timing.cc (14085:0075b0d29d55) timing.cc (14297:b4519e586f5e)
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2013,2015,2017-2018 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "cpu/simple/timing.hh"
45
46#include "arch/locked_mem.hh"
47#include "arch/mmapped_ipr.hh"
48#include "arch/utility.hh"
49#include "config/the_isa.hh"
50#include "cpu/exetrace.hh"
51#include "debug/Config.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/Mwait.hh"
55#include "debug/SimpleCPU.hh"
56#include "mem/packet.hh"
57#include "mem/packet_access.hh"
58#include "params/TimingSimpleCPU.hh"
59#include "sim/faults.hh"
60#include "sim/full_system.hh"
61#include "sim/system.hh"
62
63using namespace std;
64using namespace TheISA;
65
66void
67TimingSimpleCPU::init()
68{
69 BaseSimpleCPU::init();
70}
71
72void
73TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
74{
75 pkt = _pkt;
76 cpu->schedule(this, t);
77}
78
79TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
80 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
81 dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
82 fetchEvent([this]{ fetch(); }, name())
83{
84 _status = Idle;
85}
86
87
88
89TimingSimpleCPU::~TimingSimpleCPU()
90{
91}
92
93DrainState
94TimingSimpleCPU::drain()
95{
96 // Deschedule any power gating event (if any)
97 deschedulePowerGatingEvent();
98
99 if (switchedOut())
100 return DrainState::Drained;
101
102 if (_status == Idle ||
103 (_status == BaseSimpleCPU::Running && isCpuDrained())) {
104 DPRINTF(Drain, "No need to drain.\n");
105 activeThreads.clear();
106 return DrainState::Drained;
107 } else {
108 DPRINTF(Drain, "Requesting drain.\n");
109
110 // The fetch event can become descheduled if a drain didn't
111 // succeed on the first attempt. We need to reschedule it if
112 // the CPU is waiting for a microcode routine to complete.
113 if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
114 schedule(fetchEvent, clockEdge());
115
116 return DrainState::Draining;
117 }
118}
119
120void
121TimingSimpleCPU::drainResume()
122{
123 assert(!fetchEvent.scheduled());
124 if (switchedOut())
125 return;
126
127 DPRINTF(SimpleCPU, "Resume\n");
128 verifyMemoryMode();
129
130 assert(!threadContexts.empty());
131
132 _status = BaseSimpleCPU::Idle;
133
134 for (ThreadID tid = 0; tid < numThreads; tid++) {
135 if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
136 threadInfo[tid]->notIdleFraction = 1;
137
138 activeThreads.push_back(tid);
139
140 _status = BaseSimpleCPU::Running;
141
142 // Fetch if any threads active
143 if (!fetchEvent.scheduled()) {
144 schedule(fetchEvent, nextCycle());
145 }
146 } else {
147 threadInfo[tid]->notIdleFraction = 0;
148 }
149 }
150
151 // Reschedule any power gating event (if any)
152 schedulePowerGatingEvent();
153
154 system->totalNumInsts = 0;
155}
156
157bool
158TimingSimpleCPU::tryCompleteDrain()
159{
160 if (drainState() != DrainState::Draining)
161 return false;
162
163 DPRINTF(Drain, "tryCompleteDrain.\n");
164 if (!isCpuDrained())
165 return false;
166
167 DPRINTF(Drain, "CPU done draining, processing drain event\n");
168 signalDrainDone();
169
170 return true;
171}
172
173void
174TimingSimpleCPU::switchOut()
175{
176 SimpleExecContext& t_info = *threadInfo[curThread];
177 M5_VAR_USED SimpleThread* thread = t_info.thread;
178
179 BaseSimpleCPU::switchOut();
180
181 assert(!fetchEvent.scheduled());
182 assert(_status == BaseSimpleCPU::Running || _status == Idle);
183 assert(!t_info.stayAtPC);
184 assert(thread->microPC() == 0);
185
186 updateCycleCounts();
187 updateCycleCounters(BaseCPU::CPU_STATE_ON);
188}
189
190
191void
192TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
193{
194 BaseSimpleCPU::takeOverFrom(oldCPU);
195
196 previousCycle = curCycle();
197}
198
199void
200TimingSimpleCPU::verifyMemoryMode() const
201{
202 if (!system->isTimingMode()) {
203 fatal("The timing CPU requires the memory system to be in "
204 "'timing' mode.\n");
205 }
206}
207
208void
209TimingSimpleCPU::activateContext(ThreadID thread_num)
210{
211 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
212
213 assert(thread_num < numThreads);
214
215 threadInfo[thread_num]->notIdleFraction = 1;
216 if (_status == BaseSimpleCPU::Idle)
217 _status = BaseSimpleCPU::Running;
218
219 // kick things off by initiating the fetch of the next instruction
220 if (!fetchEvent.scheduled())
221 schedule(fetchEvent, clockEdge(Cycles(0)));
222
223 if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
224 == activeThreads.end()) {
225 activeThreads.push_back(thread_num);
226 }
227
228 BaseCPU::activateContext(thread_num);
229}
230
231
232void
233TimingSimpleCPU::suspendContext(ThreadID thread_num)
234{
235 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
236
237 assert(thread_num < numThreads);
238 activeThreads.remove(thread_num);
239
240 if (_status == Idle)
241 return;
242
243 assert(_status == BaseSimpleCPU::Running);
244
245 threadInfo[thread_num]->notIdleFraction = 0;
246
247 if (activeThreads.empty()) {
248 _status = Idle;
249
250 if (fetchEvent.scheduled()) {
251 deschedule(fetchEvent);
252 }
253 }
254
255 BaseCPU::suspendContext(thread_num);
256}
257
258bool
259TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
260{
261 SimpleExecContext &t_info = *threadInfo[curThread];
262 SimpleThread* thread = t_info.thread;
263
264 const RequestPtr &req = pkt->req;
265
266 // We're about the issues a locked load, so tell the monitor
267 // to start caring about this address
268 if (pkt->isRead() && pkt->req->isLLSC()) {
269 TheISA::handleLockedRead(thread, pkt->req);
270 }
271 if (req->isMmappedIpr()) {
272 Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
273 new IprEvent(pkt, this, clockEdge(delay));
274 _status = DcacheWaitResponse;
275 dcache_pkt = NULL;
276 } else if (!dcachePort.sendTimingReq(pkt)) {
277 _status = DcacheRetry;
278 dcache_pkt = pkt;
279 } else {
280 _status = DcacheWaitResponse;
281 // memory system takes ownership of packet
282 dcache_pkt = NULL;
283 }
284 return dcache_pkt == NULL;
285}
286
287void
288TimingSimpleCPU::sendData(const RequestPtr &req, uint8_t *data, uint64_t *res,
289 bool read)
290{
291 SimpleExecContext &t_info = *threadInfo[curThread];
292 SimpleThread* thread = t_info.thread;
293
294 PacketPtr pkt = buildPacket(req, read);
295 pkt->dataDynamic<uint8_t>(data);
296
297 if (req->getFlags().isSet(Request::NO_ACCESS)) {
298 assert(!dcache_pkt);
299 pkt->makeResponse();
300 completeDataAccess(pkt);
301 } else if (read) {
302 handleReadPacket(pkt);
303 } else {
304 bool do_access = true; // flag to suppress cache access
305
306 if (req->isLLSC()) {
307 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
308 } else if (req->isCondSwap()) {
309 assert(res);
310 req->setExtraData(*res);
311 }
312
313 if (do_access) {
314 dcache_pkt = pkt;
315 handleWritePacket();
316 threadSnoop(pkt, curThread);
317 } else {
318 _status = DcacheWaitResponse;
319 completeDataAccess(pkt);
320 }
321 }
322}
323
324void
325TimingSimpleCPU::sendSplitData(const RequestPtr &req1, const RequestPtr &req2,
326 const RequestPtr &req, uint8_t *data, bool read)
327{
328 PacketPtr pkt1, pkt2;
329 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
330 if (req->getFlags().isSet(Request::NO_ACCESS)) {
331 assert(!dcache_pkt);
332 pkt1->makeResponse();
333 completeDataAccess(pkt1);
334 } else if (read) {
335 SplitFragmentSenderState * send_state =
336 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
337 if (handleReadPacket(pkt1)) {
338 send_state->clearFromParent();
339 send_state = dynamic_cast<SplitFragmentSenderState *>(
340 pkt2->senderState);
341 if (handleReadPacket(pkt2)) {
342 send_state->clearFromParent();
343 }
344 }
345 } else {
346 dcache_pkt = pkt1;
347 SplitFragmentSenderState * send_state =
348 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
349 if (handleWritePacket()) {
350 send_state->clearFromParent();
351 dcache_pkt = pkt2;
352 send_state = dynamic_cast<SplitFragmentSenderState *>(
353 pkt2->senderState);
354 if (handleWritePacket()) {
355 send_state->clearFromParent();
356 }
357 }
358 }
359}
360
361void
362TimingSimpleCPU::translationFault(const Fault &fault)
363{
364 // fault may be NoFault in cases where a fault is suppressed,
365 // for instance prefetches.
