timing.cc (2683:d6b72bb2ed97) timing.cc (2798:751e9170247e)
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/utility.hh"
32#include "cpu/exetrace.hh"
33#include "cpu/simple/timing.hh"
34#include "mem/packet_impl.hh"
35#include "sim/builder.hh"
36
37using namespace std;
38using namespace TheISA;
39
40
41void
42TimingSimpleCPU::init()
43{
44 //Create Memory Ports (conect them up)
45 Port *mem_dport = mem->getPort("");
46 dcachePort.setPeer(mem_dport);
47 mem_dport->setPeer(&dcachePort);
48
49 Port *mem_iport = mem->getPort("");
50 icachePort.setPeer(mem_iport);
51 mem_iport->setPeer(&icachePort);
52
53 BaseCPU::init();
54#if FULL_SYSTEM
55 for (int i = 0; i < threadContexts.size(); ++i) {
56 ThreadContext *tc = threadContexts[i];
57
58 // initialize CPU, including PC
59 TheISA::initCPU(tc, tc->readCpuId());
60 }
61#endif
62}
63
64Tick
65TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
66{
67 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
68 return curTick;
69}
70
71void
72TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
73{
74 panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
75}
76
77void
78TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
79{
80 if (status == RangeChange)
81 return;
82
83 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
84}
85
86TimingSimpleCPU::TimingSimpleCPU(Params *p)
87 : BaseSimpleCPU(p), icachePort(this), dcachePort(this)
88{
89 _status = Idle;
90 ifetch_pkt = dcache_pkt = NULL;
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/utility.hh"
32#include "cpu/exetrace.hh"
33#include "cpu/simple/timing.hh"
34#include "mem/packet_impl.hh"
35#include "sim/builder.hh"
36
37using namespace std;
38using namespace TheISA;
39
40
41void
42TimingSimpleCPU::init()
43{
44 //Create Memory Ports (conect them up)
45 Port *mem_dport = mem->getPort("");
46 dcachePort.setPeer(mem_dport);
47 mem_dport->setPeer(&dcachePort);
48
49 Port *mem_iport = mem->getPort("");
50 icachePort.setPeer(mem_iport);
51 mem_iport->setPeer(&icachePort);
52
53 BaseCPU::init();
54#if FULL_SYSTEM
55 for (int i = 0; i < threadContexts.size(); ++i) {
56 ThreadContext *tc = threadContexts[i];
57
58 // initialize CPU, including PC
59 TheISA::initCPU(tc, tc->readCpuId());
60 }
61#endif
62}
63
64Tick
65TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
66{
67 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
68 return curTick;
69}
70
71void
72TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
73{
74 panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
75}
76
77void
78TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
79{
80 if (status == RangeChange)
81 return;
82
83 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
84}
85
86TimingSimpleCPU::TimingSimpleCPU(Params *p)
87 : BaseSimpleCPU(p), icachePort(this), dcachePort(this)
88{
89 _status = Idle;
90 ifetch_pkt = dcache_pkt = NULL;
91 quiesceEvent = NULL;
92 state = SimObject::Timing;
91}
92
93
94TimingSimpleCPU::~TimingSimpleCPU()
95{
96}
97
98void
99TimingSimpleCPU::serialize(ostream &os)
100{
93}
94
95
96TimingSimpleCPU::~TimingSimpleCPU()
97{
98}
99
100void
101TimingSimpleCPU::serialize(ostream &os)
102{
101 BaseSimpleCPU::serialize(os);
102 SERIALIZE_ENUM(_status);
103 SERIALIZE_ENUM(_status);
104 BaseSimpleCPU::serialize(os);
103}
104
105void
106TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
107{
105}
106
107void
108TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
109{
108 BaseSimpleCPU::unserialize(cp, section);
109 UNSERIALIZE_ENUM(_status);
110 UNSERIALIZE_ENUM(_status);
111 BaseSimpleCPU::unserialize(cp, section);
110}
111
112}
113
114bool
115TimingSimpleCPU::quiesce(Event *quiesce_event)
116{
117 // TimingSimpleCPU is ready to quiesce if it's not waiting for
118 // an access to complete.
