timing.cc (2856:89691405ec9c) timing.cc (2857:5f3e107e8f13)
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/utility.hh"
32#include "cpu/exetrace.hh"
33#include "cpu/simple/timing.hh"
34#include "mem/packet_impl.hh"
35#include "sim/builder.hh"
36
37using namespace std;
38using namespace TheISA;
39
40Port *
41TimingSimpleCPU::getPort(const std::string &if_name, int idx)
42{
43 if (if_name == "dcache_port")
44 return &dcachePort;
45 else if (if_name == "icache_port")
46 return &icachePort;
47 else
48 panic("No Such Port\n");
49}
50
51void
52TimingSimpleCPU::init()
53{
54 BaseCPU::init();
55#if FULL_SYSTEM
56 for (int i = 0; i < threadContexts.size(); ++i) {
57 ThreadContext *tc = threadContexts[i];
58
59 // initialize CPU, including PC
60 TheISA::initCPU(tc, tc->readCpuId());
61 }
62#endif
63}
64
65Tick
66TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
67{
68 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
69 return curTick;
70}
71
72void
73TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
74{
75 panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
76}
77
78void
79TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
80{
81 if (status == RangeChange)
82 return;
83
84 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
85}
86
87TimingSimpleCPU::TimingSimpleCPU(Params *p)
88 : BaseSimpleCPU(p), icachePort(this), dcachePort(this)
89{
90 _status = Idle;
91 ifetch_pkt = dcache_pkt = NULL;
92 drainEvent = NULL;
93 state = SimObject::Timing;
94}
95
96
97TimingSimpleCPU::~TimingSimpleCPU()
98{
99}
100
101void
102TimingSimpleCPU::serialize(ostream &os)
103{
104 SERIALIZE_ENUM(_status);
105 BaseSimpleCPU::serialize(os);
106}
107
108void
109TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
110{
111 UNSERIALIZE_ENUM(_status);
112 BaseSimpleCPU::unserialize(cp, section);
113}
114
115bool
116TimingSimpleCPU::drain(Event *drain_event)
117{
118 // TimingSimpleCPU is ready to drain if it's not waiting for
119 // an access to complete.
120 if (status() == Idle || status() == Running || status() == SwitchedOut) {
121 changeState(SimObject::DrainedTiming);
122 return false;
123 } else {
124 changeState(SimObject::Draining);
125 drainEvent = drain_event;
126 return true;
127 }
128}
129
130void
131TimingSimpleCPU::resume()
132{
133 if (_status != SwitchedOut && _status != Idle) {
134 Event *e =
135 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
136 e->schedule(curTick);
137 }
138}
139
140void
141TimingSimpleCPU::setMemoryMode(State new_mode)
142{
143 assert(new_mode == SimObject::Timing);
144}
145
146void
147TimingSimpleCPU::switchOut()
148{
149 assert(status() == Running || status() == Idle);
150 _status = SwitchedOut;
151}
152
153
154void
155TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
156{
157 BaseCPU::takeOverFrom(oldCPU);
158
159 // if any of this CPU's ThreadContexts are active, mark the CPU as
160 // running and schedule its tick event.
161 for (int i = 0; i < threadContexts.size(); ++i) {
162 ThreadContext *tc = threadContexts[i];
163 if (tc->status() == ThreadContext::Active && _status != Running) {
164 _status = Running;
165 break;
166 }
167 }
168}
169
170
171void
172TimingSimpleCPU::activateContext(int thread_num, int delay)
173{
174 assert(thread_num == 0);
175 assert(thread);
176
177 assert(_status == Idle);
178
179 notIdleFraction++;
180 _status = Running;
181 // kick things off by initiating the fetch of the next instruction
182 Event *e =
183 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
184 e->schedule(curTick + cycles(delay));
185}
186
187
188void
189TimingSimpleCPU::suspendContext(int thread_num)
190{
191 assert(thread_num == 0);
192 assert(thread);
193
194 assert(_status == Running);
195
196 // just change status to Idle... if status != Running,
197 // completeInst() will not initiate fetch of next instruction.
198
199 notIdleFraction--;
200 _status = Idle;
201}
202
203
204template <class T>
205Fault
206TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
207{
208 // need to fill in CPU & thread IDs here
209 Request *data_read_req = new Request();
210 data_read_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
211 data_read_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
212
213 if (traceData) {
214 traceData->setAddr(data_read_req->getVaddr());
215 }
216
217 // translate to physical address
218 Fault fault = thread->translateDataReadReq(data_read_req);
219
220 // Now do the access.