366 updateCycleCounts();
367 updateCycleCounters(BaseCPU::CPU_STATE_ON);
368
369 if (traceData) {
370 // Since there was a fault, we shouldn't trace this instruction.
371 delete traceData;
372 traceData = NULL;
373 }
374
375 postExecute();
376
377 advanceInst(fault);
378}
379
380PacketPtr
381TimingSimpleCPU::buildPacket(const RequestPtr &req, bool read)
382{
383 return read ? Packet::createRead(req) : Packet::createWrite(req);
384}
385
386void
387TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
388 const RequestPtr &req1, const RequestPtr &req2, const RequestPtr &req,
389 uint8_t *data, bool read)
390{
391 pkt1 = pkt2 = NULL;
392
393 assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
394
395 if (req->getFlags().isSet(Request::NO_ACCESS)) {
396 pkt1 = buildPacket(req, read);
397 return;
398 }
399
400 pkt1 = buildPacket(req1, read);
401 pkt2 = buildPacket(req2, read);
402
403 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
404
405 pkt->dataDynamic<uint8_t>(data);
406 pkt1->dataStatic<uint8_t>(data);
407 pkt2->dataStatic<uint8_t>(data + req1->getSize());
408
409 SplitMainSenderState * main_send_state = new SplitMainSenderState;
410 pkt->senderState = main_send_state;
411 main_send_state->fragments[0] = pkt1;
412 main_send_state->fragments[1] = pkt2;
413 main_send_state->outstanding = 2;
414 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
415 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
416}
417
418Fault
419TimingSimpleCPU::initiateMemRead(Addr addr, unsigned size,
420 Request::Flags flags,
421 const std::vector<bool>& byteEnable)
422{
423 SimpleExecContext &t_info = *threadInfo[curThread];
424 SimpleThread* thread = t_info.thread;
425
426 Fault fault;
427 const int asid = 0;
428 const Addr pc = thread->instAddr();
429 unsigned block_size = cacheLineSize();
430 BaseTLB::Mode mode = BaseTLB::Read;
431
432 if (traceData)
433 traceData->setMem(addr, size, flags);
434
435 RequestPtr req = std::make_shared<Request>(
436 asid, addr, size, flags, dataMasterId(), pc,
437 thread->contextId());
438 if (!byteEnable.empty()) {
439 req->setByteEnable(byteEnable);
440 }
441
442 req->taskId(taskId());
443
444 Addr split_addr = roundDown(addr + size - 1, block_size);
445 assert(split_addr <= addr || split_addr - addr < block_size);
446
447 _status = DTBWaitResponse;
448 if (split_addr > addr) {
449 RequestPtr req1, req2;
450 assert(!req->isLLSC() && !req->isSwap());
451 req->splitOnVaddr(split_addr, req1, req2);
452
453 WholeTranslationState *state =
454 new WholeTranslationState(req, req1, req2, new uint8_t[size],
455 NULL, mode);
456 DataTranslation<TimingSimpleCPU *> *trans1 =
457 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
458 DataTranslation<TimingSimpleCPU *> *trans2 =
459 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
460
461 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
462 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
463 } else {
464 WholeTranslationState *state =
465 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
466 DataTranslation<TimingSimpleCPU *> *translation
467 = new DataTranslation<TimingSimpleCPU *>(this, state);
468 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
469 }
470
471 return NoFault;
472}
473
474bool
475TimingSimpleCPU::handleWritePacket()
476{
477 SimpleExecContext &t_info = *threadInfo[curThread];
478 SimpleThread* thread = t_info.thread;
479
480 const RequestPtr &req = dcache_pkt->req;
481 if (req->isMmappedIpr()) {
482 Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
483 new IprEvent(dcache_pkt, this, clockEdge(delay));
484 _status = DcacheWaitResponse;
485 dcache_pkt = NULL;
486 } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
487 _status = DcacheRetry;
488 } else {
489 _status = DcacheWaitResponse;
490 // memory system takes ownership of packet
491 dcache_pkt = NULL;
492 }
493 return dcache_pkt == NULL;
494}
495
496Fault
497TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
498 Addr addr, Request::Flags flags, uint64_t *res,
499 const std::vector<bool>& byteEnable)
500{
501 SimpleExecContext &t_info = *threadInfo[curThread];
502 SimpleThread* thread = t_info.thread;
503
504 uint8_t *newData = new uint8_t[size];
505 const int asid = 0;
506 const Addr pc = thread->instAddr();
507 unsigned block_size = cacheLineSize();
508 BaseTLB::Mode mode = BaseTLB::Write;
509
510 if (data == NULL) {
511 assert(flags & Request::STORE_NO_DATA);
512 // This must be a cache block cleaning request
513 memset(newData, 0, size);
514 } else {
515 memcpy(newData, data, size);
516 }
517
518 if (traceData)
519 traceData->setMem(addr, size, flags);
520
521 RequestPtr req = std::make_shared<Request>(
522 asid, addr, size, flags, dataMasterId(), pc,
523 thread->contextId());
524 if (!byteEnable.empty()) {
525 req->setByteEnable(byteEnable);
526 }
527
528 req->taskId(taskId());
529
530 Addr split_addr = roundDown(addr + size - 1, block_size);
531 assert(split_addr <= addr || split_addr - addr < block_size);
532
533 _status = DTBWaitResponse;
534
535 // TODO: TimingSimpleCPU doesn't support arbitrarily long multi-line mem.
