77}
78
79void
80TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
81{
82 if (status == RangeChange)
83 return;
84
85 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
86}
87
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/utility.hh"
32#include "cpu/exetrace.hh"
33#include "cpu/simple/timing.hh"
34#include "mem/packet_impl.hh"
35#include "sim/builder.hh"
36#include "sim/system.hh"
37
38using namespace std;
39using namespace TheISA;
40
41Port *
42TimingSimpleCPU::getPort(const std::string &if_name, int idx)
43{
44 if (if_name == "dcache_port")
45 return &dcachePort;
46 else if (if_name == "icache_port")
47 return &icachePort;
48 else
49 panic("No Such Port\n");
50}
51
52void
53TimingSimpleCPU::init()
54{
55 BaseCPU::init();
56#if FULL_SYSTEM
57 for (int i = 0; i < threadContexts.size(); ++i) {
58 ThreadContext *tc = threadContexts[i];
59
60 // initialize CPU, including PC
61 TheISA::initCPU(tc, tc->readCpuId());
62 }
63#endif
64}
65
66Tick
67TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
68{
69 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
70 return curTick;
71}
72
73void
74TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
75{
76 panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
77}
78
79void
80TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
81{
82 if (status == RangeChange)
83 return;
84
85 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
86}
87
88
89void
90TimingSimpleCPU::CpuPort::TickEvent::schedule(Packet *_pkt, Tick t)
91{
92 pkt = _pkt;
93 Event::schedule(t);
94}
95
88TimingSimpleCPU::TimingSimpleCPU(Params *p)
96TimingSimpleCPU::TimingSimpleCPU(Params *p)
89 : BaseSimpleCPU(p), icachePort(this), dcachePort(this)
97 : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock)
90{
91 _status = Idle;
92 ifetch_pkt = dcache_pkt = NULL;
93 drainEvent = NULL;
94 fetchEvent = NULL;
95 changeState(SimObject::Running);
96}
97
98
99TimingSimpleCPU::~TimingSimpleCPU()
100{
101}
102
103void
104TimingSimpleCPU::serialize(ostream &os)
105{
106 SimObject::State so_state = SimObject::getState();
107 SERIALIZE_ENUM(so_state);
108 BaseSimpleCPU::serialize(os);
109}
110
111void
112TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
113{
114 SimObject::State so_state;
115 UNSERIALIZE_ENUM(so_state);
116 BaseSimpleCPU::unserialize(cp, section);
117}
118
119unsigned int
120TimingSimpleCPU::drain(Event *drain_event)
121{
122 // TimingSimpleCPU is ready to drain if it's not waiting for
123 // an access to complete.
124 if (status() == Idle || status() == Running || status() == SwitchedOut) {
125 changeState(SimObject::Drained);
126 return 0;
127 } else {
128 changeState(SimObject::Draining);
129 drainEvent = drain_event;
130 return 1;
131 }
132}
133
134void
135TimingSimpleCPU::resume()
136{
137 if (_status != SwitchedOut && _status != Idle) {
138 // Delete the old event if it existed.
139 if (fetchEvent) {
140 if (fetchEvent->scheduled())
141 fetchEvent->deschedule();
142
143 delete fetchEvent;
144 }
145
146 fetchEvent =
147 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
148 fetchEvent->schedule(curTick);
149 }
150
151 assert(system->getMemoryMode() == System::Timing);
152 changeState(SimObject::Running);
153}
154
155void
156TimingSimpleCPU::switchOut()
157{
158 assert(status() == Running || status() == Idle);
159 _status = SwitchedOut;
160
161 // If we've been scheduled to resume but are then told to switch out,
162 // we'll need to cancel it.
163 if (fetchEvent && fetchEvent->scheduled())
164 fetchEvent->deschedule();
165}
166
167
168void
169TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
170{
171 BaseCPU::takeOverFrom(oldCPU);
172
173 // if any of this CPU's ThreadContexts are active, mark the CPU as
174 // running and schedule its tick event.