221 if (fault == NoFault) {
222 Packet *data_read_pkt =
223 new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
224 data_read_pkt->dataDynamic<T>(new T);
225
226 if (!dcachePort.sendTiming(data_read_pkt)) {
227 _status = DcacheRetry;
228 dcache_pkt = data_read_pkt;
229 } else {
230 _status = DcacheWaitResponse;
231 dcache_pkt = NULL;
232 }
233 }
234
235 // This will need a new way to tell if it has a dcache attached.
236 if (data_read_req->getFlags() & UNCACHEABLE)
237 recordEvent("Uncached Read");
238
239 return fault;
240}
241
242#ifndef DOXYGEN_SHOULD_SKIP_THIS
243
244template
245Fault
246TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
247
248template
249Fault
250TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
251
252template
253Fault
254TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
255
256template
257Fault
258TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
259
260#endif //DOXYGEN_SHOULD_SKIP_THIS
261
262template<>
263Fault
264TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
265{
266 return read(addr, *(uint64_t*)&data, flags);
267}
268
269template<>
270Fault
271TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
272{
273 return read(addr, *(uint32_t*)&data, flags);
274}
275
276
277template<>
278Fault
279TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
280{
281 return read(addr, (uint32_t&)data, flags);
282}
283
284
285template <class T>
286Fault
287TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
288{
289 // need to fill in CPU & thread IDs here
290 Request *data_write_req = new Request();
291 data_write_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
292 data_write_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
293
294 // translate to physical address
295 Fault fault = thread->translateDataWriteReq(data_write_req);
296 // Now do the access.
297 if (fault == NoFault) {
298 Packet *data_write_pkt =
299 new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
300 data_write_pkt->allocate();
301 data_write_pkt->set(data);
302
303 if (!dcachePort.sendTiming(data_write_pkt)) {
304 _status = DcacheRetry;
305 dcache_pkt = data_write_pkt;
306 } else {
307 _status = DcacheWaitResponse;
308 dcache_pkt = NULL;
309 }
310 }
311
312 // This will need a new way to tell if it's hooked up to a cache or not.
313 if (data_write_req->getFlags() & UNCACHEABLE)
314 recordEvent("Uncached Write");
315
316 // If the write needs to have a fault on the access, consider calling
317 // changeStatus() and changing it to "bad addr write" or something.
318 return fault;
319}
320
321
322#ifndef DOXYGEN_SHOULD_SKIP_THIS
323template
324Fault
325TimingSimpleCPU::write(uint64_t data, Addr addr,
326 unsigned flags, uint64_t *res);
327
328template
329Fault
330TimingSimpleCPU::write(uint32_t data, Addr addr,
331 unsigned flags, uint64_t *res);
332
333template
334Fault
335TimingSimpleCPU::write(uint16_t data, Addr addr,
336 unsigned flags, uint64_t *res);
337
338template
339Fault
340TimingSimpleCPU::write(uint8_t data, Addr addr,
341 unsigned flags, uint64_t *res);
342
343#endif //DOXYGEN_SHOULD_SKIP_THIS
344
345template<>
346Fault
347TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
348{
349 return write(*(uint64_t*)&data, addr, flags, res);
350}
351
352template<>
353Fault
354TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
355{
356 return write(*(uint32_t*)&data, addr, flags, res);
357}
358
359
360template<>
361Fault
362TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
363{
364 return write((uint32_t)data, addr, flags, res);
365}
366
367
368void
369TimingSimpleCPU::fetch()
370{
371 checkForInterrupts();
372
373 // need to fill in CPU & thread IDs here
374 Request *ifetch_req = new Request();
375 ifetch_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
376 Fault fault = setupFetchRequest(ifetch_req);
377
378 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
379 ifetch_pkt->dataStatic(&inst);
380
381 if (fault == NoFault) {
382 if (!icachePort.sendTiming(ifetch_pkt)) {
383 // Need to wait for retry
384 _status = IcacheRetry;
385 } else {
386 // Need to wait for cache to respond
387 _status = IcacheWaitResponse;
388 // ownership of packet transferred to memory system
389 ifetch_pkt = NULL;
390 }
391 } else {
392 // fetch fault: advance directly to next instruction (fault handler)
393 advanceInst(fault);
394 }
395}
396
397
398void
399TimingSimpleCPU::advanceInst(Fault fault)
400{
401 advancePC(fault);
402
403 if (_status == Running) {
404 // kick off fetch of next instruction... callback from icache
405 // response will cause that instruction to be executed,
406 // keeping the CPU running.