536 // accesses yet
537
538 if (split_addr > addr) {
539 RequestPtr req1, req2;
540 assert(!req->isLLSC() && !req->isSwap());
541 req->splitOnVaddr(split_addr, req1, req2);
542
543 WholeTranslationState *state =
544 new WholeTranslationState(req, req1, req2, newData, res, mode);
545 DataTranslation<TimingSimpleCPU *> *trans1 =
546 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
547 DataTranslation<TimingSimpleCPU *> *trans2 =
548 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
549
550 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
551 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
552 } else {
553 WholeTranslationState *state =
554 new WholeTranslationState(req, newData, res, mode);
555 DataTranslation<TimingSimpleCPU *> *translation =
556 new DataTranslation<TimingSimpleCPU *>(this, state);
557 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
558 }
559
560 // Translation faults will be returned via finishTranslation()
561 return NoFault;
562}
563
564Fault
565TimingSimpleCPU::initiateMemAMO(Addr addr, unsigned size,
566 Request::Flags flags,
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2013,2015,2017-2018 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "cpu/simple/timing.hh"
45
46#include "arch/locked_mem.hh"
47#include "arch/mmapped_ipr.hh"
48#include "arch/utility.hh"
49#include "config/the_isa.hh"
50#include "cpu/exetrace.hh"
51#include "debug/Config.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/Mwait.hh"
55#include "debug/SimpleCPU.hh"
56#include "mem/packet.hh"
57#include "mem/packet_access.hh"
58#include "params/TimingSimpleCPU.hh"
59#include "sim/faults.hh"
60#include "sim/full_system.hh"
61#include "sim/system.hh"
62
63using namespace std;
64using namespace TheISA;
65
66void
67TimingSimpleCPU::init()
68{
69 BaseSimpleCPU::init();
70}
71
72void
73TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
74{
75 pkt = _pkt;
76 cpu->schedule(this, t);
77}
78
79TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
80 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
81 dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
82 fetchEvent([this]{ fetch(); }, name())
83{
84 _status = Idle;
85}
86
87
88
89TimingSimpleCPU::~TimingSimpleCPU()
90{
91}
92
93DrainState
94TimingSimpleCPU::drain()
95{
96 // Deschedule any power gating event (if any)
97 deschedulePowerGatingEvent();
98
99 if (switchedOut())
100 return DrainState::Drained;
101
102 if (_status == Idle ||
103 (_status == BaseSimpleCPU::Running && isCpuDrained())) {
104 DPRINTF(Drain, "No need to drain.\n");
105 activeThreads.clear();
106 return DrainState::Drained;
107 } else {
108 DPRINTF(Drain, "Requesting drain.\n");
109
110 // The fetch event can become descheduled if a drain didn't
111 // succeed on the first attempt. We need to reschedule it if
112 // the CPU is waiting for a microcode routine to complete.
113 if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
114 schedule(fetchEvent, clockEdge());
115
116 return DrainState::Draining;
117 }
118}
119
120void
121TimingSimpleCPU::drainResume()
122{
123 assert(!fetchEvent.scheduled());
124 if (switchedOut())
125 return;
126
127 DPRINTF(SimpleCPU, "Resume\n");
128 verifyMemoryMode();
129
130 assert(!threadContexts.empty());
131
132 _status = BaseSimpleCPU::Idle;
133
134 for (ThreadID tid = 0; tid < numThreads; tid++) {
135 if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
136 threadInfo[tid]->notIdleFraction = 1;
137
138 activeThreads.push_back(tid);
139
140 _status = BaseSimpleCPU::Running;
141
142 // Fetch if any threads active
143 if (!fetchEvent.scheduled()) {
144 schedule(fetchEvent, nextCycle());
145 }
146 } else {
147 threadInfo[tid]->notIdleFraction = 0;
148 }
149 }
150
151 // Reschedule any power gating event (if any)
152 schedulePowerGatingEvent();
153
154 system->totalNumInsts = 0;
155}
156
157bool
158TimingSimpleCPU::tryCompleteDrain()
159{
160 if (drainState() != DrainState::Draining)
161 return false;
162
163 DPRINTF(Drain, "tryCompleteDrain.\n");
164 if (!isCpuDrained())
165 return false;
166
167 DPRINTF(Drain, "CPU done draining, processing drain event\n");
168 signalDrainDone();
169
170 return true;
171}
172
173void
174TimingSimpleCPU::switchOut()
175{
176 SimpleExecContext& t_info = *threadInfo[curThread];
177 M5_VAR_USED SimpleThread* thread = t_info.thread;
178
179 BaseSimpleCPU::switchOut();
180
181 assert(!fetchEvent.scheduled());
182 assert(_status == BaseSimpleCPU::Running || _status == Idle);
183 assert(!t_info.stayAtPC);
184 assert(thread->microPC() == 0);
185
186 updateCycleCounts();
187 updateCycleCounters(BaseCPU::CPU_STATE_ON);
188}
189
190
191void
192TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
193{
194 BaseSimpleCPU::takeOverFrom(oldCPU);
195
196 previousCycle = curCycle();
197}
198
199void
200TimingSimpleCPU::verifyMemoryMode() const
201{
202 if (!system->isTimingMode()) {
203 fatal("The timing CPU requires the memory system to be in "
204 "'timing' mode.\n");
205 }
206}
207
208void
209TimingSimpleCPU::activateContext(ThreadID thread_num)
210{
211 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
212
213 assert(thread_num < numThreads);
214
215 threadInfo[thread_num]->notIdleFraction = 1;
216 if (_status == BaseSimpleCPU::Idle)
217 _status = BaseSimpleCPU::Running;
218
219 // kick things off by initiating the fetch of the next instruction
220 if (!fetchEvent.scheduled())
221 schedule(fetchEvent, clockEdge(Cycles(0)));
222
223 if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
224 == activeThreads.end()) {
225 activeThreads.push_back(thread_num);
226 }
227
228 BaseCPU::activateContext(thread_num);
229}
230
231
232void
233TimingSimpleCPU::suspendContext(ThreadID thread_num)
234{
235 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
236
237 assert(thread_num < numThreads);
238 activeThreads.remove(thread_num);
239
240 if (_status == Idle)
241 return;
242
243 assert(_status == BaseSimpleCPU::Running);
244
245 threadInfo[thread_num]->notIdleFraction = 0;
246
247 if (activeThreads.empty()) {
248 _status = Idle;
249
250 if (fetchEvent.scheduled()) {
251 deschedule(fetchEvent);
252 }
253 }
254
255 BaseCPU::suspendContext(thread_num);
256}
257
258bool
259TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
260{
261 SimpleExecContext &t_info = *threadInfo[curThread];
262 SimpleThread* thread = t_info.thread;
263
264 const RequestPtr &req = pkt->req;
265
266 // We're about the issues a locked load, so tell the monitor
267 // to start caring about this address
268 if (pkt->isRead() && pkt->req->isLLSC()) {
269 TheISA::handleLockedRead(thread, pkt->req);
270 }
271 if (req->isMmappedIpr()) {
272 Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
273 new IprEvent(pkt, this, clockEdge(delay));
274 _status = DcacheWaitResponse;
275 dcache_pkt = NULL;
276 } else if (!dcachePort.sendTimingReq(pkt)) {
277 _status = DcacheRetry;
278 dcache_pkt = pkt;
279 } else {
280 _status = DcacheWaitResponse;
281 // memory system takes ownership of packet
282 dcache_pkt = NULL;
283 }
284 return dcache_pkt == NULL;
285}
286
287void
288TimingSimpleCPU::sendData(const RequestPtr &req, uint8_t *data, uint64_t *res,
289 bool read)
290{
291 SimpleExecContext &t_info = *threadInfo[curThread];
292 SimpleThread* thread = t_info.thread;
293
294 PacketPtr pkt = buildPacket(req, read);
295 pkt->dataDynamic<uint8_t>(data);
296
297 if (req->getFlags().isSet(Request::NO_ACCESS)) {
298 assert(!dcache_pkt);
299 pkt->makeResponse();
300 completeDataAccess(pkt);
301 } else if (read) {
302 handleReadPacket(pkt);
303 } else {
304 bool do_access = true; // flag to suppress cache access
305
306 if (req->isLLSC()) {
307 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
308 } else if (req->isCondSwap()) {
309 assert(res);
310 req->setExtraData(*res);
311 }
312
313 if (do_access) {
314 dcache_pkt = pkt;
315 handleWritePacket();
316 threadSnoop(pkt, curThread);
317 } else {
318 _status = DcacheWaitResponse;
319 completeDataAccess(pkt);
320 }
321 }
322}
323
324void
325TimingSimpleCPU::sendSplitData(const RequestPtr &req1, const RequestPtr &req2,
326 const RequestPtr &req, uint8_t *data, bool read)
327{
328 PacketPtr pkt1, pkt2;
329 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
330 if (req->getFlags().isSet(Request::NO_ACCESS)) {
331 assert(!dcache_pkt);
332 pkt1->makeResponse();
333 completeDataAccess(pkt1);
334 } else if (read) {
335 SplitFragmentSenderState * send_state =
336 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
337 if (handleReadPacket(pkt1)) {
338 send_state->clearFromParent();
339 send_state = dynamic_cast<SplitFragmentSenderState *>(
340 pkt2->senderState);
341 if (handleReadPacket(pkt2)) {
342 send_state->clearFromParent();
343 }
344 }
345 } else {
346 dcache_pkt = pkt1;
347 SplitFragmentSenderState * send_state =
348 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
349 if (handleWritePacket()) {
350 send_state->clearFromParent();
351 dcache_pkt = pkt2;
352 send_state = dynamic_cast<SplitFragmentSenderState *>(
353 pkt2->senderState);
354 if (handleWritePacket()) {
355 send_state->clearFromParent();
356 }
357 }
358 }
359}
360
361void
362TimingSimpleCPU::translationFault(const Fault &fault)
363{
364 // fault may be NoFault in cases where a fault is suppressed,
365 // for instance prefetches.
