timing.cc (13652:45d94ac03a27) timing.cc (13954:2f400a5f2627)
1/*
2 * Copyright 2014 Google, Inc.
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2013,2015,2017 ARM Limited
3 * Copyright (c) 2010-2013,2015,2017-2018 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "cpu/simple/timing.hh"
45
46#include "arch/locked_mem.hh"
47#include "arch/mmapped_ipr.hh"
48#include "arch/utility.hh"
49#include "config/the_isa.hh"
50#include "cpu/exetrace.hh"
51#include "debug/Config.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/Mwait.hh"
55#include "debug/SimpleCPU.hh"
56#include "mem/packet.hh"
57#include "mem/packet_access.hh"
58#include "params/TimingSimpleCPU.hh"
59#include "sim/faults.hh"
60#include "sim/full_system.hh"
61#include "sim/system.hh"
62
63using namespace std;
64using namespace TheISA;
65
66void
67TimingSimpleCPU::init()
68{
69 BaseSimpleCPU::init();
70}
71
72void
73TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
74{
75 pkt = _pkt;
76 cpu->schedule(this, t);
77}
78
79TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
80 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
81 dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
82 fetchEvent([this]{ fetch(); }, name())
83{
84 _status = Idle;
85}
86
87
88
89TimingSimpleCPU::~TimingSimpleCPU()
90{
91}
92
93DrainState
94TimingSimpleCPU::drain()
95{
96 // Deschedule any power gating event (if any)
97 deschedulePowerGatingEvent();
98
99 if (switchedOut())
100 return DrainState::Drained;
101
102 if (_status == Idle ||
103 (_status == BaseSimpleCPU::Running && isDrained())) {
104 DPRINTF(Drain, "No need to drain.\n");
105 activeThreads.clear();
106 return DrainState::Drained;
107 } else {
108 DPRINTF(Drain, "Requesting drain.\n");
109
110 // The fetch event can become descheduled if a drain didn't
111 // succeed on the first attempt. We need to reschedule it if
112 // the CPU is waiting for a microcode routine to complete.
113 if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
114 schedule(fetchEvent, clockEdge());
115
116 return DrainState::Draining;
117 }
118}
119
120void
121TimingSimpleCPU::drainResume()
122{
123 assert(!fetchEvent.scheduled());
124 if (switchedOut())
125 return;
126
127 DPRINTF(SimpleCPU, "Resume\n");
128 verifyMemoryMode();
129
130 assert(!threadContexts.empty());
131
132 _status = BaseSimpleCPU::Idle;
133
134 for (ThreadID tid = 0; tid < numThreads; tid++) {
135 if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
136 threadInfo[tid]->notIdleFraction = 1;
137
138 activeThreads.push_back(tid);
139
140 _status = BaseSimpleCPU::Running;
141
142 // Fetch if any threads active
143 if (!fetchEvent.scheduled()) {
144 schedule(fetchEvent, nextCycle());
145 }
146 } else {
147 threadInfo[tid]->notIdleFraction = 0;
148 }
149 }
150
151 // Reschedule any power gating event (if any)
152 schedulePowerGatingEvent();
153
154 system->totalNumInsts = 0;
155}
156
157bool
158TimingSimpleCPU::tryCompleteDrain()
159{
160 if (drainState() != DrainState::Draining)
161 return false;
162
163 DPRINTF(Drain, "tryCompleteDrain.\n");
164 if (!isDrained())
165 return false;
166
167 DPRINTF(Drain, "CPU done draining, processing drain event\n");
168 signalDrainDone();
169
170 return true;
171}
172
173void
174TimingSimpleCPU::switchOut()
175{
176 SimpleExecContext& t_info = *threadInfo[curThread];
177 M5_VAR_USED SimpleThread* thread = t_info.thread;
178
179 BaseSimpleCPU::switchOut();
180
181 assert(!fetchEvent.scheduled());
182 assert(_status == BaseSimpleCPU::Running || _status == Idle);
183 assert(!t_info.stayAtPC);
184 assert(thread->microPC() == 0);
185
186 updateCycleCounts();
187 updateCycleCounters(BaseCPU::CPU_STATE_ON);
188}
189
190
191void
192TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
193{
194 BaseSimpleCPU::takeOverFrom(oldCPU);
195
196 previousCycle = curCycle();
197}
198
199void
200TimingSimpleCPU::verifyMemoryMode() const
201{
202 if (!system->isTimingMode()) {
203 fatal("The timing CPU requires the memory system to be in "
204 "'timing' mode.\n");
205 }
206}
207
208void
209TimingSimpleCPU::activateContext(ThreadID thread_num)
210{
211 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
212
213 assert(thread_num < numThreads);
214
215 threadInfo[thread_num]->notIdleFraction = 1;
216 if (_status == BaseSimpleCPU::Idle)
217 _status = BaseSimpleCPU::Running;
218
219 // kick things off by initiating the fetch of the next instruction
220 if (!fetchEvent.scheduled())
221 schedule(fetchEvent, clockEdge(Cycles(0)));
222
223 if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
224 == activeThreads.end()) {
225 activeThreads.push_back(thread_num);
226 }
227
228 BaseCPU::activateContext(thread_num);
229}
230
231
232void
233TimingSimpleCPU::suspendContext(ThreadID thread_num)
234{
235 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
236
237 assert(thread_num < numThreads);
238 activeThreads.remove(thread_num);
239
240 if (_status == Idle)
241 return;
242
243 assert(_status == BaseSimpleCPU::Running);
244
245 threadInfo[thread_num]->notIdleFraction = 0;
246
247 if (activeThreads.empty()) {
248 _status = Idle;
249
250 if (fetchEvent.scheduled()) {
251 deschedule(fetchEvent);
252 }
253 }
254
255 BaseCPU::suspendContext(thread_num);
256}
257
258bool
259TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
260{
261 SimpleExecContext &t_info = *threadInfo[curThread];
262 SimpleThread* thread = t_info.thread;
263
264 const RequestPtr &req = pkt->req;
265
266 // We're about the issues a locked load, so tell the monitor
267 // to start caring about this address
268 if (pkt->isRead() && pkt->req->isLLSC()) {
269 TheISA::handleLockedRead(thread, pkt->req);
270 }
271 if (req->isMmappedIpr()) {
272 Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
273 new IprEvent(pkt, this, clockEdge(delay));