407 fetch();
408 }
409}
410
411
412void
413TimingSimpleCPU::completeIfetch(Packet *pkt)
414{
415 // received a response from the icache: execute the received
416 // instruction
417 assert(pkt->result == Packet::Success);
418 assert(_status == IcacheWaitResponse);
419
420 _status = Running;
421
422 delete pkt->req;
423 delete pkt;
424
425 if (getState() == SimObject::Draining) {
426 completeDrain();
427 return;
428 }
429
430 preExecute();
431 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
432 // load or store: just send to dcache
433 Fault fault = curStaticInst->initiateAcc(this, traceData);
434 if (fault == NoFault) {
435 // successfully initiated access: instruction will
436 // complete in dcache response callback
437 assert(_status == DcacheWaitResponse);
438 } else {
439 // fault: complete now to invoke fault handler
440 postExecute();
441 advanceInst(fault);
442 }
443 } else {
444 // non-memory instruction: execute completely now
445 Fault fault = curStaticInst->execute(this, traceData);
446 postExecute();
447 advanceInst(fault);
448 }
449}
450
451
452bool
453TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
454{
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/utility.hh"
32#include "cpu/exetrace.hh"
33#include "cpu/simple/timing.hh"
34#include "mem/packet_impl.hh"
35#include "sim/builder.hh"
36
37using namespace std;
38using namespace TheISA;
39
40Port *
41TimingSimpleCPU::getPort(const std::string &if_name, int idx)
42{
43 if (if_name == "dcache_port")
44 return &dcachePort;
45 else if (if_name == "icache_port")
46 return &icachePort;
47 else
48 panic("No Such Port\n");
49}
50
51void
52TimingSimpleCPU::init()
53{
54 BaseCPU::init();
55#if FULL_SYSTEM
56 for (int i = 0; i < threadContexts.size(); ++i) {
57 ThreadContext *tc = threadContexts[i];
58
59 // initialize CPU, including PC
60 TheISA::initCPU(tc, tc->readCpuId());
61 }
62#endif
63}
64
65Tick
66TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
67{
68 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
69 return curTick;
70}
71
72void
73TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
74{
75 panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
76}
77
78void
79TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
80{
81 if (status == RangeChange)
82 return;
83
84 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
85}
86
87TimingSimpleCPU::TimingSimpleCPU(Params *p)
88 : BaseSimpleCPU(p), icachePort(this), dcachePort(this)
89{
90 _status = Idle;
91 ifetch_pkt = dcache_pkt = NULL;
92 drainEvent = NULL;
93 state = SimObject::Timing;
94}
95
96
97TimingSimpleCPU::~TimingSimpleCPU()
98{
99}
100
101void
102TimingSimpleCPU::serialize(ostream &os)
103{
104 SERIALIZE_ENUM(_status);
105 BaseSimpleCPU::serialize(os);
106}
107
108void
109TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
110{
111 UNSERIALIZE_ENUM(_status);
112 BaseSimpleCPU::unserialize(cp, section);
113}
114
115bool
116TimingSimpleCPU::drain(Event *drain_event)
117{
118 // TimingSimpleCPU is ready to drain if it's not waiting for
119 // an access to complete.
120 if (status() == Idle || status() == Running || status() == SwitchedOut) {
121 changeState(SimObject::DrainedTiming);
122 return false;
123 } else {
124 changeState(SimObject::Draining);
125 drainEvent = drain_event;
126 return true;
127 }
128}
129
130void
131TimingSimpleCPU::resume()
132{
133 if (_status != SwitchedOut && _status != Idle) {
134 Event *e =
135 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
136 e->schedule(curTick);
137 }
138}
139
140void
141TimingSimpleCPU::setMemoryMode(State new_mode)
142{
143 assert(new_mode == SimObject::Timing);
144}
145
146void
147TimingSimpleCPU::switchOut()
148{
149 assert(status() == Running || status() == Idle);
150 _status = SwitchedOut;
151}
152
153
154void
155TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
156{
157 BaseCPU::takeOverFrom(oldCPU);
158
159 // if any of this CPU's ThreadContexts are active, mark the CPU as
160 // running and schedule its tick event.