366 updateCycleCounts();
367 updateCycleCounters(BaseCPU::CPU_STATE_ON);
368
369 if (traceData) {
370 // Since there was a fault, we shouldn't trace this instruction.
371 delete traceData;
372 traceData = NULL;
373 }
374
375 postExecute();
376
377 advanceInst(fault);
378}
379
380PacketPtr
381TimingSimpleCPU::buildPacket(const RequestPtr &req, bool read)
382{
383 return read ? Packet::createRead(req) : Packet::createWrite(req);
384}
385
386void
387TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
388 const RequestPtr &req1, const RequestPtr &req2, const RequestPtr &req,
389 uint8_t *data, bool read)
390{
391 pkt1 = pkt2 = NULL;
392
393 assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
394
395 if (req->getFlags().isSet(Request::NO_ACCESS)) {
396 pkt1 = buildPacket(req, read);
397 return;
398 }
399
400 pkt1 = buildPacket(req1, read);
401 pkt2 = buildPacket(req2, read);
402
403 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
404
405 pkt->dataDynamic<uint8_t>(data);
406 pkt1->dataStatic<uint8_t>(data);
407 pkt2->dataStatic<uint8_t>(data + req1->getSize());
408
409 SplitMainSenderState * main_send_state = new SplitMainSenderState;
410 pkt->senderState = main_send_state;
411 main_send_state->fragments[0] = pkt1;
412 main_send_state->fragments[1] = pkt2;
413 main_send_state->outstanding = 2;
414 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
415 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
416}
417
418Fault
419TimingSimpleCPU::initiateMemRead(Addr addr, unsigned size,
420 Request::Flags flags,
421 const std::vector<bool>& byteEnable)
422{
423 SimpleExecContext &t_info = *threadInfo[curThread];
424 SimpleThread* thread = t_info.thread;
425
426 Fault fault;
427 const int asid = 0;
428 const Addr pc = thread->instAddr();
429 unsigned block_size = cacheLineSize();
430 BaseTLB::Mode mode = BaseTLB::Read;
431
432 if (traceData)
433 traceData->setMem(addr, size, flags);
434
435 RequestPtr req = std::make_shared<Request>(
436 asid, addr, size, flags, dataMasterId(), pc,
437 thread->contextId());
438 if (!byteEnable.empty()) {
439 req->setByteEnable(byteEnable);
440 }
441
442 req->taskId(taskId());
443
444 Addr split_addr = roundDown(addr + size - 1, block_size);
445 assert(split_addr <= addr || split_addr - addr < block_size);
446
447 _status = DTBWaitResponse;
448 if (split_addr > addr) {
449 RequestPtr req1, req2;
450 assert(!req->isLLSC() && !req->isSwap());
451 req->splitOnVaddr(split_addr, req1, req2);
452
453 WholeTranslationState *state =
454 new WholeTranslationState(req, req1, req2, new uint8_t[size],
455 NULL, mode);
456 DataTranslation<TimingSimpleCPU *> *trans1 =
457 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
458 DataTranslation<TimingSimpleCPU *> *trans2 =
459 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
460
461 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
462 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
463 } else {
464 WholeTranslationState *state =
465 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
466 DataTranslation<TimingSimpleCPU *> *translation
467 = new DataTranslation<TimingSimpleCPU *>(this, state);
468 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
469 }
470
471 return NoFault;
472}
473
474bool
475TimingSimpleCPU::handleWritePacket()
476{
477 SimpleExecContext &t_info = *threadInfo[curThread];
478 SimpleThread* thread = t_info.thread;
479
480 const RequestPtr &req = dcache_pkt->req;
481 if (req->isMmappedIpr()) {
482 Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
483 new IprEvent(dcache_pkt, this, clockEdge(delay));
484 _status = DcacheWaitResponse;
485 dcache_pkt = NULL;
486 } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
487 _status = DcacheRetry;
488 } else {
489 _status = DcacheWaitResponse;
490 // memory system takes ownership of packet
491 dcache_pkt = NULL;
492 }
493 return dcache_pkt == NULL;
494}
495
496Fault
497TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
498 Addr addr, Request::Flags flags, uint64_t *res,
499 const std::vector<bool>& byteEnable)
500{
501 SimpleExecContext &t_info = *threadInfo[curThread];
502 SimpleThread* thread = t_info.thread;
503
504 uint8_t *newData = new uint8_t[size];
505 const int asid = 0;
506 const Addr pc = thread->instAddr();
507 unsigned block_size = cacheLineSize();
508 BaseTLB::Mode mode = BaseTLB::Write;
509
510 if (data == NULL) {
511 assert(flags & Request::STORE_NO_DATA);
512 // This must be a cache block cleaning request
513 memset(newData, 0, size);
514 } else {
515 memcpy(newData, data, size);
516 }
517
518 if (traceData)
519 traceData->setMem(addr, size, flags);
520
521 RequestPtr req = std::make_shared<Request>(
522 asid, addr, size, flags, dataMasterId(), pc,
523 thread->contextId());
524 if (!byteEnable.empty()) {
525 req->setByteEnable(byteEnable);
526 }
527
528 req->taskId(taskId());
529
530 Addr split_addr = roundDown(addr + size - 1, block_size);
531 assert(split_addr <= addr || split_addr - addr < block_size);
532
533 _status = DTBWaitResponse;
534
535 // TODO: TimingSimpleCPU doesn't support arbitrarily long multi-line mem.