175 for (int i = 0; i < threadContexts.size(); ++i) {
176 ThreadContext *tc = threadContexts[i];
177 if (tc->status() == ThreadContext::Active && _status != Running) {
178 _status = Running;
179 break;
180 }
181 }
182}
183
184
185void
186TimingSimpleCPU::activateContext(int thread_num, int delay)
187{
188 assert(thread_num == 0);
189 assert(thread);
190
191 assert(_status == Idle);
192
193 notIdleFraction++;
194 _status = Running;
195 // kick things off by initiating the fetch of the next instruction
196 fetchEvent =
197 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
198 fetchEvent->schedule(curTick + cycles(delay));
199}
200
201
202void
203TimingSimpleCPU::suspendContext(int thread_num)
204{
205 assert(thread_num == 0);
206 assert(thread);
207
208 assert(_status == Running);
209
210 // just change status to Idle... if status != Running,
211 // completeInst() will not initiate fetch of next instruction.
212
213 notIdleFraction--;
214 _status = Idle;
215}
216
217
218template <class T>
219Fault
220TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
221{
222 // need to fill in CPU & thread IDs here
223 Request *data_read_req = new Request();
224 data_read_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
225 data_read_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
226
227 if (traceData) {
228 traceData->setAddr(data_read_req->getVaddr());
229 }
230
231 // translate to physical address
232 Fault fault = thread->translateDataReadReq(data_read_req);
233
234 // Now do the access.
235 if (fault == NoFault) {
236 Packet *data_read_pkt =
237 new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
238 data_read_pkt->dataDynamic<T>(new T);
239
240 if (!dcachePort.sendTiming(data_read_pkt)) {
241 _status = DcacheRetry;
242 dcache_pkt = data_read_pkt;
243 } else {
244 _status = DcacheWaitResponse;
245 dcache_pkt = NULL;
246 }
247 }
248
249 // This will need a new way to tell if it has a dcache attached.
250 if (data_read_req->getFlags() & UNCACHEABLE)
251 recordEvent("Uncached Read");
252
253 return fault;
254}
255
256#ifndef DOXYGEN_SHOULD_SKIP_THIS
257
258template
259Fault
260TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
261
262template
263Fault
264TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
265
266template
267Fault
268TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
269
270template
271Fault
272TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
273
274#endif //DOXYGEN_SHOULD_SKIP_THIS
275
276template<>
277Fault
278TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
279{
280 return read(addr, *(uint64_t*)&data, flags);
281}
282
283template<>
284Fault
285TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
286{
287 return read(addr, *(uint32_t*)&data, flags);
288}
289
290
291template<>
292Fault
293TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
294{
295 return read(addr, (uint32_t&)data, flags);
296}
297
298
299template <class T>
300Fault
301TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
302{
303 // need to fill in CPU & thread IDs here
304 Request *data_write_req = new Request();
305 data_write_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
306 data_write_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
307
308 // translate to physical address
309 Fault fault = thread->translateDataWriteReq(data_write_req);
310 // Now do the access.
311 if (fault == NoFault) {
312 Packet *data_write_pkt =
313 new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
314 data_write_pkt->allocate();
315 data_write_pkt->set(data);
316
317 if (!dcachePort.sendTiming(data_write_pkt)) {
318 _status = DcacheRetry;
319 dcache_pkt = data_write_pkt;
320 } else {
321 _status = DcacheWaitResponse;
322 dcache_pkt = NULL;
323 }
324 }
325
326 // This will need a new way to tell if it's hooked up to a cache or not.
327 if (data_write_req->getFlags() & UNCACHEABLE)
328 recordEvent("Uncached Write");
329
330 // If the write needs to have a fault on the access, consider calling
331 // changeStatus() and changing it to "bad addr write" or something.