274 _status = DcacheWaitResponse;
275 dcache_pkt = NULL;
276 } else if (!dcachePort.sendTimingReq(pkt)) {
277 _status = DcacheRetry;
278 dcache_pkt = pkt;
279 } else {
280 _status = DcacheWaitResponse;
281 // memory system takes ownership of packet
282 dcache_pkt = NULL;
283 }
284 return dcache_pkt == NULL;
285}
286
287void
288TimingSimpleCPU::sendData(const RequestPtr &req, uint8_t *data, uint64_t *res,
289 bool read)
290{
291 SimpleExecContext &t_info = *threadInfo[curThread];
292 SimpleThread* thread = t_info.thread;
293
294 PacketPtr pkt = buildPacket(req, read);
295 pkt->dataDynamic<uint8_t>(data);
296
297 if (req->getFlags().isSet(Request::NO_ACCESS)) {
298 assert(!dcache_pkt);
299 pkt->makeResponse();
300 completeDataAccess(pkt);
301 } else if (read) {
302 handleReadPacket(pkt);
303 } else {
304 bool do_access = true; // flag to suppress cache access
305
306 if (req->isLLSC()) {
307 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
308 } else if (req->isCondSwap()) {
309 assert(res);
310 req->setExtraData(*res);
311 }
312
313 if (do_access) {
314 dcache_pkt = pkt;
315 handleWritePacket();
316 threadSnoop(pkt, curThread);
317 } else {
318 _status = DcacheWaitResponse;
319 completeDataAccess(pkt);
320 }
321 }
322}
323
324void
325TimingSimpleCPU::sendSplitData(const RequestPtr &req1, const RequestPtr &req2,
326 const RequestPtr &req, uint8_t *data, bool read)
327{
328 PacketPtr pkt1, pkt2;
329 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
330 if (req->getFlags().isSet(Request::NO_ACCESS)) {
331 assert(!dcache_pkt);
332 pkt1->makeResponse();
333 completeDataAccess(pkt1);
334 } else if (read) {
335 SplitFragmentSenderState * send_state =
336 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
337 if (handleReadPacket(pkt1)) {
338 send_state->clearFromParent();
339 send_state = dynamic_cast<SplitFragmentSenderState *>(
340 pkt2->senderState);
341 if (handleReadPacket(pkt2)) {
342 send_state->clearFromParent();
343 }
344 }
345 } else {
346 dcache_pkt = pkt1;
347 SplitFragmentSenderState * send_state =
348 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
349 if (handleWritePacket()) {
350 send_state->clearFromParent();
351 dcache_pkt = pkt2;
352 send_state = dynamic_cast<SplitFragmentSenderState *>(
353 pkt2->senderState);
354 if (handleWritePacket()) {
355 send_state->clearFromParent();
356 }
357 }
358 }
359}
360
361void
362TimingSimpleCPU::translationFault(const Fault &fault)
363{
364 // fault may be NoFault in cases where a fault is suppressed,
365 // for instance prefetches.
366 updateCycleCounts();
367 updateCycleCounters(BaseCPU::CPU_STATE_ON);
368
369 if (traceData) {
370 // Since there was a fault, we shouldn't trace this instruction.
371 delete traceData;
372 traceData = NULL;
373 }
374
375 postExecute();
376
377 advanceInst(fault);
378}
379
380PacketPtr
381TimingSimpleCPU::buildPacket(const RequestPtr &req, bool read)
382{
383 return read ? Packet::createRead(req) : Packet::createWrite(req);
384}
385
386void
387TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
388 const RequestPtr &req1, const RequestPtr &req2, const RequestPtr &req,
389 uint8_t *data, bool read)
390{
391 pkt1 = pkt2 = NULL;
392
393 assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
394
395 if (req->getFlags().isSet(Request::NO_ACCESS)) {
396 pkt1 = buildPacket(req, read);
397 return;
398 }
399
400 pkt1 = buildPacket(req1, read);
401 pkt2 = buildPacket(req2, read);
402
403 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
404
405 pkt->dataDynamic<uint8_t>(data);
406 pkt1->dataStatic<uint8_t>(data);
407 pkt2->dataStatic<uint8_t>(data + req1->getSize());
408
409 SplitMainSenderState * main_send_state = new SplitMainSenderState;
410 pkt->senderState = main_send_state;
411 main_send_state->fragments[0] = pkt1;
412 main_send_state->fragments[1] = pkt2;
413 main_send_state->outstanding = 2;
414 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
415 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
416}
417
418Fault
419TimingSimpleCPU::initiateMemRead(Addr addr, unsigned size,
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "cpu/simple/timing.hh"
45
46#include "arch/locked_mem.hh"
47#include "arch/mmapped_ipr.hh"
48#include "arch/utility.hh"
49#include "config/the_isa.hh"
50#include "cpu/exetrace.hh"
51#include "debug/Config.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/Mwait.hh"
55#include "debug/SimpleCPU.hh"
56#include "mem/packet.hh"
57#include "mem/packet_access.hh"
58#include "params/TimingSimpleCPU.hh"
59#include "sim/faults.hh"
60#include "sim/full_system.hh"
61#include "sim/system.hh"
62
63using namespace std;
64using namespace TheISA;
65
66void
67TimingSimpleCPU::init()
68{
69 BaseSimpleCPU::init();
70}
71
72void
73TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
74{
75 pkt = _pkt;
76 cpu->schedule(this, t);
77}
78
79TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
80 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
81 dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
82 fetchEvent([this]{ fetch(); }, name())
83{
84 _status = Idle;
85}
86
87
88
89TimingSimpleCPU::~TimingSimpleCPU()
90{
91}
92
93DrainState
94TimingSimpleCPU::drain()
95{
96 // Deschedule any power gating event (if any)
97 deschedulePowerGatingEvent();
98
99 if (switchedOut())
100 return DrainState::Drained;
101
102 if (_status == Idle ||
103 (_status == BaseSimpleCPU::Running && isDrained())) {
104 DPRINTF(Drain, "No need to drain.\n");
105 activeThreads.clear();
106 return DrainState::Drained;
107 } else {
108 DPRINTF(Drain, "Requesting drain.\n");
109
110 // The fetch event can become descheduled if a drain didn't
111 // succeed on the first attempt. We need to reschedule it if
112 // the CPU is waiting for a microcode routine to complete.