119 if (status() == Idle || status() == Running || status() == SwitchedOut) {
120 DPRINTF(Config, "Ready to quiesce\n");
121 return false;
122 } else {
123 DPRINTF(Config, "Waiting to quiesce\n");
124 changeState(SimObject::Quiescing);
125 quiesceEvent = quiesce_event;
126 return true;
127 }
128}
129
112void
130void
113TimingSimpleCPU::switchOut(Sampler *s)
131TimingSimpleCPU::resume()
114{
132{
115 sampler = s;
116 if (status() == Running) {
117 _status = SwitchedOut;
133 if (_status != SwitchedOut && _status != Idle) {
134 Event *e =
135 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
136 e->schedule(curTick);
118 }
137 }
119 sampler->signalSwitched();
120}
121
138}
139
140void
141TimingSimpleCPU::setMemoryMode(State new_mode)
142{
143 assert(new_mode == SimObject::Timing);
144}
122
123void
145
146void
147TimingSimpleCPU::switchOut()
148{
149 assert(status() == Running || status() == Idle);
150 _status = SwitchedOut;
151}
152
153
154void
124TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
125{
126 BaseCPU::takeOverFrom(oldCPU);
127
128 // if any of this CPU's ThreadContexts are active, mark the CPU as
129 // running and schedule its tick event.
130 for (int i = 0; i < threadContexts.size(); ++i) {
131 ThreadContext *tc = threadContexts[i];
132 if (tc->status() == ThreadContext::Active && _status != Running) {
133 _status = Running;
134 break;
135 }
136 }
137}
138
139
140void
141TimingSimpleCPU::activateContext(int thread_num, int delay)
142{
143 assert(thread_num == 0);
144 assert(thread);
145
146 assert(_status == Idle);
147
148 notIdleFraction++;
149 _status = Running;
150 // kick things off by initiating the fetch of the next instruction
151 Event *e =
152 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
153 e->schedule(curTick + cycles(delay));
154}
155
156
157void
158TimingSimpleCPU::suspendContext(int thread_num)
159{
160 assert(thread_num == 0);
161 assert(thread);
162
163 assert(_status == Running);
164
165 // just change status to Idle... if status != Running,
166 // completeInst() will not initiate fetch of next instruction.
167
168 notIdleFraction--;
169 _status = Idle;
170}
171
172
173template <class T>
174Fault
175TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
176{
177 // need to fill in CPU & thread IDs here
178 Request *data_read_req = new Request();
179
180 data_read_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
181
182 if (traceData) {
183 traceData->setAddr(data_read_req->getVaddr());
184 }
185
186 // translate to physical address
187 Fault fault = thread->translateDataReadReq(data_read_req);
188
189 // Now do the access.
190 if (fault == NoFault) {
191 Packet *data_read_pkt =
192 new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
193 data_read_pkt->dataDynamic<T>(new T);
194
195 if (!dcachePort.sendTiming(data_read_pkt)) {
196 _status = DcacheRetry;
197 dcache_pkt = data_read_pkt;
198 } else {
199 _status = DcacheWaitResponse;
200 dcache_pkt = NULL;
201 }
202 }
203
204 // This will need a new way to tell if it has a dcache attached.
205 if (data_read_req->getFlags() & UNCACHEABLE)
206 recordEvent("Uncached Read");
207
208 return fault;
209}
210
211#ifndef DOXYGEN_SHOULD_SKIP_THIS
212
213template
214Fault
215TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
216
217template
218Fault
219TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
220
221template
222Fault
223TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
224
225template
226Fault
227TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
228
229#endif //DOXYGEN_SHOULD_SKIP_THIS
230
231template<>
232Fault
233TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
234{
235 return read(addr, *(uint64_t*)&data, flags);
236}
237
238template<>
239Fault
240TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
241{
242 return read(addr, *(uint32_t*)&data, flags);
243}
244
245
246template<>
247Fault
248TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
249{
250 return read(addr, (uint32_t&)data, flags);
251}
252
253
254template <class T>
255Fault
256TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
257{
258 // need to fill in CPU & thread IDs here
259 Request *data_write_req = new Request();
260 data_write_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
261
262 // translate to physical address
263 Fault fault = thread->translateDataWriteReq(data_write_req);
264 // Now do the access.