536 // accesses yet
537
538 if (split_addr > addr) {
539 RequestPtr req1, req2;
540 assert(!req->isLLSC() && !req->isSwap());
541 req->splitOnVaddr(split_addr, req1, req2);
542
543 WholeTranslationState *state =
544 new WholeTranslationState(req, req1, req2, newData, res, mode);
545 DataTranslation<TimingSimpleCPU *> *trans1 =
546 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
547 DataTranslation<TimingSimpleCPU *> *trans2 =
548 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
549
550 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
551 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
552 } else {
553 WholeTranslationState *state =
554 new WholeTranslationState(req, newData, res, mode);
555 DataTranslation<TimingSimpleCPU *> *translation =
556 new DataTranslation<TimingSimpleCPU *>(this, state);
557 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
558 }
559
560 // Translation faults will be returned via finishTranslation()
561 return NoFault;
562}
563
564Fault
565TimingSimpleCPU::initiateMemAMO(Addr addr, unsigned size,
566 Request::Flags flags,
567 AtomicOpFunctor *amo_op)
567 AtomicOpFunctorPtr amo_op)
568{
569 SimpleExecContext &t_info = *threadInfo[curThread];
570 SimpleThread* thread = t_info.thread;
571
572 Fault fault;
573 const int asid = 0;
574 const Addr pc = thread->instAddr();
575 unsigned block_size = cacheLineSize();
576 BaseTLB::Mode mode = BaseTLB::Write;
577
578 if (traceData)
579 traceData->setMem(addr, size, flags);
580
581 RequestPtr req = make_shared<Request>(asid, addr, size, flags,
568{
569 SimpleExecContext &t_info = *threadInfo[curThread];
570 SimpleThread* thread = t_info.thread;
571
572 Fault fault;
573 const int asid = 0;
574 const Addr pc = thread->instAddr();
575 unsigned block_size = cacheLineSize();
576 BaseTLB::Mode mode = BaseTLB::Write;
577
578 if (traceData)
579 traceData->setMem(addr, size, flags);
580
581 RequestPtr req = make_shared<Request>(asid, addr, size, flags,
582 dataMasterId(), pc, thread->contextId(), amo_op);
582 dataMasterId(), pc, thread->contextId(),
583 std::move(amo_op));
583
584 assert(req->hasAtomicOpFunctor());
585
586 req->taskId(taskId());
587
588 Addr split_addr = roundDown(addr + size - 1, block_size);
589
590 // AMO requests that access across a cache line boundary are not
591 // allowed since the cache does not guarantee AMO ops to be executed
592 // atomically in two cache lines
593 // For ISAs such as x86 that requires AMO operations to work on
594 // accesses that cross cache-line boundaries, the cache needs to be
595 // modified to support locking both cache lines to guarantee the
596 // atomicity.
597 if (split_addr > addr) {
598 panic("AMO requests should not access across a cache line boundary\n");
599 }
600
601 _status = DTBWaitResponse;
602
603 WholeTranslationState *state =
604 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
605 DataTranslation<TimingSimpleCPU *> *translation
606 = new DataTranslation<TimingSimpleCPU *>(this, state);
607 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
608
609 return NoFault;
610}
611
612void
613TimingSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
614{
615 for (ThreadID tid = 0; tid < numThreads; tid++) {
616 if (tid != sender) {
617 if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
618 wakeup(tid);
619 }
620 TheISA::handleLockedSnoop(threadInfo[tid]->thread, pkt,
621 dcachePort.cacheBlockMask);
622 }
623 }
624}
625
626void
627TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
628{
629 _status = BaseSimpleCPU::Running;
630
631 if (state->getFault() != NoFault) {
632 if (state->isPrefetch()) {
633 state->setNoFault();
634 }
635 delete [] state->data;
636 state->deleteReqs();
637 translationFault(state->getFault());
638 } else {
639 if (!state->isSplit) {
640 sendData(state->mainReq, state->data, state->res,
641 state->mode == BaseTLB::Read);
642 } else {
643 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
644 state->data, state->mode == BaseTLB::Read);
645 }
646 }
647
648 delete state;
649}
650
651
652void
653TimingSimpleCPU::fetch()
654{
655 // Change thread if multi-threaded
656 swapActiveThread();
657
658 SimpleExecContext &t_info = *threadInfo[curThread];
659 SimpleThread* thread = t_info.thread;
660
661 DPRINTF(SimpleCPU, "Fetch\n");
662
663 if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
664 checkForInterrupts();
665 checkPcEventQueue();
666 }
667
668 // We must have just got suspended by a PC event
669 if (_status == Idle)
670 return;
671
672 TheISA::PCState pcState = thread->pcState();
673 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
674 !curMacroStaticInst;
675
676 if (needToFetch) {
677 _status = BaseSimpleCPU::Running;
678 RequestPtr ifetch_req = std::make_shared<Request>();
679 ifetch_req->taskId(taskId());
680 ifetch_req->setContext(thread->contextId());
681 setupFetchRequest(ifetch_req);
682 DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
683 thread->itb->translateTiming(ifetch_req, thread->getTC(),
684 &fetchTranslation, BaseTLB::Execute);
685 } else {
686 _status = IcacheWaitResponse;
687 completeIfetch(NULL);
688
689 updateCycleCounts();
690 updateCycleCounters(BaseCPU::CPU_STATE_ON);
691 }
692}
693
694
695void
696TimingSimpleCPU::sendFetch(const Fault &fault, const RequestPtr &req,
697 ThreadContext *tc)
698{
699 if (fault == NoFault) {
700 DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
701 req->getVaddr(), req->getPaddr());
702 ifetch_pkt = new Packet(req, MemCmd::ReadReq);
703 ifetch_pkt->dataStatic(&inst);
704 DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
705
706 if (!icachePort.sendTimingReq(ifetch_pkt)) {
707 // Need to wait for retry
708 _status = IcacheRetry;
709 } else {
710 // Need to wait for cache to respond
711 _status = IcacheWaitResponse;
712 // ownership of packet transferred to memory system
713 ifetch_pkt = NULL;
714 }
715 } else {
716 DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
717 // fetch fault: advance directly to next instruction (fault handler)
718 _status = BaseSimpleCPU::Running;
719 advanceInst(fault);
720 }
721
722 updateCycleCounts();
723 updateCycleCounters(BaseCPU::CPU_STATE_ON);
724}
725
726
727void
728TimingSimpleCPU::advanceInst(const Fault &fault)
729{
730 SimpleExecContext &t_info = *threadInfo[curThread];
731
732 if (_status == Faulting)
733 return;
734
735 if (fault != NoFault) {
736 DPRINTF(SimpleCPU, "Fault occured. Handling the fault\n");
737
738 advancePC(fault);
739
740 // A syscall fault could suspend this CPU (e.g., futex_wait)
741 // If the _status is not Idle, schedule an event to fetch the next
742 // instruction after 'stall' ticks.
743 // If the cpu has been suspended (i.e., _status == Idle), another
744 // cpu will wake this cpu up later.
745 if (_status != Idle) {
746 DPRINTF(SimpleCPU, "Scheduling fetch event after the Fault\n");
747
748 Tick stall = dynamic_pointer_cast<SyscallRetryFault>(fault) ?
749 clockEdge(syscallRetryLatency) : clockEdge();
750 reschedule(fetchEvent, stall, true);
751 _status = Faulting;
752 }
753
754 return;
755 }
756
757 if (!t_info.stayAtPC)
758 advancePC(fault);
759
760 if (tryCompleteDrain())
761 return;
762
763 if (_status == BaseSimpleCPU::Running) {
764 // kick off fetch of next instruction... callback from icache
765 // response will cause that instruction to be executed,
766 // keeping the CPU running.
767 fetch();
768 }
769}
770
771
772void
773TimingSimpleCPU::completeIfetch(PacketPtr pkt)
774{
775 SimpleExecContext& t_info = *threadInfo[curThread];
776
777 DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
778 pkt->getAddr() : 0);
779
780 // received a response from the icache: execute the received
781 // instruction
782 assert(!pkt || !pkt->isError());
783 assert(_status == IcacheWaitResponse);
784
785 _status = BaseSimpleCPU::Running;
786
787 updateCycleCounts();
788 updateCycleCounters(BaseCPU::CPU_STATE_ON);
789
790 if (pkt)
791 pkt->req->setAccessLatency();
792
793
794 preExecute();
795 if (curStaticInst && curStaticInst->isMemRef()) {
796 // load or store: just send to dcache
797 Fault fault = curStaticInst->initiateAcc(&t_info, traceData);
798
799 // If we're not running now the instruction will complete in a dcache
800 // response callback or the instruction faulted and has started an
801 // ifetch
802 if (_status == BaseSimpleCPU::Running) {
803 if (fault != NoFault && traceData) {
804 // If there was a fault, we shouldn't trace this instruction.