113 if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
114 schedule(fetchEvent, clockEdge());
115
116 return DrainState::Draining;
117 }
118}
119
120void
121TimingSimpleCPU::drainResume()
122{
123 assert(!fetchEvent.scheduled());
124 if (switchedOut())
125 return;
126
127 DPRINTF(SimpleCPU, "Resume\n");
128 verifyMemoryMode();
129
130 assert(!threadContexts.empty());
131
132 _status = BaseSimpleCPU::Idle;
133
134 for (ThreadID tid = 0; tid < numThreads; tid++) {
135 if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
136 threadInfo[tid]->notIdleFraction = 1;
137
138 activeThreads.push_back(tid);
139
140 _status = BaseSimpleCPU::Running;
141
142 // Fetch if any threads active
143 if (!fetchEvent.scheduled()) {
144 schedule(fetchEvent, nextCycle());
145 }
146 } else {
147 threadInfo[tid]->notIdleFraction = 0;
148 }
149 }
150
151 // Reschedule any power gating event (if any)
152 schedulePowerGatingEvent();
153
154 system->totalNumInsts = 0;
155}
156
157bool
158TimingSimpleCPU::tryCompleteDrain()
159{
160 if (drainState() != DrainState::Draining)
161 return false;
162
163 DPRINTF(Drain, "tryCompleteDrain.\n");
164 if (!isDrained())
165 return false;
166
167 DPRINTF(Drain, "CPU done draining, processing drain event\n");
168 signalDrainDone();
169
170 return true;
171}
172
173void
174TimingSimpleCPU::switchOut()
175{
176 SimpleExecContext& t_info = *threadInfo[curThread];
177 M5_VAR_USED SimpleThread* thread = t_info.thread;
178
179 BaseSimpleCPU::switchOut();
180
181 assert(!fetchEvent.scheduled());
182 assert(_status == BaseSimpleCPU::Running || _status == Idle);
183 assert(!t_info.stayAtPC);
184 assert(thread->microPC() == 0);
185
186 updateCycleCounts();
187 updateCycleCounters(BaseCPU::CPU_STATE_ON);
188}
189
190
191void
192TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
193{
194 BaseSimpleCPU::takeOverFrom(oldCPU);
195
196 previousCycle = curCycle();
197}
198
199void
200TimingSimpleCPU::verifyMemoryMode() const
201{
202 if (!system->isTimingMode()) {
203 fatal("The timing CPU requires the memory system to be in "
204 "'timing' mode.\n");
205 }
206}
207
208void
209TimingSimpleCPU::activateContext(ThreadID thread_num)
210{
211 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
212
213 assert(thread_num < numThreads);
214
215 threadInfo[thread_num]->notIdleFraction = 1;
216 if (_status == BaseSimpleCPU::Idle)
217 _status = BaseSimpleCPU::Running;
218
219 // kick things off by initiating the fetch of the next instruction
220 if (!fetchEvent.scheduled())
221 schedule(fetchEvent, clockEdge(Cycles(0)));
222
223 if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
224 == activeThreads.end()) {
225 activeThreads.push_back(thread_num);
226 }
227
228 BaseCPU::activateContext(thread_num);
229}
230
231
232void
233TimingSimpleCPU::suspendContext(ThreadID thread_num)
234{
235 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
236
237 assert(thread_num < numThreads);
238 activeThreads.remove(thread_num);
239
240 if (_status == Idle)
241 return;
242
243 assert(_status == BaseSimpleCPU::Running);
244
245 threadInfo[thread_num]->notIdleFraction = 0;
246
247 if (activeThreads.empty()) {
248 _status = Idle;
249
250 if (fetchEvent.scheduled()) {
251 deschedule(fetchEvent);
252 }
253 }
254
255 BaseCPU::suspendContext(thread_num);
256}
257
258bool
259TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
260{
261 SimpleExecContext &t_info = *threadInfo[curThread];
262 SimpleThread* thread = t_info.thread;
263
264 const RequestPtr &req = pkt->req;
265
266 // We're about the issues a locked load, so tell the monitor
267 // to start caring about this address
268 if (pkt->isRead() && pkt->req->isLLSC()) {
269 TheISA::handleLockedRead(thread, pkt->req);
270 }
271 if (req->isMmappedIpr()) {
272 Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
273 new IprEvent(pkt, this, clockEdge(delay));
274 _status = DcacheWaitResponse;
275 dcache_pkt = NULL;
276 } else if (!dcachePort.sendTimingReq(pkt)) {
277 _status = DcacheRetry;
278 dcache_pkt = pkt;
279 } else {
280 _status = DcacheWaitResponse;
281 // memory system takes ownership of packet
282 dcache_pkt = NULL;
283 }
284 return dcache_pkt == NULL;
285}
286
287void
288TimingSimpleCPU::sendData(const RequestPtr &req, uint8_t *data, uint64_t *res,
289 bool read)
290{
291 SimpleExecContext &t_info = *threadInfo[curThread];
292 SimpleThread* thread = t_info.thread;
293
294 PacketPtr pkt = buildPacket(req, read);
295 pkt->dataDynamic<uint8_t>(data);
296
297 if (req->getFlags().isSet(Request::NO_ACCESS)) {
298 assert(!dcache_pkt);
299 pkt->makeResponse();
300 completeDataAccess(pkt);
301 } else if (read) {
302 handleReadPacket(pkt);
303 } else {
304 bool do_access = true; // flag to suppress cache access
305
306 if (req->isLLSC()) {
307 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
308 } else if (req->isCondSwap()) {
309 assert(res);
310 req->setExtraData(*res);
311 }
312
313 if (do_access) {
314 dcache_pkt = pkt;
315 handleWritePacket();
316 threadSnoop(pkt, curThread);
317 } else {
318 _status = DcacheWaitResponse;
319 completeDataAccess(pkt);
320 }
321 }
322}
323
324void
325TimingSimpleCPU::sendSplitData(const RequestPtr &req1, const RequestPtr &req2,
326 const RequestPtr &req, uint8_t *data, bool read)
327{
328 PacketPtr pkt1, pkt2;
329 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
330 if (req->getFlags().isSet(Request::NO_ACCESS)) {
331 assert(!dcache_pkt);
332 pkt1->makeResponse();
333 completeDataAccess(pkt1);
334 } else if (read) {
335 SplitFragmentSenderState * send_state =
336 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
337 if (handleReadPacket(pkt1)) {
338 send_state->clearFromParent();
339 send_state = dynamic_cast<SplitFragmentSenderState *>(
340 pkt2->senderState);
341 if (handleReadPacket(pkt2)) {
342 send_state->clearFromParent();
343 }
344 }
345 } else {
346 dcache_pkt = pkt1;
347 SplitFragmentSenderState * send_state =
348 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
349 if (handleWritePacket()) {
350 send_state->clearFromParent();
351 dcache_pkt = pkt2;
352 send_state = dynamic_cast<SplitFragmentSenderState *>(
353 pkt2->senderState);
354 if (handleWritePacket()) {
355 send_state->clearFromParent();
356 }
357 }
358 }
359}
360
361void
362TimingSimpleCPU::translationFault(const Fault &fault)
363{
364 // fault may be NoFault in cases where a fault is suppressed,
365 // for instance prefetches.
366 updateCycleCounts();
367 updateCycleCounters(BaseCPU::CPU_STATE_ON);
368
369 if (traceData) {
370 // Since there was a fault, we shouldn't trace this instruction.