332 return fault;
333}
334
335
336#ifndef DOXYGEN_SHOULD_SKIP_THIS
337template
338Fault
339TimingSimpleCPU::write(uint64_t data, Addr addr,
340 unsigned flags, uint64_t *res);
341
342template
343Fault
344TimingSimpleCPU::write(uint32_t data, Addr addr,
345 unsigned flags, uint64_t *res);
346
347template
348Fault
349TimingSimpleCPU::write(uint16_t data, Addr addr,
350 unsigned flags, uint64_t *res);
351
352template
353Fault
354TimingSimpleCPU::write(uint8_t data, Addr addr,
355 unsigned flags, uint64_t *res);
356
357#endif //DOXYGEN_SHOULD_SKIP_THIS
358
359template<>
360Fault
361TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
362{
363 return write(*(uint64_t*)&data, addr, flags, res);
364}
365
366template<>
367Fault
368TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
369{
370 return write(*(uint32_t*)&data, addr, flags, res);
371}
372
373
374template<>
375Fault
376TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
377{
378 return write((uint32_t)data, addr, flags, res);
379}
380
381
382void
383TimingSimpleCPU::fetch()
384{
385 checkForInterrupts();
386
387 // need to fill in CPU & thread IDs here
388 Request *ifetch_req = new Request();
389 ifetch_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
390 Fault fault = setupFetchRequest(ifetch_req);
391
392 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
393 ifetch_pkt->dataStatic(&inst);
394
395 if (fault == NoFault) {
396 if (!icachePort.sendTiming(ifetch_pkt)) {
397 // Need to wait for retry
398 _status = IcacheRetry;
399 } else {
400 // Need to wait for cache to respond
401 _status = IcacheWaitResponse;
402 // ownership of packet transferred to memory system
403 ifetch_pkt = NULL;
404 }
405 } else {
406 // fetch fault: advance directly to next instruction (fault handler)
407 advanceInst(fault);
408 }
409}
410
411
412void
413TimingSimpleCPU::advanceInst(Fault fault)
414{
415 advancePC(fault);
416
417 if (_status == Running) {
418 // kick off fetch of next instruction... callback from icache
419 // response will cause that instruction to be executed,
420 // keeping the CPU running.
421 fetch();
422 }
423}
424
425
426void
427TimingSimpleCPU::completeIfetch(Packet *pkt)
428{
429 // received a response from the icache: execute the received
430 // instruction
431 assert(pkt->result == Packet::Success);
432 assert(_status == IcacheWaitResponse);
433
434 _status = Running;
435
436 delete pkt->req;
437 delete pkt;
438
439 if (getState() == SimObject::Draining) {
440 completeDrain();
441 return;
442 }
443
444 preExecute();
445 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
446 // load or store: just send to dcache
447 Fault fault = curStaticInst->initiateAcc(this, traceData);
448 if (fault == NoFault) {
449 // successfully initiated access: instruction will
450 // complete in dcache response callback
451 assert(_status == DcacheWaitResponse);
452 } else {
453 // fault: complete now to invoke fault handler
454 postExecute();
455 advanceInst(fault);
456 }
457 } else {
458 // non-memory instruction: execute completely now
459 Fault fault = curStaticInst->execute(this, traceData);
460 postExecute();
461 advanceInst(fault);
462 }
463}
464
98{
99 _status = Idle;
100 ifetch_pkt = dcache_pkt = NULL;
101 drainEvent = NULL;
102 fetchEvent = NULL;
103 changeState(SimObject::Running);
104}
105
106
107TimingSimpleCPU::~TimingSimpleCPU()
108{
109}
110
111void
112TimingSimpleCPU::serialize(ostream &os)
113{
114 SimObject::State so_state = SimObject::getState();
115 SERIALIZE_ENUM(so_state);
116 BaseSimpleCPU::serialize(os);
117}
118
119void
120TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
121{
122 SimObject::State so_state;
123 UNSERIALIZE_ENUM(so_state);
124 BaseSimpleCPU::unserialize(cp, section);
125}
126
127unsigned int
128TimingSimpleCPU::drain(Event *drain_event)
129{
130 // TimingSimpleCPU is ready to drain if it's not waiting for
131 // an access to complete.