161 for (int i = 0; i < threadContexts.size(); ++i) {
162 ThreadContext *tc = threadContexts[i];
163 if (tc->status() == ThreadContext::Active && _status != Running) {
164 _status = Running;
165 break;
166 }
167 }
168}
169
170
171void
172TimingSimpleCPU::activateContext(int thread_num, int delay)
173{
174 assert(thread_num == 0);
175 assert(thread);
176
177 assert(_status == Idle);
178
179 notIdleFraction++;
180 _status = Running;
181 // kick things off by initiating the fetch of the next instruction
182 Event *e =
183 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
184 e->schedule(curTick + cycles(delay));
185}
186
187
188void
189TimingSimpleCPU::suspendContext(int thread_num)
190{
191 assert(thread_num == 0);
192 assert(thread);
193
194 assert(_status == Running);
195
196 // just change status to Idle... if status != Running,
197 // completeInst() will not initiate fetch of next instruction.
198
199 notIdleFraction--;
200 _status = Idle;
201}
202
203
204template <class T>
205Fault
206TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
207{
208 // need to fill in CPU & thread IDs here
209 Request *data_read_req = new Request();
210 data_read_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
211 data_read_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
212
213 if (traceData) {
214 traceData->setAddr(data_read_req->getVaddr());
215 }
216
217 // translate to physical address
218 Fault fault = thread->translateDataReadReq(data_read_req);
219
220 // Now do the access.
221 if (fault == NoFault) {
222 Packet *data_read_pkt =
223 new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
224 data_read_pkt->dataDynamic<T>(new T);
225
226 if (!dcachePort.sendTiming(data_read_pkt)) {
227 _status = DcacheRetry;
228 dcache_pkt = data_read_pkt;
229 } else {
230 _status = DcacheWaitResponse;
231 dcache_pkt = NULL;
232 }
233 }
234
235 // This will need a new way to tell if it has a dcache attached.
236 if (data_read_req->getFlags() & UNCACHEABLE)
237 recordEvent("Uncached Read");
238
239 return fault;
240}
241
242#ifndef DOXYGEN_SHOULD_SKIP_THIS
243
244template
245Fault
246TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
247
248template
249Fault
250TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
251
252template
253Fault
254TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
255
256template
257Fault
258TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
259
260#endif //DOXYGEN_SHOULD_SKIP_THIS
261
262template<>
263Fault
264TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
265{
266 return read(addr, *(uint64_t*)&data, flags);
267}
268
269template<>
270Fault
271TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
272{
273 return read(addr, *(uint32_t*)&data, flags);
274}
275
276
277template<>
278Fault
279TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
280{
281 return read(addr, (uint32_t&)data, flags);
282}
283
284
285template <class T>
286Fault
287TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
288{
289 // need to fill in CPU & thread IDs here
290 Request *data_write_req = new Request();
291 data_write_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
292 data_write_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
293
294 // translate to physical address
295 Fault fault = thread->translateDataWriteReq(data_write_req);
296 // Now do the access.
297 if (fault == NoFault) {
298 Packet *data_write_pkt =
299 new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
300 data_write_pkt->allocate();
301 data_write_pkt->set(data);
302
303 if (!dcachePort.sendTiming(data_write_pkt)) {
304 _status = DcacheRetry;
305 dcache_pkt = data_write_pkt;
306 } else {
307 _status = DcacheWaitResponse;
308 dcache_pkt = NULL;
309 }
310 }
311
312 // This will need a new way to tell if it's hooked up to a cache or not.
313 if (data_write_req->getFlags() & UNCACHEABLE)
314 recordEvent("Uncached Write");
315
316 // If the write needs to have a fault on the access, consider calling
317 // changeStatus() and changing it to "bad addr write" or something.