265 if (fault == NoFault) {
266 Packet *data_write_pkt =
267 new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
268 data_write_pkt->allocate();
269 data_write_pkt->set(data);
270
271 if (!dcachePort.sendTiming(data_write_pkt)) {
272 _status = DcacheRetry;
273 dcache_pkt = data_write_pkt;
274 } else {
275 _status = DcacheWaitResponse;
276 dcache_pkt = NULL;
277 }
278 }
279
280 // This will need a new way to tell if it's hooked up to a cache or not.
281 if (data_write_req->getFlags() & UNCACHEABLE)
282 recordEvent("Uncached Write");
283
284 // If the write needs to have a fault on the access, consider calling
285 // changeStatus() and changing it to "bad addr write" or something.
286 return fault;
287}
288
289
290#ifndef DOXYGEN_SHOULD_SKIP_THIS
291template
292Fault
293TimingSimpleCPU::write(uint64_t data, Addr addr,
294 unsigned flags, uint64_t *res);
295
296template
297Fault
298TimingSimpleCPU::write(uint32_t data, Addr addr,
299 unsigned flags, uint64_t *res);
300
301template
302Fault
303TimingSimpleCPU::write(uint16_t data, Addr addr,
304 unsigned flags, uint64_t *res);
305
306template
307Fault
308TimingSimpleCPU::write(uint8_t data, Addr addr,
309 unsigned flags, uint64_t *res);
310
311#endif //DOXYGEN_SHOULD_SKIP_THIS
312
313template<>
314Fault
315TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
316{
317 return write(*(uint64_t*)&data, addr, flags, res);
318}
319
320template<>
321Fault
322TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
323{
324 return write(*(uint32_t*)&data, addr, flags, res);
325}
326
327
328template<>
329Fault
330TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
331{
332 return write((uint32_t)data, addr, flags, res);
333}
334
335
336void
337TimingSimpleCPU::fetch()
338{
339 checkForInterrupts();
340
341 // need to fill in CPU & thread IDs here
342 Request *ifetch_req = new Request();
343 Fault fault = setupFetchRequest(ifetch_req);
344
345 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
346 ifetch_pkt->dataStatic(&inst);
347
348 if (fault == NoFault) {
349 if (!icachePort.sendTiming(ifetch_pkt)) {
350 // Need to wait for retry
351 _status = IcacheRetry;
352 } else {
353 // Need to wait for cache to respond
354 _status = IcacheWaitResponse;
355 // ownership of packet transferred to memory system
356 ifetch_pkt = NULL;
357 }
358 } else {
359 // fetch fault: advance directly to next instruction (fault handler)
360 advanceInst(fault);
361 }
362}
363
364
365void
366TimingSimpleCPU::advanceInst(Fault fault)
367{
368 advancePC(fault);
369
370 if (_status == Running) {
371 // kick off fetch of next instruction... callback from icache
372 // response will cause that instruction to be executed,
373 // keeping the CPU running.
374 fetch();
375 }
376}
377
378
379void
380TimingSimpleCPU::completeIfetch(Packet *pkt)
381{
382 // received a response from the icache: execute the received
383 // instruction
384 assert(pkt->result == Packet::Success);
385 assert(_status == IcacheWaitResponse);
155TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
156{
157 BaseCPU::takeOverFrom(oldCPU);
158
159 // if any of this CPU's ThreadContexts are active, mark the CPU as
160 // running and schedule its tick event.
161 for (int i = 0; i < threadContexts.size(); ++i) {
162 ThreadContext *tc = threadContexts[i];
163 if (tc->status() == ThreadContext::Active && _status != Running) {
164 _status = Running;
165 break;
166 }
167 }
168}
169
170
171void
172TimingSimpleCPU::activateContext(int thread_num, int delay)
173{
174 assert(thread_num == 0);
175 assert(thread);
176
177 assert(_status == Idle);
178
179 notIdleFraction++;
180 _status = Running;
181 // kick things off by initiating the fetch of the next instruction
182 Event *e =
183 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
184 e->schedule(curTick + cycles(delay));
185}
186
187
188void
189TimingSimpleCPU::suspendContext(int thread_num)
190{
191 assert(thread_num == 0);
192 assert(thread);
193
194 assert(_status == Running);
195
196 // just change status to Idle... if status != Running,
197 // completeInst() will not initiate fetch of next instruction.