132 if (status() == Idle || status() == Running || status() == SwitchedOut) {
133 changeState(SimObject::Drained);
134 return 0;
135 } else {
136 changeState(SimObject::Draining);
137 drainEvent = drain_event;
138 return 1;
139 }
140}
141
142void
143TimingSimpleCPU::resume()
144{
145 if (_status != SwitchedOut && _status != Idle) {
146 // Delete the old event if it existed.
147 if (fetchEvent) {
148 if (fetchEvent->scheduled())
149 fetchEvent->deschedule();
150
151 delete fetchEvent;
152 }
153
154 fetchEvent =
155 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
156 fetchEvent->schedule(curTick);
157 }
158
159 assert(system->getMemoryMode() == System::Timing);
160 changeState(SimObject::Running);
161}
162
163void
164TimingSimpleCPU::switchOut()
165{
166 assert(status() == Running || status() == Idle);
167 _status = SwitchedOut;
168
169 // If we've been scheduled to resume but are then told to switch out,
170 // we'll need to cancel it.
171 if (fetchEvent && fetchEvent->scheduled())
172 fetchEvent->deschedule();
173}
174
175
176void
177TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
178{
179 BaseCPU::takeOverFrom(oldCPU);
180
181 // if any of this CPU's ThreadContexts are active, mark the CPU as
182 // running and schedule its tick event.
183 for (int i = 0; i < threadContexts.size(); ++i) {
184 ThreadContext *tc = threadContexts[i];
185 if (tc->status() == ThreadContext::Active && _status != Running) {
186 _status = Running;
187 break;
188 }
189 }
190}
191
192
193void
194TimingSimpleCPU::activateContext(int thread_num, int delay)
195{
196 assert(thread_num == 0);
197 assert(thread);
198
199 assert(_status == Idle);
200
201 notIdleFraction++;
202 _status = Running;
203 // kick things off by initiating the fetch of the next instruction
204 fetchEvent =
205 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
206 fetchEvent->schedule(curTick + cycles(delay));
207}
208
209
210void
211TimingSimpleCPU::suspendContext(int thread_num)
212{
213 assert(thread_num == 0);
214 assert(thread);
215
216 assert(_status == Running);
217
218 // just change status to Idle... if status != Running,
219 // completeInst() will not initiate fetch of next instruction.
220
221 notIdleFraction--;
222 _status = Idle;
223}
224
225
226template <class T>
227Fault
228TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
229{
230 // need to fill in CPU & thread IDs here
231 Request *data_read_req = new Request();
232 data_read_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
233 data_read_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
234
235 if (traceData) {
236 traceData->setAddr(data_read_req->getVaddr());
237 }
238
239 // translate to physical address
240 Fault fault = thread->translateDataReadReq(data_read_req);
241
242 // Now do the access.
243 if (fault == NoFault) {
244 Packet *data_read_pkt =
245 new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
246 data_read_pkt->dataDynamic<T>(new T);
247
248 if (!dcachePort.sendTiming(data_read_pkt)) {
249 _status = DcacheRetry;
250 dcache_pkt = data_read_pkt;
251 } else {
252 _status = DcacheWaitResponse;
253 dcache_pkt = NULL;
254 }
255 }
256
257 // This will need a new way to tell if it has a dcache attached.