318 return fault;
319}
320
321
322#ifndef DOXYGEN_SHOULD_SKIP_THIS
323template
324Fault
325TimingSimpleCPU::write(uint64_t data, Addr addr,
326 unsigned flags, uint64_t *res);
327
328template
329Fault
330TimingSimpleCPU::write(uint32_t data, Addr addr,
331 unsigned flags, uint64_t *res);
332
333template
334Fault
335TimingSimpleCPU::write(uint16_t data, Addr addr,
336 unsigned flags, uint64_t *res);
337
338template
339Fault
340TimingSimpleCPU::write(uint8_t data, Addr addr,
341 unsigned flags, uint64_t *res);
342
343#endif //DOXYGEN_SHOULD_SKIP_THIS
344
345template<>
346Fault
347TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
348{
349 return write(*(uint64_t*)&data, addr, flags, res);
350}
351
352template<>
353Fault
354TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
355{
356 return write(*(uint32_t*)&data, addr, flags, res);
357}
358
359
360template<>
361Fault
362TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
363{
364 return write((uint32_t)data, addr, flags, res);
365}
366
367
368void
369TimingSimpleCPU::fetch()
370{
371 checkForInterrupts();
372
373 // need to fill in CPU & thread IDs here
374 Request *ifetch_req = new Request();
375 ifetch_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
376 Fault fault = setupFetchRequest(ifetch_req);
377
378 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
379 ifetch_pkt->dataStatic(&inst);
380
381 if (fault == NoFault) {
382 if (!icachePort.sendTiming(ifetch_pkt)) {
383 // Need to wait for retry
384 _status = IcacheRetry;
385 } else {
386 // Need to wait for cache to respond
387 _status = IcacheWaitResponse;
388 // ownership of packet transferred to memory system
389 ifetch_pkt = NULL;
390 }
391 } else {
392 // fetch fault: advance directly to next instruction (fault handler)
393 advanceInst(fault);
394 }
395}
396
397
398void
399TimingSimpleCPU::advanceInst(Fault fault)
400{
401 advancePC(fault);
402
403 if (_status == Running) {
404 // kick off fetch of next instruction... callback from icache
405 // response will cause that instruction to be executed,
406 // keeping the CPU running.
407 fetch();
408 }
409}
410
411
412void
413TimingSimpleCPU::completeIfetch(Packet *pkt)
414{
415 // received a response from the icache: execute the received
416 // instruction
417 assert(pkt->result == Packet::Success);
418 assert(_status == IcacheWaitResponse);
419
420 _status = Running;
421
422 delete pkt->req;
423 delete pkt;
424
425 if (getState() == SimObject::Draining) {
426 completeDrain();
427 return;
428 }
429
430 preExecute();
431 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
432 // load or store: just send to dcache
433 Fault fault = curStaticInst->initiateAcc(this, traceData);
434 if (fault == NoFault) {
435 // successfully initiated access: instruction will
436 // complete in dcache response callback
437 assert(_status == DcacheWaitResponse);
438 } else {
439 // fault: complete now to invoke fault handler
440 postExecute();
441 advanceInst(fault);
442 }
443 } else {
444 // non-memory instruction: execute completely now
445 Fault fault = curStaticInst->execute(this, traceData);
446 postExecute();
447 advanceInst(fault);
448 }
449}
450
451
452bool
453TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
454{
455 if (cpu->_status == DcacheWaitResponse)
456 cpu->completeDataAccess(pkt);
457 else if (cpu->_status == IcacheWaitResponse)
458 cpu->completeIfetch(pkt);
459 else
460 assert("OOPS" && 0);
455 cpu->completeIfetch(pkt);
461 return true;
462}
463
464void
465TimingSimpleCPU::IcachePort::recvRetry()
466{
467 // we shouldn't get a retry unless we have a packet that we're
468 // waiting to transmit
469 assert(cpu->ifetch_pkt != NULL);
470 assert(cpu->_status == IcacheRetry);
471 Packet *tmp = cpu->ifetch_pkt;
472 if (sendTiming(tmp)) {
473 cpu->_status = IcacheWaitResponse;
474 cpu->ifetch_pkt = NULL;
475 }
476}
477
478void
479TimingSimpleCPU::completeDataAccess(Packet *pkt)
480{
481 // received a response from the dcache: complete the load or store
482 // instruction
483 assert(pkt->result == Packet::Success);
484 assert(_status == DcacheWaitResponse);
485 _status = Running;
486
487 if (getState() == SimObject::Draining) {
488 completeDrain();
489
490 delete pkt->req;
491 delete pkt;
492
493 return;
494 }
495