805 delete traceData;
806 traceData = NULL;
807 }
808
809 postExecute();
810 // @todo remove me after debugging with legion done
811 if (curStaticInst && (!curStaticInst->isMicroop() ||
812 curStaticInst->isFirstMicroop()))
813 instCnt++;
814 advanceInst(fault);
815 }
816 } else if (curStaticInst) {
817 // non-memory instruction: execute completely now
818 Fault fault = curStaticInst->execute(&t_info, traceData);
819
820 // keep an instruction count
821 if (fault == NoFault)
822 countInst();
823 else if (traceData && !DTRACE(ExecFaulting)) {
824 delete traceData;
825 traceData = NULL;
826 }
827
828 postExecute();
829 // @todo remove me after debugging with legion done
830 if (curStaticInst && (!curStaticInst->isMicroop() ||
831 curStaticInst->isFirstMicroop()))
832 instCnt++;
833 advanceInst(fault);
834 } else {
835 advanceInst(NoFault);
836 }
837
838 if (pkt) {
839 delete pkt;
840 }
841}
842
843void
844TimingSimpleCPU::IcachePort::ITickEvent::process()
845{
846 cpu->completeIfetch(pkt);
847}
848
849bool
850TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
851{
852 DPRINTF(SimpleCPU, "Received fetch response %#x\n", pkt->getAddr());
853 // we should only ever see one response per cycle since we only
854 // issue a new request once this response is sunk
855 assert(!tickEvent.scheduled());
856 // delay processing of returned data until next CPU clock edge
857 tickEvent.schedule(pkt, cpu->clockEdge());
858
859 return true;
860}
861
862void
863TimingSimpleCPU::IcachePort::recvReqRetry()
864{
865 // we shouldn't get a retry unless we have a packet that we're
866 // waiting to transmit
867 assert(cpu->ifetch_pkt != NULL);
868 assert(cpu->_status == IcacheRetry);
869 PacketPtr tmp = cpu->ifetch_pkt;
870 if (sendTimingReq(tmp)) {
871 cpu->_status = IcacheWaitResponse;
872 cpu->ifetch_pkt = NULL;
873 }
874}
875
876void
877TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
878{
879 // received a response from the dcache: complete the load or store
880 // instruction
881 assert(!pkt->isError());
882 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
883 pkt->req->getFlags().isSet(Request::NO_ACCESS));
884
885 pkt->req->setAccessLatency();
886
887 updateCycleCounts();
888 updateCycleCounters(BaseCPU::CPU_STATE_ON);
889
890 if (pkt->senderState) {
891 SplitFragmentSenderState * send_state =
892 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
893 assert(send_state);
894 delete pkt;
895 PacketPtr big_pkt = send_state->bigPkt;
896 delete send_state;
897
898 SplitMainSenderState * main_send_state =
899 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
900 assert(main_send_state);
901 // Record the fact that this packet is no longer outstanding.
902 assert(main_send_state->outstanding != 0);
903 main_send_state->outstanding--;
904
905 if (main_send_state->outstanding) {
906 return;
907 } else {
908 delete main_send_state;
909 big_pkt->senderState = NULL;
910 pkt = big_pkt;
911 }
912 }
913
914 _status = BaseSimpleCPU::Running;
915
916 Fault fault = curStaticInst->completeAcc(pkt, threadInfo[curThread],
917 traceData);
918
919 // keep an instruction count
920 if (fault == NoFault)
921 countInst();
922 else if (traceData) {
923 // If there was a fault, we shouldn't trace this instruction.
924 delete traceData;
925 traceData = NULL;
926 }
927
928 delete pkt;
929
930 postExecute();
931
932 advanceInst(fault);
933}
934
935void
936TimingSimpleCPU::updateCycleCounts()
937{
938 const Cycles delta(curCycle() - previousCycle);
939
940 numCycles += delta;
941
942 previousCycle = curCycle();
943}
944
945void
946TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
947{
948 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
949 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
950 cpu->wakeup(tid);
951 }
952 }
953
954 // Making it uniform across all CPUs:
955 // The CPUs need to be woken up only on an invalidation packet (when using caches)
956 // or on an incoming write packet (when not using caches)
957 // It is not necessary to wake up the processor on all incoming packets
958 if (pkt->isInvalidate() || pkt->isWrite()) {
959 for (auto &t_info : cpu->threadInfo) {
960 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
961 }
962 }
963}
964
965void
966TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
967{
968 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
969 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
970 cpu->wakeup(tid);
971 }
972 }
973}
974
975bool
976TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
977{
978 DPRINTF(SimpleCPU, "Received load/store response %#x\n", pkt->getAddr());
979
980 // The timing CPU is not really ticked, instead it relies on the
981 // memory system (fetch and load/store) to set the pace.
982 if (!tickEvent.scheduled()) {
983 // Delay processing of returned data until next CPU clock edge
984 tickEvent.schedule(pkt, cpu->clockEdge());
985 return true;
986 } else {
987 // In the case of a split transaction and a cache that is
988 // faster than a CPU we could get two responses in the
989 // same tick, delay the second one
990 if (!retryRespEvent.scheduled())
991 cpu->schedule(retryRespEvent, cpu->clockEdge(Cycles(1)));
992 return false;
993 }
994}
995
996void
997TimingSimpleCPU::DcachePort::DTickEvent::process()
998{
999 cpu->completeDataAccess(pkt);
1000}
1001
1002void
1003TimingSimpleCPU::DcachePort::recvReqRetry()
1004{
1005 // we shouldn't get a retry unless we have a packet that we're
1006 // waiting to transmit
1007 assert(cpu->dcache_pkt != NULL);
1008 assert(cpu->_status == DcacheRetry);
1009 PacketPtr tmp = cpu->dcache_pkt;
1010 if (tmp->senderState) {
1011 // This is a packet from a split access.
1012 SplitFragmentSenderState * send_state =
1013 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
1014 assert(send_state);
1015 PacketPtr big_pkt = send_state->bigPkt;
1016
1017 SplitMainSenderState * main_send_state =
1018 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
1019 assert(main_send_state);
1020
1021 if (sendTimingReq(tmp)) {
1022 // If we were able to send without retrying, record that fact
1023 // and try sending the other fragment.