258 if (data_read_req->getFlags() & UNCACHEABLE)
259 recordEvent("Uncached Read");
260
261 return fault;
262}
263
264#ifndef DOXYGEN_SHOULD_SKIP_THIS
265
266template
267Fault
268TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
269
270template
271Fault
272TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
273
274template
275Fault
276TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
277
278template
279Fault
280TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
281
282#endif //DOXYGEN_SHOULD_SKIP_THIS
283
284template<>
285Fault
286TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
287{
288 return read(addr, *(uint64_t*)&data, flags);
289}
290
291template<>
292Fault
293TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
294{
295 return read(addr, *(uint32_t*)&data, flags);
296}
297
298
299template<>
300Fault
301TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
302{
303 return read(addr, (uint32_t&)data, flags);
304}
305
306
307template <class T>
308Fault
309TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
310{
311 // need to fill in CPU & thread IDs here
312 Request *data_write_req = new Request();
313 data_write_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
314 data_write_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
315
316 // translate to physical address
317 Fault fault = thread->translateDataWriteReq(data_write_req);
318 // Now do the access.
319 if (fault == NoFault) {
320 Packet *data_write_pkt =
321 new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
322 data_write_pkt->allocate();
323 data_write_pkt->set(data);
324
325 if (!dcachePort.sendTiming(data_write_pkt)) {
326 _status = DcacheRetry;
327 dcache_pkt = data_write_pkt;
328 } else {
329 _status = DcacheWaitResponse;
330 dcache_pkt = NULL;
331 }
332 }
333
334 // This will need a new way to tell if it's hooked up to a cache or not.
335 if (data_write_req->getFlags() & UNCACHEABLE)
336 recordEvent("Uncached Write");
337
338 // If the write needs to have a fault on the access, consider calling
339 // changeStatus() and changing it to "bad addr write" or something.
340 return fault;
341}
342
343
344#ifndef DOXYGEN_SHOULD_SKIP_THIS
345template
346Fault
347TimingSimpleCPU::write(uint64_t data, Addr addr,
348 unsigned flags, uint64_t *res);
349
350template
351Fault
352TimingSimpleCPU::write(uint32_t data, Addr addr,
353 unsigned flags, uint64_t *res);
354
355template
356Fault
357TimingSimpleCPU::write(uint16_t data, Addr addr,
358 unsigned flags, uint64_t *res);
359
360template
361Fault
362TimingSimpleCPU::write(uint8_t data, Addr addr,
363 unsigned flags, uint64_t *res);
364
365#endif //DOXYGEN_SHOULD_SKIP_THIS
366
367template<>
368Fault
369TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
370{
371 return write(*(uint64_t*)&data, addr, flags, res);
372}
373
374template<>
375Fault
376TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
377{
378 return write(*(uint32_t*)&data, addr, flags, res);
379}
380
381
382template<>
383Fault
384TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
385{
386 return write((uint32_t)data, addr, flags, res);
387}
388
389
390void
391TimingSimpleCPU::fetch()
392{
393 checkForInterrupts();
394
395 // need to fill in CPU & thread IDs here
396 Request *ifetch_req = new Request();
397 ifetch_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
398 Fault fault = setupFetchRequest(ifetch_req);
399
400 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
401 ifetch_pkt->dataStatic(&inst);
402
403 if (fault == NoFault) {
404 if (!icachePort.sendTiming(ifetch_pkt)) {
405 // Need to wait for retry
406 _status = IcacheRetry;
407 } else {
408 // Need to wait for cache to respond
409 _status = IcacheWaitResponse;
410 // ownership of packet transferred to memory system
411 ifetch_pkt = NULL;
412 }
413 } else {
414 // fetch fault: advance directly to next instruction (fault handler)
415 advanceInst(fault);
416 }
417}
418
419
420void
421TimingSimpleCPU::advanceInst(Fault fault)
422{
423 advancePC(fault);
424
425 if (_status == Running) {
426 // kick off fetch of next instruction... callback from icache
427 // response will cause that instruction to be executed,
428 // keeping the CPU running.