496 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
497
498 delete pkt->req;
499 delete pkt;
500
501 postExecute();
502 advanceInst(fault);
503}
504
505
506void
507TimingSimpleCPU::completeDrain()
508{
509 DPRINTF(Config, "Done draining\n");
510 changeState(SimObject::DrainedTiming);
511 drainEvent->process();
512}
513
514bool
515TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
516{
517 cpu->completeDataAccess(pkt);
518 return true;
519}
520
521void
522TimingSimpleCPU::DcachePort::recvRetry()
523{
524 // we shouldn't get a retry unless we have a packet that we're
525 // waiting to transmit
526 assert(cpu->dcache_pkt != NULL);
527 assert(cpu->_status == DcacheRetry);
528 Packet *tmp = cpu->dcache_pkt;
529 if (sendTiming(tmp)) {
530 cpu->_status = DcacheWaitResponse;
531 cpu->dcache_pkt = NULL;
532 }
533}
534
535
536////////////////////////////////////////////////////////////////////////
537//
538// TimingSimpleCPU Simulation Object
539//
540BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
541
542 Param<Counter> max_insts_any_thread;
543 Param<Counter> max_insts_all_threads;
544 Param<Counter> max_loads_any_thread;
545 Param<Counter> max_loads_all_threads;
546 SimObjectParam<MemObject *> mem;
547
548#if FULL_SYSTEM
549 SimObjectParam<AlphaITB *> itb;
550 SimObjectParam<AlphaDTB *> dtb;
551 SimObjectParam<System *> system;
552 Param<int> cpu_id;
553 Param<Tick> profile;
554#else
555 SimObjectParam<Process *> workload;
556#endif // FULL_SYSTEM
557
558 Param<int> clock;
559
560 Param<bool> defer_registration;
561 Param<int> width;
562 Param<bool> function_trace;
563 Param<Tick> function_trace_start;
564 Param<bool> simulate_stalls;
565
566END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
567
568BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
569
570 INIT_PARAM(max_insts_any_thread,
571 "terminate when any thread reaches this inst count"),
572 INIT_PARAM(max_insts_all_threads,
573 "terminate when all threads have reached this inst count"),
574 INIT_PARAM(max_loads_any_thread,
575 "terminate when any thread reaches this load count"),
576 INIT_PARAM(max_loads_all_threads,
577 "terminate when all threads have reached this load count"),
578 INIT_PARAM(mem, "memory"),
579
580#if FULL_SYSTEM
581 INIT_PARAM(itb, "Instruction TLB"),
582 INIT_PARAM(dtb, "Data TLB"),
583 INIT_PARAM(system, "system object"),
584 INIT_PARAM(cpu_id, "processor ID"),
585 INIT_PARAM(profile, ""),
586#else
587 INIT_PARAM(workload, "processes to run"),
588#endif // FULL_SYSTEM
589
590 INIT_PARAM(clock, "clock speed"),
591 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
592 INIT_PARAM(width, "cpu width"),
593 INIT_PARAM(function_trace, "Enable function trace"),
594 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
595 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
596
597END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
598
599
600CREATE_SIM_OBJECT(TimingSimpleCPU)
601{
602 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
603 params->name = getInstanceName();
604 params->numberOfThreads = 1;
605 params->max_insts_any_thread = max_insts_any_thread;
606 params->max_insts_all_threads = max_insts_all_threads;
607 params->max_loads_any_thread = max_loads_any_thread;
608 params->max_loads_all_threads = max_loads_all_threads;
609 params->deferRegistration = defer_registration;
610 params->clock = clock;
611 params->functionTrace = function_trace;
612 params->functionTraceStart = function_trace_start;
613 params->mem = mem;
614
615#if FULL_SYSTEM
616 params->itb = itb;
617 params->dtb = dtb;
618 params->system = system;
619 params->cpu_id = cpu_id;
620 params->profile = profile;
621#else
622 params->process = workload;
623#endif
624
625 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
626 return cpu;
627}
628
629REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
630
456 return true;
457}
458
459void
460TimingSimpleCPU::IcachePort::recvRetry()
461{
462 // we shouldn't get a retry unless we have a packet that we're
463 // waiting to transmit
464 assert(cpu->ifetch_pkt != NULL);
465 assert(cpu->_status == IcacheRetry);
466 Packet *tmp = cpu->ifetch_pkt;
467 if (sendTiming(tmp)) {
468 cpu->_status = IcacheWaitResponse;
469 cpu->ifetch_pkt = NULL;
470 }
471}
472