198
199 notIdleFraction--;
200 _status = Idle;
201}
202
203
204template <class T>
205Fault
206TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
207{
208 // need to fill in CPU & thread IDs here
209 Request *data_read_req = new Request();
210
211 data_read_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
212
213 if (traceData) {
214 traceData->setAddr(data_read_req->getVaddr());
215 }
216
217 // translate to physical address
218 Fault fault = thread->translateDataReadReq(data_read_req);
219
220 // Now do the access.
221 if (fault == NoFault) {
222 Packet *data_read_pkt =
223 new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
224 data_read_pkt->dataDynamic<T>(new T);
225
226 if (!dcachePort.sendTiming(data_read_pkt)) {
227 _status = DcacheRetry;
228 dcache_pkt = data_read_pkt;
229 } else {
230 _status = DcacheWaitResponse;
231 dcache_pkt = NULL;
232 }
233 }
234
235 // This will need a new way to tell if it has a dcache attached.
236 if (data_read_req->getFlags() & UNCACHEABLE)
237 recordEvent("Uncached Read");
238
239 return fault;
240}
241
242#ifndef DOXYGEN_SHOULD_SKIP_THIS
243
244template
245Fault
246TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
247
248template
249Fault
250TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
251
252template
253Fault
254TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
255
256template
257Fault
258TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
259
260#endif //DOXYGEN_SHOULD_SKIP_THIS
261
262template<>
263Fault
264TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
265{
266 return read(addr, *(uint64_t*)&data, flags);
267}
268
269template<>
270Fault
271TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
272{
273 return read(addr, *(uint32_t*)&data, flags);
274}
275
276
277template<>
278Fault
279TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
280{
281 return read(addr, (uint32_t&)data, flags);
282}
283
284
285template <class T>
286Fault
287TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
288{
289 // need to fill in CPU & thread IDs here
290 Request *data_write_req = new Request();
291 data_write_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
292
293 // translate to physical address
294 Fault fault = thread->translateDataWriteReq(data_write_req);
295 // Now do the access.
296 if (fault == NoFault) {
297 Packet *data_write_pkt =
298 new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
299 data_write_pkt->allocate();
300 data_write_pkt->set(data);
301
302 if (!dcachePort.sendTiming(data_write_pkt)) {
303 _status = DcacheRetry;
304 dcache_pkt = data_write_pkt;
305 } else {
306 _status = DcacheWaitResponse;
307 dcache_pkt = NULL;
308 }
309 }
310
311 // This will need a new way to tell if it's hooked up to a cache or not.
312 if (data_write_req->getFlags() & UNCACHEABLE)
313 recordEvent("Uncached Write");
314
315 // If the write needs to have a fault on the access, consider calling
316 // changeStatus() and changing it to "bad addr write" or something.
317 return fault;
318}
319
320
321#ifndef DOXYGEN_SHOULD_SKIP_THIS
322template
323Fault
324TimingSimpleCPU::write(uint64_t data, Addr addr,
325 unsigned flags, uint64_t *res);
326
327template
328Fault
329TimingSimpleCPU::write(uint32_t data, Addr addr,
330 unsigned flags, uint64_t *res);
331
332template
333Fault
334TimingSimpleCPU::write(uint16_t data, Addr addr,
335 unsigned flags, uint64_t *res);
336
337template
338Fault
339TimingSimpleCPU::write(uint8_t data, Addr addr,
340 unsigned flags, uint64_t *res);
341
342#endif //DOXYGEN_SHOULD_SKIP_THIS
343
344template<>
345Fault
346TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
347{
348 return write(*(uint64_t*)&data, addr, flags, res);
349}
350
351template<>
352Fault
353TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
354{
355 return write(*(uint32_t*)&data, addr, flags, res);
356}
357
358
359template<>
360Fault
361TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
362{
363 return write((uint32_t)data, addr, flags, res);
364}
365
366
367void
368TimingSimpleCPU::fetch()
369{
370 checkForInterrupts();
371
372 // need to fill in CPU & thread IDs here
373 Request *ifetch_req = new Request();
374 Fault fault = setupFetchRequest(ifetch_req);
375
376 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
377 ifetch_pkt->dataStatic(&inst);
378
379 if (fault == NoFault) {
380 if (!icachePort.sendTiming(ifetch_pkt)) {
381 // Need to wait for retry
382 _status = IcacheRetry;
383 } else {
384 // Need to wait for cache to respond
385 _status = IcacheWaitResponse;
386 // ownership of packet transferred to memory system
387 ifetch_pkt = NULL;
388 }
389 } else {
390 // fetch fault: advance directly to next instruction (fault handler)
391 advanceInst(fault);
392 }
393}
394
395
396void
397TimingSimpleCPU::advanceInst(Fault fault)
398{
399 advancePC(fault);
400
401 if (_status == Running) {
402 // kick off fetch of next instruction... callback from icache
403 // response will cause that instruction to be executed,
404 // keeping the CPU running.