429 fetch();
430 }
431}
432
433
434void
435TimingSimpleCPU::completeIfetch(Packet *pkt)
436{
437 // received a response from the icache: execute the received
438 // instruction
439 assert(pkt->result == Packet::Success);
440 assert(_status == IcacheWaitResponse);
441
442 _status = Running;
443
444 delete pkt->req;
445 delete pkt;
446
447 if (getState() == SimObject::Draining) {
448 completeDrain();
449 return;
450 }
451
452 preExecute();
453 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
454 // load or store: just send to dcache
455 Fault fault = curStaticInst->initiateAcc(this, traceData);
456 if (fault == NoFault) {
457 // successfully initiated access: instruction will
458 // complete in dcache response callback
459 assert(_status == DcacheWaitResponse);
460 } else {
461 // fault: complete now to invoke fault handler
462 postExecute();
463 advanceInst(fault);
464 }
465 } else {
466 // non-memory instruction: execute completely now
467 Fault fault = curStaticInst->execute(this, traceData);
468 postExecute();
469 advanceInst(fault);
470 }
471}
472
473void
474TimingSimpleCPU::IcachePort::ITickEvent::process()
475{
476 cpu->completeIfetch(pkt);
477}
465
466bool
467TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
468{
478
479bool
480TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
481{
469 cpu->completeIfetch(pkt);
482 // These next few lines could be replaced with something faster
483 // who knows what though
484 Tick time = pkt->req->getTime();
485 while (time < curTick)
486 time += lat;
487
488 if (time == curTick)
489 cpu->completeIfetch(pkt);
490 else
491 tickEvent.schedule(pkt, time);
492
470 return true;
471}
472
473void
474TimingSimpleCPU::IcachePort::recvRetry()
475{
476 // we shouldn't get a retry unless we have a packet that we're
477 // waiting to transmit
478 assert(cpu->ifetch_pkt != NULL);
479 assert(cpu->_status == IcacheRetry);
480 Packet *tmp = cpu->ifetch_pkt;
481 if (sendTiming(tmp)) {
482 cpu->_status = IcacheWaitResponse;
483 cpu->ifetch_pkt = NULL;
484 }
485}
486
487void
488TimingSimpleCPU::completeDataAccess(Packet *pkt)
489{
490 // received a response from the dcache: complete the load or store
491 // instruction
492 assert(pkt->result == Packet::Success);
493 assert(_status == DcacheWaitResponse);
494 _status = Running;
495
496 if (getState() == SimObject::Draining) {
497 completeDrain();
498
499 delete pkt->req;
500 delete pkt;
501
502 return;
503 }
504
505 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
506
507 delete pkt->req;
508 delete pkt;
509
510 postExecute();
511 advanceInst(fault);
512}
513
514
515void
516TimingSimpleCPU::completeDrain()
517{
518 DPRINTF(Config, "Done draining\n");
519 changeState(SimObject::Drained);
520 drainEvent->process();
521}
522
523bool
524TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
525{
493 return true;
494}
495
496void
497TimingSimpleCPU::IcachePort::recvRetry()
498{
499 // we shouldn't get a retry unless we have a packet that we're
500 // waiting to transmit
501 assert(cpu->ifetch_pkt != NULL);
502 assert(cpu->_status == IcacheRetry);
503 Packet *tmp = cpu->ifetch_pkt;
504 if (sendTiming(tmp)) {
505 cpu->_status = IcacheWaitResponse;
506 cpu->ifetch_pkt = NULL;
507 }
508}
509
510void
511TimingSimpleCPU::completeDataAccess(Packet *pkt)
512{
513 // received a response from the dcache: complete the load or store
514 // instruction
515 assert(pkt->result == Packet::Success);
516 assert(_status == DcacheWaitResponse);
517 _status = Running;
518
519 if (getState() == SimObject::Draining) {
520 completeDrain();
521
522 delete pkt->req;
523 delete pkt;
524
525 return;
526 }
527
528 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
529
530 delete pkt->req;
531 delete pkt;
532