1024 send_state->clearFromParent();
1025 int other_index = main_send_state->getPendingFragment();
1026 if (other_index > 0) {
1027 tmp = main_send_state->fragments[other_index];
1028 cpu->dcache_pkt = tmp;
1029 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
1030 (big_pkt->isWrite() && cpu->handleWritePacket())) {
1031 main_send_state->fragments[other_index] = NULL;
1032 }
1033 } else {
1034 cpu->_status = DcacheWaitResponse;
1035 // memory system takes ownership of packet
1036 cpu->dcache_pkt = NULL;
1037 }
1038 }
1039 } else if (sendTimingReq(tmp)) {
1040 cpu->_status = DcacheWaitResponse;
1041 // memory system takes ownership of packet
1042 cpu->dcache_pkt = NULL;
1043 }
1044}
1045
1046TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
1047 Tick t)
1048 : pkt(_pkt), cpu(_cpu)
1049{
1050 cpu->schedule(this, t);
1051}
1052
1053void
1054TimingSimpleCPU::IprEvent::process()
1055{
1056 cpu->completeDataAccess(pkt);
1057}
1058
1059const char *
1060TimingSimpleCPU::IprEvent::description() const
1061{
1062 return "Timing Simple CPU Delay IPR event";
1063}
1064
1065
1066void
1067TimingSimpleCPU::printAddr(Addr a)
1068{
1069 dcachePort.printAddr(a);
1070}
1071
1072
1073////////////////////////////////////////////////////////////////////////
1074//
1075// TimingSimpleCPU Simulation Object
1076//
1077TimingSimpleCPU *
1078TimingSimpleCPUParams::create()
1079{
1080 return new TimingSimpleCPU(this);
1081}
584
585 assert(req->hasAtomicOpFunctor());
586
587 req->taskId(taskId());
588
589 Addr split_addr = roundDown(addr + size - 1, block_size);
590
591 // AMO requests that access across a cache line boundary are not
592 // allowed since the cache does not guarantee AMO ops to be executed
593 // atomically in two cache lines
594 // For ISAs such as x86 that requires AMO operations to work on
595 // accesses that cross cache-line boundaries, the cache needs to be
596 // modified to support locking both cache lines to guarantee the
597 // atomicity.
598 if (split_addr > addr) {
599 panic("AMO requests should not access across a cache line boundary\n");
600 }
601
602 _status = DTBWaitResponse;
603
604 WholeTranslationState *state =
605 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
606 DataTranslation<TimingSimpleCPU *> *translation
607 = new DataTranslation<TimingSimpleCPU *>(this, state);
608 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
609
610 return NoFault;
611}
612
613void
614TimingSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
615{
616 for (ThreadID tid = 0; tid < numThreads; tid++) {
617 if (tid != sender) {
618 if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
619 wakeup(tid);
620 }
621 TheISA::handleLockedSnoop(threadInfo[tid]->thread, pkt,
622 dcachePort.cacheBlockMask);
623 }
624 }
625}
626
627void
628TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
629{
630 _status = BaseSimpleCPU::Running;
631
632 if (state->getFault() != NoFault) {
633 if (state->isPrefetch()) {
634 state->setNoFault();
635 }
636 delete [] state->data;
637 state->deleteReqs();
638 translationFault(state->getFault());
639 } else {
640 if (!state->isSplit) {
641 sendData(state->mainReq, state->data, state->res,
642 state->mode == BaseTLB::Read);
643 } else {
644 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
645 state->data, state->mode == BaseTLB::Read);
646 }
647 }
648
649 delete state;
650}
651
652
653void
654TimingSimpleCPU::fetch()
655{
656 // Change thread if multi-threaded
657 swapActiveThread();
658
659 SimpleExecContext &t_info = *threadInfo[curThread];
660 SimpleThread* thread = t_info.thread;
661
662 DPRINTF(SimpleCPU, "Fetch\n");
663
664 if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
665 checkForInterrupts();
666 checkPcEventQueue();
667 }
668
669 // We must have just got suspended by a PC event
670 if (_status == Idle)
671 return;
672
673 TheISA::PCState pcState = thread->pcState();
674 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
675 !curMacroStaticInst;
676
677 if (needToFetch) {
678 _status = BaseSimpleCPU::Running;
679 RequestPtr ifetch_req = std::make_shared<Request>();
680 ifetch_req->taskId(taskId());
681 ifetch_req->setContext(thread->contextId());
682 setupFetchRequest(ifetch_req);
683 DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
684 thread->itb->translateTiming(ifetch_req, thread->getTC(),
685 &fetchTranslation, BaseTLB::Execute);
686 } else {
687 _status = IcacheWaitResponse;
688 completeIfetch(NULL);
689
690 updateCycleCounts();
691 updateCycleCounters(BaseCPU::CPU_STATE_ON);
692 }
693}
694
695
696void
697TimingSimpleCPU::sendFetch(const Fault &fault, const RequestPtr &req,
698 ThreadContext *tc)
699{
700 if (fault == NoFault) {
701 DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
702 req->getVaddr(), req->getPaddr());
703 ifetch_pkt = new Packet(req, MemCmd::ReadReq);
704 ifetch_pkt->dataStatic(&inst);
705 DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
706
707 if (!icachePort.sendTimingReq(ifetch_pkt)) {
708 // Need to wait for retry
709 _status = IcacheRetry;
710 } else {
711 // Need to wait for cache to respond
712 _status = IcacheWaitResponse;
713 // ownership of packet transferred to memory system
714 ifetch_pkt = NULL;
715 }
716 } else {
717 DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
718 // fetch fault: advance directly to next instruction (fault handler)
719 _status = BaseSimpleCPU::Running;
720 advanceInst(fault);
721 }
722
723 updateCycleCounts();
724 updateCycleCounters(BaseCPU::CPU_STATE_ON);
725}
726
727
728void
729TimingSimpleCPU::advanceInst(const Fault &fault)
730{
731 SimpleExecContext &t_info = *threadInfo[curThread];
732
733 if (_status == Faulting)
734 return;
735
736 if (fault != NoFault) {
737 DPRINTF(SimpleCPU, "Fault occured. Handling the fault\n");
738
739 advancePC(fault);
740
741 // A syscall fault could suspend this CPU (e.g., futex_wait)
742 // If the _status is not Idle, schedule an event to fetch the next
743 // instruction after 'stall' ticks.
744 // If the cpu has been suspended (i.e., _status == Idle), another
745 // cpu will wake this cpu up later.
746 if (_status != Idle) {
747 DPRINTF(SimpleCPU, "Scheduling fetch event after the Fault\n");
748
749 Tick stall = dynamic_pointer_cast<SyscallRetryFault>(fault) ?
750 clockEdge(syscallRetryLatency) : clockEdge();
751 reschedule(fetchEvent, stall, true);
752 _status = Faulting;
753 }
754
755 return;
756 }
757
758 if (!t_info.stayAtPC)
759 advancePC(fault);
760
761 if (tryCompleteDrain())
762 return;
763
764 if (_status == BaseSimpleCPU::Running) {
765 // kick off fetch of next instruction... callback from icache
766 // response will cause that instruction to be executed,
767 // keeping the CPU running.
768 fetch();
769 }
770}
771
772
773void
774TimingSimpleCPU::completeIfetch(PacketPtr pkt)
775{
776 SimpleExecContext& t_info = *threadInfo[curThread];
777
778 DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
779 pkt->getAddr() : 0);
780
781 // received a response from the icache: execute the received
782 // instruction
783 assert(!pkt || !pkt->isError());
784 assert(_status == IcacheWaitResponse);
785
786 _status = BaseSimpleCPU::Running;
787
788 updateCycleCounts();
789 updateCycleCounters(BaseCPU::CPU_STATE_ON);
790
791 if (pkt)
792 pkt->req->setAccessLatency();
793
794
795 preExecute();
796 if (curStaticInst && curStaticInst->isMemRef()) {
797 // load or store: just send to dcache
798 Fault fault = curStaticInst->initiateAcc(&t_info, traceData);
799
800 // If we're not running now the instruction will complete in a dcache
801 // response callback or the instruction faulted and has started an
802 // ifetch
803 if (_status == BaseSimpleCPU::Running) {
804 if (fault != NoFault && traceData) {
805 // If there was a fault, we shouldn't trace this instruction.