405 fetch();
406 }
407}
408
409
410void
411TimingSimpleCPU::completeIfetch(Packet *pkt)
412{
413 // received a response from the icache: execute the received
414 // instruction
415 assert(pkt->result == Packet::Success);
416 assert(_status == IcacheWaitResponse);
417
386 _status = Running;
387
388 delete pkt->req;
389 delete pkt;
390
418 _status = Running;
419
420 delete pkt->req;
421 delete pkt;
422
423 if (getState() == SimObject::Quiescing) {
424 completeQuiesce();
425 return;
426 }
427
391 preExecute();
392 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
393 // load or store: just send to dcache
394 Fault fault = curStaticInst->initiateAcc(this, traceData);
395 if (fault == NoFault) {
396 // successfully initiated access: instruction will
397 // complete in dcache response callback
398 assert(_status == DcacheWaitResponse);
399 } else {
400 // fault: complete now to invoke fault handler
401 postExecute();
402 advanceInst(fault);
403 }
404 } else {
405 // non-memory instruction: execute completely now
406 Fault fault = curStaticInst->execute(this, traceData);
407 postExecute();
408 advanceInst(fault);
409 }
410}
411
412
413bool
414TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
415{
416 cpu->completeIfetch(pkt);
417 return true;
418}
419
420void
421TimingSimpleCPU::IcachePort::recvRetry()
422{
423 // we shouldn't get a retry unless we have a packet that we're
424 // waiting to transmit
425 assert(cpu->ifetch_pkt != NULL);
426 assert(cpu->_status == IcacheRetry);
427 Packet *tmp = cpu->ifetch_pkt;
428 if (sendTiming(tmp)) {
429 cpu->_status = IcacheWaitResponse;
430 cpu->ifetch_pkt = NULL;
431 }
432}
433
434void
435TimingSimpleCPU::completeDataAccess(Packet *pkt)
436{
437 // received a response from the dcache: complete the load or store
438 // instruction
439 assert(pkt->result == Packet::Success);
440 assert(_status == DcacheWaitResponse);
441 _status = Running;
442
428 preExecute();
429 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
430 // load or store: just send to dcache
431 Fault fault = curStaticInst->initiateAcc(this, traceData);
432 if (fault == NoFault) {
433 // successfully initiated access: instruction will
434 // complete in dcache response callback
435 assert(_status == DcacheWaitResponse);
436 } else {
437 // fault: complete now to invoke fault handler
438 postExecute();
439 advanceInst(fault);
440 }
441 } else {
442 // non-memory instruction: execute completely now
443 Fault fault = curStaticInst->execute(this, traceData);
444 postExecute();
445 advanceInst(fault);
446 }
447}
448
449
450bool
451TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
452{
453 cpu->completeIfetch(pkt);
454 return true;
455}
456
457void
458TimingSimpleCPU::IcachePort::recvRetry()
459{
460 // we shouldn't get a retry unless we have a packet that we're
461 // waiting to transmit
462 assert(cpu->ifetch_pkt != NULL);
463 assert(cpu->_status == IcacheRetry);
464 Packet *tmp = cpu->ifetch_pkt;
465 if (sendTiming(tmp)) {
466 cpu->_status = IcacheWaitResponse;
467 cpu->ifetch_pkt = NULL;
468 }
469}
470
471void
472TimingSimpleCPU::completeDataAccess(Packet *pkt)
473{
474 // received a response from the dcache: complete the load or store
475 // instruction
476 assert(pkt->result == Packet::Success);
477 assert(_status == DcacheWaitResponse);
478 _status = Running;
479
480 if (getState() == SimObject::Quiescing) {
481 completeQuiesce();
482
483 delete pkt->req;
484 delete pkt;
485
486 return;
487 }
488
443 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
444
445 delete pkt->req;
446 delete pkt;
447
448 postExecute();
449 advanceInst(fault);
450}
451
452
489 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