533 postExecute();
534 advanceInst(fault);
535}
536
537
538void
539TimingSimpleCPU::completeDrain()
540{
541 DPRINTF(Config, "Done draining\n");
542 changeState(SimObject::Drained);
543 drainEvent->process();
544}
545
546bool
547TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
548{
526 cpu->completeDataAccess(pkt);
549 Tick time = pkt->req->getTime();
550 while (time < curTick)
551 time += lat;
552
553 if (time == curTick)
554 cpu->completeDataAccess(pkt);
555 else
556 tickEvent.schedule(pkt, time);
557
527 return true;
528}
529
530void
558 return true;
559}
560
561void
562TimingSimpleCPU::DcachePort::DTickEvent::process()
563{
564 cpu->completeDataAccess(pkt);
565}
566
567void
531TimingSimpleCPU::DcachePort::recvRetry()
532{
533 // we shouldn't get a retry unless we have a packet that we're
534 // waiting to transmit
535 assert(cpu->dcache_pkt != NULL);
536 assert(cpu->_status == DcacheRetry);
537 Packet *tmp = cpu->dcache_pkt;
538 if (sendTiming(tmp)) {
539 cpu->_status = DcacheWaitResponse;
540 cpu->dcache_pkt = NULL;
541 }
542}
543
544
545////////////////////////////////////////////////////////////////////////
546//
547// TimingSimpleCPU Simulation Object
548//
549BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
550
551 Param<Counter> max_insts_any_thread;
552 Param<Counter> max_insts_all_threads;
553 Param<Counter> max_loads_any_thread;
554 Param<Counter> max_loads_all_threads;
555 SimObjectParam<MemObject *> mem;
556 SimObjectParam<System *> system;
557
558#if FULL_SYSTEM
559 SimObjectParam<AlphaITB *> itb;
560 SimObjectParam<AlphaDTB *> dtb;
561 Param<int> cpu_id;
562 Param<Tick> profile;
563#else
564 SimObjectParam<Process *> workload;
565#endif // FULL_SYSTEM
566
567 Param<int> clock;
568
569 Param<bool> defer_registration;
570 Param<int> width;
571 Param<bool> function_trace;
572 Param<Tick> function_trace_start;
573 Param<bool> simulate_stalls;
574
575END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
576
577BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
578
579 INIT_PARAM(max_insts_any_thread,
580 "terminate when any thread reaches this inst count"),
581 INIT_PARAM(max_insts_all_threads,
582 "terminate when all threads have reached this inst count"),
583 INIT_PARAM(max_loads_any_thread,
584 "terminate when any thread reaches this load count"),
585 INIT_PARAM(max_loads_all_threads,
586 "terminate when all threads have reached this load count"),
587 INIT_PARAM(mem, "memory"),
588 INIT_PARAM(system, "system object"),
589
590#if FULL_SYSTEM
591 INIT_PARAM(itb, "Instruction TLB"),
592 INIT_PARAM(dtb, "Data TLB"),
593 INIT_PARAM(cpu_id, "processor ID"),
594 INIT_PARAM(profile, ""),
595#else
596 INIT_PARAM(workload, "processes to run"),
597#endif // FULL_SYSTEM
598
599 INIT_PARAM(clock, "clock speed"),
600 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
601 INIT_PARAM(width, "cpu width"),
602 INIT_PARAM(function_trace, "Enable function trace"),
603 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
604 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
605
606END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
607
608
609CREATE_SIM_OBJECT(TimingSimpleCPU)
610{
611 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
612 params->name = getInstanceName();
613 params->numberOfThreads = 1;
614 params->max_insts_any_thread = max_insts_any_thread;
615 params->max_insts_all_threads = max_insts_all_threads;
616 params->max_loads_any_thread = max_loads_any_thread;
617 params->max_loads_all_threads = max_loads_all_threads;
618 params->deferRegistration = defer_registration;
619 params->clock = clock;
620 params->functionTrace = function_trace;
621 params->functionTraceStart = function_trace_start;
622 params->mem = mem;