806 delete traceData;
807 traceData = NULL;
808 }
809
810 postExecute();
811 // @todo remove me after debugging with legion done
812 if (curStaticInst && (!curStaticInst->isMicroop() ||
813 curStaticInst->isFirstMicroop()))
814 instCnt++;
815 advanceInst(fault);
816 }
817 } else if (curStaticInst) {
818 // non-memory instruction: execute completely now
819 Fault fault = curStaticInst->execute(&t_info, traceData);
820
821 // keep an instruction count
822 if (fault == NoFault)
823 countInst();
824 else if (traceData && !DTRACE(ExecFaulting)) {
825 delete traceData;
826 traceData = NULL;
827 }
828
829 postExecute();
830 // @todo remove me after debugging with legion done
831 if (curStaticInst && (!curStaticInst->isMicroop() ||
832 curStaticInst->isFirstMicroop()))
833 instCnt++;
834 advanceInst(fault);
835 } else {
836 advanceInst(NoFault);
837 }
838
839 if (pkt) {
840 delete pkt;
841 }
842}
843
844void
845TimingSimpleCPU::IcachePort::ITickEvent::process()
846{
847 cpu->completeIfetch(pkt);
848}
849
850bool
851TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
852{
853 DPRINTF(SimpleCPU, "Received fetch response %#x\n", pkt->getAddr());
854 // we should only ever see one response per cycle since we only
855 // issue a new request once this response is sunk
856 assert(!tickEvent.scheduled());
857 // delay processing of returned data until next CPU clock edge
858 tickEvent.schedule(pkt, cpu->clockEdge());
859
860 return true;
861}
862
863void
864TimingSimpleCPU::IcachePort::recvReqRetry()
865{
866 // we shouldn't get a retry unless we have a packet that we're
867 // waiting to transmit
868 assert(cpu->ifetch_pkt != NULL);
869 assert(cpu->_status == IcacheRetry);
870 PacketPtr tmp = cpu->ifetch_pkt;
871 if (sendTimingReq(tmp)) {
872 cpu->_status = IcacheWaitResponse;
873 cpu->ifetch_pkt = NULL;
874 }
875}
876
877void
878TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
879{
880 // received a response from the dcache: complete the load or store
881 // instruction
882 assert(!pkt->isError());
883 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
884 pkt->req->getFlags().isSet(Request::NO_ACCESS));
885
886 pkt->req->setAccessLatency();
887
888 updateCycleCounts();
889 updateCycleCounters(BaseCPU::CPU_STATE_ON);
890
891 if (pkt->senderState) {
892 SplitFragmentSenderState * send_state =
893 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
894 assert(send_state);
895 delete pkt;
896 PacketPtr big_pkt = send_state->bigPkt;
897 delete send_state;
898
899 SplitMainSenderState * main_send_state =
900 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
901 assert(main_send_state);
902 // Record the fact that this packet is no longer outstanding.
903 assert(main_send_state->outstanding != 0);
904 main_send_state->outstanding--;
905
906 if (main_send_state->outstanding) {
907 return;
908 } else {
909 delete main_send_state;
910 big_pkt->senderState = NULL;
911 pkt = big_pkt;
912 }
913 }
914
915 _status = BaseSimpleCPU::Running;
916
917 Fault fault = curStaticInst->completeAcc(pkt, threadInfo[curThread],
918 traceData);
919
920 // keep an instruction count
921 if (fault == NoFault)
922 countInst();
923 else if (traceData) {
924 // If there was a fault, we shouldn't trace this instruction.
925 delete traceData;
926 traceData = NULL;
927 }
928
929 delete pkt;
930
931 postExecute();
932
933 advanceInst(fault);
934}
935
936void
937TimingSimpleCPU::updateCycleCounts()
938{
939 const Cycles delta(curCycle() - previousCycle);
940
941 numCycles += delta;
942
943 previousCycle = curCycle();
944}
945
946void
947TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
948{
949 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
950 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
951 cpu->wakeup(tid);
952 }
953 }
954
955 // Making it uniform across all CPUs:
956 // The CPUs need to be woken up only on an invalidation packet (when using caches)
957 // or on an incoming write packet (when not using caches)
958 // It is not necessary to wake up the processor on all incoming packets
959 if (pkt->isInvalidate() || pkt->isWrite()) {
960 for (auto &t_info : cpu->threadInfo) {
961 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
962 }
963 }
964}
965
966void
967TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
968{
969 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
970 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
971 cpu->wakeup(tid);
972 }
973 }
974}
975
976bool
977TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
978{
979 DPRINTF(SimpleCPU, "Received load/store response %#x\n", pkt->getAddr());
980
981 // The timing CPU is not really ticked, instead it relies on the
982 // memory system (fetch and load/store) to set the pace.
983 if (!tickEvent.scheduled()) {
984 // Delay processing of returned data until next CPU clock edge
985 tickEvent.schedule(pkt, cpu->clockEdge());
986 return true;
987 } else {
988 // In the case of a split transaction and a cache that is
989 // faster than a CPU we could get two responses in the
990 // same tick, delay the second one
991 if (!retryRespEvent.scheduled())
992 cpu->schedule(retryRespEvent, cpu->clockEdge(Cycles(1)));
993 return false;
994 }
995}
996
997void
998TimingSimpleCPU::DcachePort::DTickEvent::process()
999{
1000 cpu->completeDataAccess(pkt);
1001}
1002
1003void
1004TimingSimpleCPU::DcachePort::recvReqRetry()
1005{
1006 // we shouldn't get a retry unless we have a packet that we're
1007 // waiting to transmit
1008 assert(cpu->dcache_pkt != NULL);
1009 assert(cpu->_status == DcacheRetry);
1010 PacketPtr tmp = cpu->dcache_pkt;
1011 if (tmp->senderState) {
1012 // This is a packet from a split access.
1013 SplitFragmentSenderState * send_state =
1014 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
1015 assert(send_state);
1016 PacketPtr big_pkt = send_state->bigPkt;
1017
1018 SplitMainSenderState * main_send_state =
1019 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
1020 assert(main_send_state);
1021
1022 if (sendTimingReq(tmp)) {
1023 // If we were able to send without retrying, record that fact
1024 // and try sending the other fragment.
1025 send_state->clearFromParent();
1026 int other_index = main_send_state->getPendingFragment();
1027 if (other_index > 0) {
1028 tmp = main_send_state->fragments[other_index];
1029 cpu->dcache_pkt = tmp;
1030 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
1031 (big_pkt->isWrite() && cpu->handleWritePacket())) {
1032 main_send_state->fragments[other_index] = NULL;
1033 }
1034 } else {
1035 cpu->_status = DcacheWaitResponse;
1036 // memory system takes ownership of packet
1037 cpu->dcache_pkt = NULL;
1038 }
1039 }
1040 } else if (sendTimingReq(tmp)) {
1041 cpu->_status = DcacheWaitResponse;
1042 // memory system takes ownership of packet
1043 cpu->dcache_pkt = NULL;
1044 }
1045}
1046
1047TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
1048 Tick t)
1049 : pkt(_pkt), cpu(_cpu)
1050{
1051 cpu->schedule(this, t);
1052}
1053
1054void
1055TimingSimpleCPU::IprEvent::process()
1056{
1057 cpu->completeDataAccess(pkt);
1058}
1059
1060const char *
1061TimingSimpleCPU::IprEvent::description() const
1062{
1063 return "Timing Simple CPU Delay IPR event";
1064}
1065
1066
1067void
1068TimingSimpleCPU::printAddr(Addr a)
1069{
1070 dcachePort.printAddr(a);
1071}
1072
1073
1074////////////////////////////////////////////////////////////////////////
1075//
1076// TimingSimpleCPU Simulation Object
1077//
1078TimingSimpleCPU *
1079TimingSimpleCPUParams::create()
1080{
1081 return new TimingSimpleCPU(this);
1082}