490
491 delete pkt->req;
492 delete pkt;
493
494 postExecute();
495 advanceInst(fault);
496}
497
498
499void
500TimingSimpleCPU::completeQuiesce()
501{
502 DPRINTF(Config, "Done quiescing\n");
503 changeState(SimObject::QuiescedTiming);
504 quiesceEvent->process();
505}
453
454bool
455TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
456{
457 cpu->completeDataAccess(pkt);
458 return true;
459}
460
461void
462TimingSimpleCPU::DcachePort::recvRetry()
463{
464 // we shouldn't get a retry unless we have a packet that we're
465 // waiting to transmit
466 assert(cpu->dcache_pkt != NULL);
467 assert(cpu->_status == DcacheRetry);
468 Packet *tmp = cpu->dcache_pkt;
469 if (sendTiming(tmp)) {
470 cpu->_status = DcacheWaitResponse;
471 cpu->dcache_pkt = NULL;
472 }
473}
474
475
476////////////////////////////////////////////////////////////////////////
477//
478// TimingSimpleCPU Simulation Object
479//
480BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
481
482 Param<Counter> max_insts_any_thread;
483 Param<Counter> max_insts_all_threads;
484 Param<Counter> max_loads_any_thread;
485 Param<Counter> max_loads_all_threads;
486 SimObjectParam<MemObject *> mem;
487
488#if FULL_SYSTEM
489 SimObjectParam<AlphaITB *> itb;
490 SimObjectParam<AlphaDTB *> dtb;
491 SimObjectParam<System *> system;
492 Param<int> cpu_id;
493 Param<Tick> profile;
494#else
495 SimObjectParam<Process *> workload;
496#endif // FULL_SYSTEM
497
498 Param<int> clock;
499
500 Param<bool> defer_registration;
501 Param<int> width;
502 Param<bool> function_trace;
503 Param<Tick> function_trace_start;
504 Param<bool> simulate_stalls;
505
506END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
507
508BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
509
510 INIT_PARAM(max_insts_any_thread,
511 "terminate when any thread reaches this inst count"),
512 INIT_PARAM(max_insts_all_threads,
513 "terminate when all threads have reached this inst count"),
514 INIT_PARAM(max_loads_any_thread,
515 "terminate when any thread reaches this load count"),
516 INIT_PARAM(max_loads_all_threads,
517 "terminate when all threads have reached this load count"),
518 INIT_PARAM(mem, "memory"),
519
520#if FULL_SYSTEM
521 INIT_PARAM(itb, "Instruction TLB"),
522 INIT_PARAM(dtb, "Data TLB"),
523 INIT_PARAM(system, "system object"),
524 INIT_PARAM(cpu_id, "processor ID"),
525 INIT_PARAM(profile, ""),
526#else
527 INIT_PARAM(workload, "processes to run"),
528#endif // FULL_SYSTEM
529
530 INIT_PARAM(clock, "clock speed"),
531 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
532 INIT_PARAM(width, "cpu width"),
533 INIT_PARAM(function_trace, "Enable function trace"),
534 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
535 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
536
537END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
538
539
540CREATE_SIM_OBJECT(TimingSimpleCPU)
541{
542 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
543 params->name = getInstanceName();
544 params->numberOfThreads = 1;
545 params->max_insts_any_thread = max_insts_any_thread;
546 params->max_insts_all_threads = max_insts_all_threads;
547 params->max_loads_any_thread = max_loads_any_thread;
548 params->max_loads_all_threads = max_loads_all_threads;
549 params->deferRegistration = defer_registration;
550 params->clock = clock;
551 params->functionTrace = function_trace;
552 params->functionTraceStart = function_trace_start;
553 params->mem = mem;
554
555#if FULL_SYSTEM
556 params->itb = itb;
557 params->dtb = dtb;
558 params->system = system;
559 params->cpu_id = cpu_id;
560 params->profile = profile;
561#else
562 params->process = workload;
563#endif
564