371 delete traceData;
372 traceData = NULL;
373 }
374
375 postExecute();
376
377 advanceInst(fault);
378}
379
380PacketPtr
381TimingSimpleCPU::buildPacket(const RequestPtr &req, bool read)
382{
383 return read ? Packet::createRead(req) : Packet::createWrite(req);
384}
385
386void
387TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
388 const RequestPtr &req1, const RequestPtr &req2, const RequestPtr &req,
389 uint8_t *data, bool read)
390{
391 pkt1 = pkt2 = NULL;
392
393 assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
394
395 if (req->getFlags().isSet(Request::NO_ACCESS)) {
396 pkt1 = buildPacket(req, read);
397 return;
398 }
399
400 pkt1 = buildPacket(req1, read);
401 pkt2 = buildPacket(req2, read);
402
403 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
404
405 pkt->dataDynamic<uint8_t>(data);
406 pkt1->dataStatic<uint8_t>(data);
407 pkt2->dataStatic<uint8_t>(data + req1->getSize());
408
409 SplitMainSenderState * main_send_state = new SplitMainSenderState;
410 pkt->senderState = main_send_state;
411 main_send_state->fragments[0] = pkt1;
412 main_send_state->fragments[1] = pkt2;
413 main_send_state->outstanding = 2;
414 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
415 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
416}
417
418Fault
419TimingSimpleCPU::initiateMemRead(Addr addr, unsigned size,
420 Request::Flags flags)
420 Request::Flags flags,
421 const std::vector<bool>& byteEnable)
421{
422 SimpleExecContext &t_info = *threadInfo[curThread];
423 SimpleThread* thread = t_info.thread;
424
425 Fault fault;
426 const int asid = 0;
427 const Addr pc = thread->instAddr();
428 unsigned block_size = cacheLineSize();
429 BaseTLB::Mode mode = BaseTLB::Read;
430
431 if (traceData)
432 traceData->setMem(addr, size, flags);
433
434 RequestPtr req = std::make_shared<Request>(
435 asid, addr, size, flags, dataMasterId(), pc,
436 thread->contextId());
422{
423 SimpleExecContext &t_info = *threadInfo[curThread];
424 SimpleThread* thread = t_info.thread;
425
426 Fault fault;
427 const int asid = 0;
428 const Addr pc = thread->instAddr();
429 unsigned block_size = cacheLineSize();
430 BaseTLB::Mode mode = BaseTLB::Read;
431
432 if (traceData)
433 traceData->setMem(addr, size, flags);
434
435 RequestPtr req = std::make_shared<Request>(
436 asid, addr, size, flags, dataMasterId(), pc,
437 thread->contextId());
438 if (!byteEnable.empty()) {
439 req->setByteEnable(byteEnable);
440 }
437
438 req->taskId(taskId());
439
440 Addr split_addr = roundDown(addr + size - 1, block_size);
441 assert(split_addr <= addr || split_addr - addr < block_size);
442
443 _status = DTBWaitResponse;
444 if (split_addr > addr) {
445 RequestPtr req1, req2;
446 assert(!req->isLLSC() && !req->isSwap());
447 req->splitOnVaddr(split_addr, req1, req2);
448
449 WholeTranslationState *state =
450 new WholeTranslationState(req, req1, req2, new uint8_t[size],
451 NULL, mode);
452 DataTranslation<TimingSimpleCPU *> *trans1 =
453 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
454 DataTranslation<TimingSimpleCPU *> *trans2 =
455 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
456
457 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
458 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
459 } else {
460 WholeTranslationState *state =
461 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
462 DataTranslation<TimingSimpleCPU *> *translation
463 = new DataTranslation<TimingSimpleCPU *>(this, state);
464 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
465 }
466
467 return NoFault;
468}
469
470bool
471TimingSimpleCPU::handleWritePacket()
472{
473 SimpleExecContext &t_info = *threadInfo[curThread];
474 SimpleThread* thread = t_info.thread;
475
476 const RequestPtr &req = dcache_pkt->req;
477 if (req->isMmappedIpr()) {
478 Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
479 new IprEvent(dcache_pkt, this, clockEdge(delay));
480 _status = DcacheWaitResponse;
481 dcache_pkt = NULL;
482 } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
483 _status = DcacheRetry;
484 } else {
485 _status = DcacheWaitResponse;
486 // memory system takes ownership of packet
487 dcache_pkt = NULL;
488 }
489 return dcache_pkt == NULL;
490}
491
492Fault
493TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
441
442 req->taskId(taskId());
443
444 Addr split_addr = roundDown(addr + size - 1, block_size);
445 assert(split_addr <= addr || split_addr - addr < block_size);
446
447 _status = DTBWaitResponse;
448 if (split_addr > addr) {
449 RequestPtr req1, req2;
450 assert(!req->isLLSC() && !req->isSwap());
451 req->splitOnVaddr(split_addr, req1, req2);
452
453 WholeTranslationState *state =
454 new WholeTranslationState(req, req1, req2, new uint8_t[size],
455 NULL, mode);
456 DataTranslation<TimingSimpleCPU *> *trans1 =
457 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
458 DataTranslation<TimingSimpleCPU *> *trans2 =
459 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
460
461 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
462 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
463 } else {
464 WholeTranslationState *state =
465 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
466 DataTranslation<TimingSimpleCPU *> *translation
467 = new DataTranslation<TimingSimpleCPU *>(this, state);
468 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
469 }
470
471 return NoFault;
472}
473
474bool
475TimingSimpleCPU::handleWritePacket()
476{
477 SimpleExecContext &t_info = *threadInfo[curThread];
478 SimpleThread* thread = t_info.thread;
479
480 const RequestPtr &req = dcache_pkt->req;
481 if (req->isMmappedIpr()) {
482 Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
483 new IprEvent(dcache_pkt, this, clockEdge(delay));
484 _status = DcacheWaitResponse;
485 dcache_pkt = NULL;
486 } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
487 _status = DcacheRetry;
488 } else {
489 _status = DcacheWaitResponse;
490 // memory system takes ownership of packet
491 dcache_pkt = NULL;
492 }
493 return dcache_pkt == NULL;
494}
495
496Fault
497TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
494 Addr addr, Request::Flags flags, uint64_t *res)
498 Addr addr, Request::Flags flags, uint64_t *res,
499 const std::vector<bool>& byteEnable)
495{
496 SimpleExecContext &t_info = *threadInfo[curThread];
497 SimpleThread* thread = t_info.thread;
498
499 uint8_t *newData = new uint8_t[size];
500 const int asid = 0;
501 const Addr pc = thread->instAddr();
502 unsigned block_size = cacheLineSize();
503 BaseTLB::Mode mode = BaseTLB::Write;
504
505 if (data == NULL) {
506 assert(flags & Request::STORE_NO_DATA);
507 // This must be a cache block cleaning request
508 memset(newData, 0, size);
509 } else {
510 memcpy(newData, data, size);
511 }
512
513 if (traceData)
514 traceData->setMem(addr, size, flags);
515
516 RequestPtr req = std::make_shared<Request>(
517 asid, addr, size, flags, dataMasterId(), pc,
518 thread->contextId());
500{
501 SimpleExecContext &t_info = *threadInfo[curThread];
502 SimpleThread* thread = t_info.thread;
503
504 uint8_t *newData = new uint8_t[size];
505 const int asid = 0;
506 const Addr pc = thread->instAddr();
507 unsigned block_size = cacheLineSize();
508 BaseTLB::Mode mode = BaseTLB::Write;
509
510 if (data == NULL) {
511 assert(flags & Request::STORE_NO_DATA);
512 // This must be a cache block cleaning request
513 memset(newData, 0, size);
514 } else {
515 memcpy(newData, data, size);
516 }
517
518 if (traceData)
519 traceData->setMem(addr, size, flags);
520
521 RequestPtr req = std::make_shared<Request>(
522 asid, addr, size, flags, dataMasterId(), pc,
523 thread->contextId());
524 if (!byteEnable.empty()) {
525 req->setByteEnable(byteEnable);
526 }
519
520 req->taskId(taskId());
521
522 Addr split_addr = roundDown(addr + size - 1, block_size);
523 assert(split_addr <= addr || split_addr - addr < block_size);
524
525 _status = DTBWaitResponse;
527
528 req->taskId(taskId());
529
530 Addr split_addr = roundDown(addr + size - 1, block_size);
531 assert(split_addr <= addr || split_addr - addr < block_size);
532
533 _status = DTBWaitResponse;
534
535 // TODO: TimingSimpleCPU doesn't support arbitrarily long multi-line mem.