623 params->system = system;
624
625#if FULL_SYSTEM
626 params->itb = itb;
627 params->dtb = dtb;
628 params->cpu_id = cpu_id;
629 params->profile = profile;
630#else
631 params->process = workload;
632#endif
633
634 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
635 return cpu;
636}
637
638REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
639
568TimingSimpleCPU::DcachePort::recvRetry()
569{
570 // we shouldn't get a retry unless we have a packet that we're
571 // waiting to transmit
572 assert(cpu->dcache_pkt != NULL);
573 assert(cpu->_status == DcacheRetry);
574 Packet *tmp = cpu->dcache_pkt;
575 if (sendTiming(tmp)) {
576 cpu->_status = DcacheWaitResponse;
577 cpu->dcache_pkt = NULL;
578 }
579}
580
581
582////////////////////////////////////////////////////////////////////////
583//
584// TimingSimpleCPU Simulation Object
585//
586BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
587
588 Param<Counter> max_insts_any_thread;
589 Param<Counter> max_insts_all_threads;
590 Param<Counter> max_loads_any_thread;
591 Param<Counter> max_loads_all_threads;
592 SimObjectParam<MemObject *> mem;
593 SimObjectParam<System *> system;
594
595#if FULL_SYSTEM
596 SimObjectParam<AlphaITB *> itb;
597 SimObjectParam<AlphaDTB *> dtb;
598 Param<int> cpu_id;
599 Param<Tick> profile;
600#else
601 SimObjectParam<Process *> workload;
602#endif // FULL_SYSTEM
603
604 Param<int> clock;
605
606 Param<bool> defer_registration;
607 Param<int> width;
608 Param<bool> function_trace;
609 Param<Tick> function_trace_start;
610 Param<bool> simulate_stalls;
611
612END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
613
614BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
615
616 INIT_PARAM(max_insts_any_thread,
617 "terminate when any thread reaches this inst count"),
618 INIT_PARAM(max_insts_all_threads,
619 "terminate when all threads have reached this inst count"),
620 INIT_PARAM(max_loads_any_thread,
621 "terminate when any thread reaches this load count"),
622 INIT_PARAM(max_loads_all_threads,
623 "terminate when all threads have reached this load count"),
624 INIT_PARAM(mem, "memory"),
625 INIT_PARAM(system, "system object"),
626
627#if FULL_SYSTEM
628 INIT_PARAM(itb, "Instruction TLB"),
629 INIT_PARAM(dtb, "Data TLB"),
630 INIT_PARAM(cpu_id, "processor ID"),
631 INIT_PARAM(profile, ""),
632#else
633 INIT_PARAM(workload, "processes to run"),
634#endif // FULL_SYSTEM
635
636 INIT_PARAM(clock, "clock speed"),
637 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
638 INIT_PARAM(width, "cpu width"),
639 INIT_PARAM(function_trace, "Enable function trace"),
640 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
641 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
642
643END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
644
645
646CREATE_SIM_OBJECT(TimingSimpleCPU)
647{
648 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
649 params->name = getInstanceName();
650 params->numberOfThreads = 1;
651 params->max_insts_any_thread = max_insts_any_thread;
652 params->max_insts_all_threads = max_insts_all_threads;
653 params->max_loads_any_thread = max_loads_any_thread;
654 params->max_loads_all_threads = max_loads_all_threads;
655 params->deferRegistration = defer_registration;
656 params->clock = clock;
657 params->functionTrace = function_trace;
658 params->functionTraceStart = function_trace_start;
659 params->mem = mem;
660 params->system = system;
661
662#if FULL_SYSTEM
663 params->itb = itb;
664 params->dtb = dtb;
665 params->cpu_id = cpu_id;
666 params->profile = profile;
667#else
668 params->process = workload;
669#endif
670
671 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
672 return cpu;
673}
674
675REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
676