565 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
566 return cpu;
567}
568
569REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
570
506
507bool
508TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
509{
510 cpu->completeDataAccess(pkt);
511 return true;
512}
513
514void
515TimingSimpleCPU::DcachePort::recvRetry()
516{
517 // we shouldn't get a retry unless we have a packet that we're
518 // waiting to transmit
519 assert(cpu->dcache_pkt != NULL);
520 assert(cpu->_status == DcacheRetry);
521 Packet *tmp = cpu->dcache_pkt;
522 if (sendTiming(tmp)) {
523 cpu->_status = DcacheWaitResponse;
524 cpu->dcache_pkt = NULL;
525 }
526}
527
528
529////////////////////////////////////////////////////////////////////////
530//
531// TimingSimpleCPU Simulation Object
532//
533BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
534
535 Param<Counter> max_insts_any_thread;
536 Param<Counter> max_insts_all_threads;
537 Param<Counter> max_loads_any_thread;
538 Param<Counter> max_loads_all_threads;
539 SimObjectParam<MemObject *> mem;
540
541#if FULL_SYSTEM
542 SimObjectParam<AlphaITB *> itb;
543 SimObjectParam<AlphaDTB *> dtb;
544 SimObjectParam<System *> system;
545 Param<int> cpu_id;
546 Param<Tick> profile;
547#else
548 SimObjectParam<Process *> workload;
549#endif // FULL_SYSTEM
550
551 Param<int> clock;
552
553 Param<bool> defer_registration;
554 Param<int> width;
555 Param<bool> function_trace;
556 Param<Tick> function_trace_start;
557 Param<bool> simulate_stalls;
558
559END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
560
561BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
562
563 INIT_PARAM(max_insts_any_thread,
564 "terminate when any thread reaches this inst count"),
565 INIT_PARAM(max_insts_all_threads,
566 "terminate when all threads have reached this inst count"),
567 INIT_PARAM(max_loads_any_thread,
568 "terminate when any thread reaches this load count"),
569 INIT_PARAM(max_loads_all_threads,
570 "terminate when all threads have reached this load count"),
571 INIT_PARAM(mem, "memory"),
572
573#if FULL_SYSTEM
574 INIT_PARAM(itb, "Instruction TLB"),
575 INIT_PARAM(dtb, "Data TLB"),
576 INIT_PARAM(system, "system object"),
577 INIT_PARAM(cpu_id, "processor ID"),
578 INIT_PARAM(profile, ""),
579#else
580 INIT_PARAM(workload, "processes to run"),
581#endif // FULL_SYSTEM
582
583 INIT_PARAM(clock, "clock speed"),
584 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
585 INIT_PARAM(width, "cpu width"),
586 INIT_PARAM(function_trace, "Enable function trace"),
587 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
588 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
589
590END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
591
592
593CREATE_SIM_OBJECT(TimingSimpleCPU)
594{
595 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
596 params->name = getInstanceName();
597 params->numberOfThreads = 1;
598 params->max_insts_any_thread = max_insts_any_thread;
599 params->max_insts_all_threads = max_insts_all_threads;
600 params->max_loads_any_thread = max_loads_any_thread;
601 params->max_loads_all_threads = max_loads_all_threads;
602 params->deferRegistration = defer_registration;
603 params->clock = clock;
604 params->functionTrace = function_trace;
605 params->functionTraceStart = function_trace_start;
606 params->mem = mem;
607
608#if FULL_SYSTEM
609 params->itb = itb;
610 params->dtb = dtb;
611 params->system = system;
612 params->cpu_id = cpu_id;
613 params->profile = profile;
614#else
615 params->process = workload;
616#endif
617
618 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
619 return cpu;
620}
621
622REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
623