536 // accesses yet
537
526 if (split_addr > addr) {
527 RequestPtr req1, req2;
528 assert(!req->isLLSC() && !req->isSwap());
529 req->splitOnVaddr(split_addr, req1, req2);
530
531 WholeTranslationState *state =
532 new WholeTranslationState(req, req1, req2, newData, res, mode);
533 DataTranslation<TimingSimpleCPU *> *trans1 =
534 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
535 DataTranslation<TimingSimpleCPU *> *trans2 =
536 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
537
538 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
539 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
540 } else {
541 WholeTranslationState *state =
542 new WholeTranslationState(req, newData, res, mode);
543 DataTranslation<TimingSimpleCPU *> *translation =
544 new DataTranslation<TimingSimpleCPU *>(this, state);
545 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
546 }
547
548 // Translation faults will be returned via finishTranslation()
549 return NoFault;
550}
551
552Fault
553TimingSimpleCPU::initiateMemAMO(Addr addr, unsigned size,
554 Request::Flags flags,
555 AtomicOpFunctor *amo_op)
556{
557 SimpleExecContext &t_info = *threadInfo[curThread];
558 SimpleThread* thread = t_info.thread;
559
560 Fault fault;
561 const int asid = 0;
562 const Addr pc = thread->instAddr();
563 unsigned block_size = cacheLineSize();
564 BaseTLB::Mode mode = BaseTLB::Write;
565
566 if (traceData)
567 traceData->setMem(addr, size, flags);
568
569 RequestPtr req = make_shared<Request>(asid, addr, size, flags,
570 dataMasterId(), pc, thread->contextId(), amo_op);
571
572 assert(req->hasAtomicOpFunctor());
573
574 req->taskId(taskId());
575
576 Addr split_addr = roundDown(addr + size - 1, block_size);
577
578 // AMO requests that access across a cache line boundary are not
579 // allowed since the cache does not guarantee AMO ops to be executed
580 // atomically in two cache lines
581 // For ISAs such as x86 that requires AMO operations to work on
582 // accesses that cross cache-line boundaries, the cache needs to be
583 // modified to support locking both cache lines to guarantee the
584 // atomicity.
585 if (split_addr > addr) {
586 panic("AMO requests should not access across a cache line boundary\n");
587 }
588
589 _status = DTBWaitResponse;
590
591 WholeTranslationState *state =
592 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
593 DataTranslation<TimingSimpleCPU *> *translation
594 = new DataTranslation<TimingSimpleCPU *>(this, state);
595 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
596
597 return NoFault;
598}
599
600void
601TimingSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
602{
603 for (ThreadID tid = 0; tid < numThreads; tid++) {
604 if (tid != sender) {
605 if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
606 wakeup(tid);
607 }
608 TheISA::handleLockedSnoop(threadInfo[tid]->thread, pkt,
609 dcachePort.cacheBlockMask);
610 }
611 }
612}
613
614void
615TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
616{
617 _status = BaseSimpleCPU::Running;
618
619 if (state->getFault() != NoFault) {
620 if (state->isPrefetch()) {
621 state->setNoFault();
622 }
623 delete [] state->data;
624 state->deleteReqs();
625 translationFault(state->getFault());
626 } else {
627 if (!state->isSplit) {
628 sendData(state->mainReq, state->data, state->res,
629 state->mode == BaseTLB::Read);
630 } else {
631 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
632 state->data, state->mode == BaseTLB::Read);
633 }
634 }
635
636 delete state;
637}
638
639
640void
641TimingSimpleCPU::fetch()
642{
643 // Change thread if multi-threaded
644 swapActiveThread();
645
646 SimpleExecContext &t_info = *threadInfo[curThread];
647 SimpleThread* thread = t_info.thread;
648
649 DPRINTF(SimpleCPU, "Fetch\n");
650
651 if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
652 checkForInterrupts();
653 checkPcEventQueue();
654 }
655
656 // We must have just got suspended by a PC event
657 if (_status == Idle)
658 return;
659
660 TheISA::PCState pcState = thread->pcState();
661 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
662 !curMacroStaticInst;
663
664 if (needToFetch) {
665 _status = BaseSimpleCPU::Running;
666 RequestPtr ifetch_req = std::make_shared<Request>();
667 ifetch_req->taskId(taskId());
668 ifetch_req->setContext(thread->contextId());
669 setupFetchRequest(ifetch_req);
670 DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
671 thread->itb->translateTiming(ifetch_req, thread->getTC(),
672 &fetchTranslation, BaseTLB::Execute);
673 } else {
674 _status = IcacheWaitResponse;
675 completeIfetch(NULL);
676
677 updateCycleCounts();
678 updateCycleCounters(BaseCPU::CPU_STATE_ON);
679 }
680}
681
682
683void
684TimingSimpleCPU::sendFetch(const Fault &fault, const RequestPtr &req,
685 ThreadContext *tc)
686{
687 if (fault == NoFault) {
688 DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
689 req->getVaddr(), req->getPaddr());
690 ifetch_pkt = new Packet(req, MemCmd::ReadReq);
691 ifetch_pkt->dataStatic(&inst);
692 DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
693
694 if (!icachePort.sendTimingReq(ifetch_pkt)) {
695 // Need to wait for retry
696 _status = IcacheRetry;
697 } else {
698 // Need to wait for cache to respond
699 _status = IcacheWaitResponse;
700 // ownership of packet transferred to memory system
701 ifetch_pkt = NULL;
702 }
703 } else {
704 DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
705 // fetch fault: advance directly to next instruction (fault handler)
706 _status = BaseSimpleCPU::Running;
707 advanceInst(fault);
708 }
709
710 updateCycleCounts();
711 updateCycleCounters(BaseCPU::CPU_STATE_ON);
712}
713
714
715void
716TimingSimpleCPU::advanceInst(const Fault &fault)
717{
718 SimpleExecContext &t_info = *threadInfo[curThread];
719
720 if (_status == Faulting)
721 return;
722
723 if (fault != NoFault) {
724 DPRINTF(SimpleCPU, "Fault occured. Handling the fault\n");
725
726 advancePC(fault);
727
728 // A syscall fault could suspend this CPU (e.g., futex_wait)
729 // If the _status is not Idle, schedule an event to fetch the next
730 // instruction after 'stall' ticks.