473void
474TimingSimpleCPU::completeDataAccess(Packet *pkt)
475{
476 // received a response from the dcache: complete the load or store
477 // instruction
478 assert(pkt->result == Packet::Success);
479 assert(_status == DcacheWaitResponse);
480 _status = Running;
481
482 if (getState() == SimObject::Draining) {
483 completeDrain();
484
485 delete pkt->req;
486 delete pkt;
487
488 return;
489 }
490
491 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
492
493 delete pkt->req;
494 delete pkt;
495
496 postExecute();
497 advanceInst(fault);
498}
499
500
501void
502TimingSimpleCPU::completeDrain()
503{
504 DPRINTF(Config, "Done draining\n");
505 changeState(SimObject::DrainedTiming);
506 drainEvent->process();
507}
508
509bool
510TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
511{
512 cpu->completeDataAccess(pkt);
513 return true;
514}
515
516void
517TimingSimpleCPU::DcachePort::recvRetry()
518{
519 // we shouldn't get a retry unless we have a packet that we're
520 // waiting to transmit
521 assert(cpu->dcache_pkt != NULL);
522 assert(cpu->_status == DcacheRetry);
523 Packet *tmp = cpu->dcache_pkt;
524 if (sendTiming(tmp)) {
525 cpu->_status = DcacheWaitResponse;
526 cpu->dcache_pkt = NULL;
527 }
528}
529
530
531////////////////////////////////////////////////////////////////////////
532//
533// TimingSimpleCPU Simulation Object
534//
535BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
536
537 Param<Counter> max_insts_any_thread;
538 Param<Counter> max_insts_all_threads;
539 Param<Counter> max_loads_any_thread;
540 Param<Counter> max_loads_all_threads;
541 SimObjectParam<MemObject *> mem;
542
543#if FULL_SYSTEM
544 SimObjectParam<AlphaITB *> itb;
545 SimObjectParam<AlphaDTB *> dtb;
546 SimObjectParam<System *> system;
547 Param<int> cpu_id;
548 Param<Tick> profile;
549#else
550 SimObjectParam<Process *> workload;
551#endif // FULL_SYSTEM
552
553 Param<int> clock;
554
555 Param<bool> defer_registration;
556 Param<int> width;
557 Param<bool> function_trace;
558 Param<Tick> function_trace_start;
559 Param<bool> simulate_stalls;
560
561END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
562
563BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
564
565 INIT_PARAM(max_insts_any_thread,
566 "terminate when any thread reaches this inst count"),
567 INIT_PARAM(max_insts_all_threads,
568 "terminate when all threads have reached this inst count"),
569 INIT_PARAM(max_loads_any_thread,
570 "terminate when any thread reaches this load count"),
571 INIT_PARAM(max_loads_all_threads,
572 "terminate when all threads have reached this load count"),
573 INIT_PARAM(mem, "memory"),
574
575#if FULL_SYSTEM
576 INIT_PARAM(itb, "Instruction TLB"),
577 INIT_PARAM(dtb, "Data TLB"),
578 INIT_PARAM(system, "system object"),
579 INIT_PARAM(cpu_id, "processor ID"),
580 INIT_PARAM(profile, ""),
581#else
582 INIT_PARAM(workload, "processes to run"),
583#endif // FULL_SYSTEM
584
585 INIT_PARAM(clock, "clock speed"),
586 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
587 INIT_PARAM(width, "cpu width"),
588 INIT_PARAM(function_trace, "Enable function trace"),
589 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
590 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
591
592END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
593
594
595CREATE_SIM_OBJECT(TimingSimpleCPU)
596{
597 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
598 params->name = getInstanceName();
599 params->numberOfThreads = 1;
600 params->max_insts_any_thread = max_insts_any_thread;
601 params->max_insts_all_threads = max_insts_all_threads;
602 params->max_loads_any_thread = max_loads_any_thread;
603 params->max_loads_all_threads = max_loads_all_threads;
604 params->deferRegistration = defer_registration;
605 params->clock = clock;
606 params->functionTrace = function_trace;
607 params->functionTraceStart = function_trace_start;
608 params->mem = mem;
609
610#if FULL_SYSTEM
611 params->itb = itb;
612 params->dtb = dtb;
613 params->system = system;
614 params->cpu_id = cpu_id;
615 params->profile = profile;
616#else
617 params->process = workload;
618#endif
619
620 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
621 return cpu;
622}
623
624REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
625