731 // If the cpu has been suspended (i.e., _status == Idle), another
732 // cpu will wake this cpu up later.
733 if (_status != Idle) {
734 DPRINTF(SimpleCPU, "Scheduling fetch event after the Fault\n");
735
736 Tick stall = dynamic_pointer_cast<SyscallRetryFault>(fault) ?
737 clockEdge(syscallRetryLatency) : clockEdge();
738 reschedule(fetchEvent, stall, true);
739 _status = Faulting;
740 }
741
742 return;
743 }
744
745 if (!t_info.stayAtPC)
746 advancePC(fault);
747
748 if (tryCompleteDrain())
749 return;
750
751 if (_status == BaseSimpleCPU::Running) {
752 // kick off fetch of next instruction... callback from icache
753 // response will cause that instruction to be executed,
754 // keeping the CPU running.
755 fetch();
756 }
757}
758
759
760void
761TimingSimpleCPU::completeIfetch(PacketPtr pkt)
762{
763 SimpleExecContext& t_info = *threadInfo[curThread];
764
765 DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
766 pkt->getAddr() : 0);
767
768 // received a response from the icache: execute the received
769 // instruction
770 assert(!pkt || !pkt->isError());
771 assert(_status == IcacheWaitResponse);
772
773 _status = BaseSimpleCPU::Running;
774
775 updateCycleCounts();
776 updateCycleCounters(BaseCPU::CPU_STATE_ON);
777
778 if (pkt)
779 pkt->req->setAccessLatency();
780
781
782 preExecute();
783 if (curStaticInst && curStaticInst->isMemRef()) {
784 // load or store: just send to dcache
785 Fault fault = curStaticInst->initiateAcc(&t_info, traceData);
786
787 // If we're not running now the instruction will complete in a dcache
788 // response callback or the instruction faulted and has started an
789 // ifetch
790 if (_status == BaseSimpleCPU::Running) {
791 if (fault != NoFault && traceData) {
792 // If there was a fault, we shouldn't trace this instruction.
793 delete traceData;
794 traceData = NULL;
795 }
796
797 postExecute();
798 // @todo remove me after debugging with legion done
799 if (curStaticInst && (!curStaticInst->isMicroop() ||
800 curStaticInst->isFirstMicroop()))
801 instCnt++;
802 advanceInst(fault);
803 }
804 } else if (curStaticInst) {
805 // non-memory instruction: execute completely now
806 Fault fault = curStaticInst->execute(&t_info, traceData);
807
808 // keep an instruction count
809 if (fault == NoFault)
810 countInst();
811 else if (traceData && !DTRACE(ExecFaulting)) {
812 delete traceData;
813 traceData = NULL;
814 }
815
816 postExecute();
817 // @todo remove me after debugging with legion done
818 if (curStaticInst && (!curStaticInst->isMicroop() ||
819 curStaticInst->isFirstMicroop()))
820 instCnt++;
821 advanceInst(fault);
822 } else {
823 advanceInst(NoFault);
824 }
825
826 if (pkt) {
827 delete pkt;
828 }
829}
830
831void
832TimingSimpleCPU::IcachePort::ITickEvent::process()
833{
834 cpu->completeIfetch(pkt);
835}
836
837bool
838TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
839{
840 DPRINTF(SimpleCPU, "Received fetch response %#x\n", pkt->getAddr());
841 // we should only ever see one response per cycle since we only
842 // issue a new request once this response is sunk
843 assert(!tickEvent.scheduled());
844 // delay processing of returned data until next CPU clock edge
845 tickEvent.schedule(pkt, cpu->clockEdge());
846
847 return true;
848}
849
850void
851TimingSimpleCPU::IcachePort::recvReqRetry()
852{
853 // we shouldn't get a retry unless we have a packet that we're
854 // waiting to transmit
855 assert(cpu->ifetch_pkt != NULL);
856 assert(cpu->_status == IcacheRetry);
857 PacketPtr tmp = cpu->ifetch_pkt;
858 if (sendTimingReq(tmp)) {
859 cpu->_status = IcacheWaitResponse;
860 cpu->ifetch_pkt = NULL;
861 }
862}
863
864void
865TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
866{
867 // received a response from the dcache: complete the load or store
868 // instruction
869 assert(!pkt->isError());
870 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
871 pkt->req->getFlags().isSet(Request::NO_ACCESS));
872
873 pkt->req->setAccessLatency();
874
875 updateCycleCounts();
876 updateCycleCounters(BaseCPU::CPU_STATE_ON);
877
878 if (pkt->senderState) {
879 SplitFragmentSenderState * send_state =
880 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
881 assert(send_state);
882 delete pkt;
883 PacketPtr big_pkt = send_state->bigPkt;
884 delete send_state;
885
886 SplitMainSenderState * main_send_state =
887 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
888 assert(main_send_state);
889 // Record the fact that this packet is no longer outstanding.
890 assert(main_send_state->outstanding != 0);
891 main_send_state->outstanding--;
892
893 if (main_send_state->outstanding) {
894 return;
895 } else {
896 delete main_send_state;
897 big_pkt->senderState = NULL;
898 pkt = big_pkt;
899 }
900 }
901
902 _status = BaseSimpleCPU::Running;
903
904 Fault fault = curStaticInst->completeAcc(pkt, threadInfo[curThread],
905 traceData);
906
907 // keep an instruction count
908 if (fault == NoFault)
909 countInst();
910 else if (traceData) {
911 // If there was a fault, we shouldn't trace this instruction.
912 delete traceData;
913 traceData = NULL;
914 }
915
916 delete pkt;
917
918 postExecute();
919
920 advanceInst(fault);
921}
922
923void
924TimingSimpleCPU::updateCycleCounts()
925{
926 const Cycles delta(curCycle() - previousCycle);
927
928 numCycles += delta;
929
930 previousCycle = curCycle();
931}
932
933void
934TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
935{
936 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
937 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
938 cpu->wakeup(tid);
939 }
940 }
941
942 // Making it uniform across all CPUs:
943 // The CPUs need to be woken up only on an invalidation packet (when using caches)
944 // or on an incoming write packet (when not using caches)
945 // It is not necessary to wake up the processor on all incoming packets
946 if (pkt->isInvalidate() || pkt->isWrite()) {
947 for (auto &t_info : cpu->threadInfo) {
948 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
949 }
950 }
951}
952
953void
954TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
955{
956 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
957 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
958 cpu->wakeup(tid);
959 }
960 }
961}
962
963bool
964TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
965{
966 DPRINTF(SimpleCPU, "Received load/store response %#x\n", pkt->getAddr());
967
968 // The timing CPU is not really ticked, instead it relies on the
969 // memory system (fetch and load/store) to set the pace.
970 if (!tickEvent.scheduled()) {
971 // Delay processing of returned data until next CPU clock edge
972 tickEvent.schedule(pkt, cpu->clockEdge());
973 return true;
974 } else {
975 // In the case of a split transaction and a cache that is
976 // faster than a CPU we could get two responses in the
977 // same tick, delay the second one
978 if (!retryRespEvent.scheduled())
979 cpu->schedule(retryRespEvent, cpu->clockEdge(Cycles(1)));
980 return false;
981 }
982}
983
984void
985TimingSimpleCPU::DcachePort::DTickEvent::process()
986{
987 cpu->completeDataAccess(pkt);
988}
989
990void
991TimingSimpleCPU::DcachePort::recvReqRetry()
992{
993 // we shouldn't get a retry unless we have a packet that we're
994 // waiting to transmit
995 assert(cpu->dcache_pkt != NULL);
996 assert(cpu->_status == DcacheRetry);
997 PacketPtr tmp = cpu->dcache_pkt;
998 if (tmp->senderState) {
999 // This is a packet from a split access.
1000 SplitFragmentSenderState * send_state =
1001 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
1002 assert(send_state);
1003 PacketPtr big_pkt = send_state->bigPkt;
1004
1005 SplitMainSenderState * main_send_state =
1006 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
1007 assert(main_send_state);
1008
1009 if (sendTimingReq(tmp)) {
1010 // If we were able to send without retrying, record that fact
1011 // and try sending the other fragment.
1012 send_state->clearFromParent();
1013 int other_index = main_send_state->getPendingFragment();
1014 if (other_index > 0) {
1015 tmp = main_send_state->fragments[other_index];
1016 cpu->dcache_pkt = tmp;
1017 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
1018 (big_pkt->isWrite() && cpu->handleWritePacket())) {
1019 main_send_state->fragments[other_index] = NULL;
1020 }
1021 } else {
1022 cpu->_status = DcacheWaitResponse;
1023 // memory system takes ownership of packet
1024 cpu->dcache_pkt = NULL;
1025 }
1026 }
1027 } else if (sendTimingReq(tmp)) {
1028 cpu->_status = DcacheWaitResponse;
1029 // memory system takes ownership of packet
1030 cpu->dcache_pkt = NULL;
1031 }
1032}
1033
1034TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
1035 Tick t)
1036 : pkt(_pkt), cpu(_cpu)
1037{
1038 cpu->schedule(this, t);
1039}
1040
1041void
1042TimingSimpleCPU::IprEvent::process()
1043{
1044 cpu->completeDataAccess(pkt);
1045}
1046
1047const char *
1048TimingSimpleCPU::IprEvent::description() const
1049{
1050 return "Timing Simple CPU Delay IPR event";
1051}
1052
1053
1054void
1055TimingSimpleCPU::printAddr(Addr a)
1056{
1057 dcachePort.printAddr(a);
1058}
1059
1060
1061////////////////////////////////////////////////////////////////////////
1062//
1063// TimingSimpleCPU Simulation Object
1064//
1065TimingSimpleCPU *
1066TimingSimpleCPUParams::create()
1067{
1068 return new TimingSimpleCPU(this);
1069}
538 if (split_addr > addr) {
539 RequestPtr req1, req2;
540 assert(!req->isLLSC() && !req->isSwap());
541 req->splitOnVaddr(split_addr, req1, req2);
542
543 WholeTranslationState *state =
544 new WholeTranslationState(req, req1, req2, newData, res, mode);
545 DataTranslation<TimingSimpleCPU *> *trans1 =
546 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
547 DataTranslation<TimingSimpleCPU *> *trans2 =
548 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
549
550 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
551 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
552 } else {
553 WholeTranslationState *state =
554 new WholeTranslationState(req, newData, res, mode);
555 DataTranslation<TimingSimpleCPU *> *translation =
556 new DataTranslation<TimingSimpleCPU *>(this, state);
557 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
558 }
559
560 // Translation faults will be returned via finishTranslation()
561 return NoFault;
562}
563
564Fault
565TimingSimpleCPU::initiateMemAMO(Addr addr, unsigned size,
566 Request::Flags flags,
567 AtomicOpFunctor *amo_op)
568{
569 SimpleExecContext &t_info = *threadInfo[curThread];
570 SimpleThread* thread = t_info.thread;
571
572 Fault fault;
573 const int asid = 0;
574 const Addr pc = thread->instAddr();
575 unsigned block_size = cacheLineSize();
576 BaseTLB::Mode mode = BaseTLB::Write;
577
578 if (traceData)
579 traceData->setMem(addr, size, flags);
580
581 RequestPtr req = make_shared<Request>(asid, addr, size, flags,
582 dataMasterId(), pc, thread->contextId(), amo_op);
583
584 assert(req->hasAtomicOpFunctor());
585
586 req->taskId(taskId());
587
588 Addr split_addr = roundDown(addr + size - 1, block_size);
589
590 // AMO requests that access across a cache line boundary are not
591 // allowed since the cache does not guarantee AMO ops to be executed
592 // atomically in two cache lines
593 // For ISAs such as x86 that requires AMO operations to work on
594 // accesses that cross cache-line boundaries, the cache needs to be
595 // modified to support locking both cache lines to guarantee the
596 // atomicity.
597 if (split_addr > addr) {
598 panic("AMO requests should not access across a cache line boundary\n");
599 }
600
601 _status = DTBWaitResponse;
602
603 WholeTranslationState *state =
604 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
605 DataTranslation<TimingSimpleCPU *> *translation
606 = new DataTranslation<TimingSimpleCPU *>(this, state);
607 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
608
609 return NoFault;
610}
611
612void
613TimingSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
614{
615 for (ThreadID tid = 0; tid < numThreads; tid++) {
616 if (tid != sender) {
617 if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
618 wakeup(tid);
619 }
620 TheISA::handleLockedSnoop(threadInfo[tid]->thread, pkt,
621 dcachePort.cacheBlockMask);
622 }
623 }
624}
625
626void
627TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
628{
629 _status = BaseSimpleCPU::Running;
630
631 if (state->getFault() != NoFault) {
632 if (state->isPrefetch()) {
633 state->setNoFault();
634 }
635 delete [] state->data;
636 state->deleteReqs();
637 translationFault(state->getFault());
638 } else {
639 if (!state->isSplit) {
640 sendData(state->mainReq, state->data, state->res,
641 state->mode == BaseTLB::Read);
642 } else {
643 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
644 state->data, state->mode == BaseTLB::Read);
645 }
646 }
647
648 delete state;
649}
650
651
652void
653TimingSimpleCPU::fetch()
654{
655 // Change thread if multi-threaded
656 swapActiveThread();
657
658 SimpleExecContext &t_info = *threadInfo[curThread];
659 SimpleThread* thread = t_info.thread;
660
661 DPRINTF(SimpleCPU, "Fetch\n");
662
663 if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
664 checkForInterrupts();
665 checkPcEventQueue();
666 }
667
668 // We must have just got suspended by a PC event
669 if (_status == Idle)
670 return;
671
672 TheISA::PCState pcState = thread->pcState();
673 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
674 !curMacroStaticInst;
675
676 if (needToFetch) {
677 _status = BaseSimpleCPU::Running;
678 RequestPtr ifetch_req = std::make_shared<Request>();
679 ifetch_req->taskId(taskId());
680 ifetch_req->setContext(thread->contextId());
681 setupFetchRequest(ifetch_req);
682 DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
683 thread->itb->translateTiming(ifetch_req, thread->getTC(),
684 &fetchTranslation, BaseTLB::Execute);
685 } else {
686 _status = IcacheWaitResponse;
687 completeIfetch(NULL);
688
689 updateCycleCounts();
690 updateCycleCounters(BaseCPU::CPU_STATE_ON);
691 }
692}
693
694
695void
696TimingSimpleCPU::sendFetch(const Fault &fault, const RequestPtr &req,
697 ThreadContext *tc)
698{
699 if (fault == NoFault) {
700 DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
701 req->getVaddr(), req->getPaddr());
702 ifetch_pkt = new Packet(req, MemCmd::ReadReq);
703 ifetch_pkt->dataStatic(&inst);
704 DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
705
706 if (!icachePort.sendTimingReq(ifetch_pkt)) {
707 // Need to wait for retry
708 _status = IcacheRetry;
709 } else {
710 // Need to wait for cache to respond
711 _status = IcacheWaitResponse;
712 // ownership of packet transferred to memory system
713 ifetch_pkt = NULL;
714 }
715 } else {
716 DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
717 // fetch fault: advance directly to next instruction (fault handler)
718 _status = BaseSimpleCPU::Running;
719 advanceInst(fault);
720 }
721
722 updateCycleCounts();
723 updateCycleCounters(BaseCPU::CPU_STATE_ON);
724}
725
726
727void
728TimingSimpleCPU::advanceInst(const Fault &fault)
729{
730 SimpleExecContext &t_info = *threadInfo[curThread];
731
732 if (_status == Faulting)
733 return;
734
735 if (fault != NoFault) {
736 DPRINTF(SimpleCPU, "Fault occured. Handling the fault\n");
737
738 advancePC(fault);
739
740 // A syscall fault could suspend this CPU (e.g., futex_wait)
741 // If the _status is not Idle, schedule an event to fetch the next
742 // instruction after 'stall' ticks.
743 // If the cpu has been suspended (i.e., _status == Idle), another
744 // cpu will wake this cpu up later.
745 if (_status != Idle) {
746 DPRINTF(SimpleCPU, "Scheduling fetch event after the Fault\n");
747
748 Tick stall = dynamic_pointer_cast<SyscallRetryFault>(fault) ?
749 clockEdge(syscallRetryLatency) : clockEdge();
750 reschedule(fetchEvent, stall, true);
751 _status = Faulting;
752 }
753
754 return;
755 }
756
757 if (!t_info.stayAtPC)
758 advancePC(fault);
759
760 if (tryCompleteDrain())
761 return;
762
763 if (_status == BaseSimpleCPU::Running) {
764 // kick off fetch of next instruction... callback from icache
765 // response will cause that instruction to be executed,
766 // keeping the CPU running.
767 fetch();
768 }
769}
770
771
772void
773TimingSimpleCPU::completeIfetch(PacketPtr pkt)
774{
775 SimpleExecContext& t_info = *threadInfo[curThread];
776
777 DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
778 pkt->getAddr() : 0);
779
780 // received a response from the icache: execute the received
781 // instruction
782 assert(!pkt || !pkt->isError());
783 assert(_status == IcacheWaitResponse);
784
785 _status = BaseSimpleCPU::Running;
786
787 updateCycleCounts();
788 updateCycleCounters(BaseCPU::CPU_STATE_ON);
789
790 if (pkt)
791 pkt->req->setAccessLatency();
792
793
794 preExecute();
795 if (curStaticInst && curStaticInst->isMemRef()) {
796 // load or store: just send to dcache
797 Fault fault = curStaticInst->initiateAcc(&t_info, traceData);
798
799 // If we're not running now the instruction will complete in a dcache
800 // response callback or the instruction faulted and has started an
801 // ifetch
802 if (_status == BaseSimpleCPU::Running) {
803 if (fault != NoFault && traceData) {
804 // If there was a fault, we shouldn't trace this instruction.
805 delete traceData;
806 traceData = NULL;
807 }
808
809 postExecute();
810 // @todo remove me after debugging with legion done
811 if (curStaticInst && (!curStaticInst->isMicroop() ||
812 curStaticInst->isFirstMicroop()))
813 instCnt++;
814 advanceInst(fault);
815 }
816 } else if (curStaticInst) {
817 // non-memory instruction: execute completely now
818 Fault fault = curStaticInst->execute(&t_info, traceData);
819
820 // keep an instruction count
821 if (fault == NoFault)
822 countInst();
823 else if (traceData && !DTRACE(ExecFaulting)) {
824 delete traceData;
825 traceData = NULL;
826 }
827
828 postExecute();
829 // @todo remove me after debugging with legion done
830 if (curStaticInst && (!curStaticInst->isMicroop() ||
831 curStaticInst->isFirstMicroop()))
832 instCnt++;
833 advanceInst(fault);
834 } else {
835 advanceInst(NoFault);
836 }
837
838 if (pkt) {
839 delete pkt;
840 }
841}
842
843void
844TimingSimpleCPU::IcachePort::ITickEvent::process()
845{
846 cpu->completeIfetch(pkt);
847}
848
849bool
850TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
851{
852 DPRINTF(SimpleCPU, "Received fetch response %#x\n", pkt->getAddr());
853 // we should only ever see one response per cycle since we only
854 // issue a new request once this response is sunk
855 assert(!tickEvent.scheduled());
856 // delay processing of returned data until next CPU clock edge
857 tickEvent.schedule(pkt, cpu->clockEdge());
858
859 return true;
860}
861
862void
863TimingSimpleCPU::IcachePort::recvReqRetry()
864{
865 // we shouldn't get a retry unless we have a packet that we're
866 // waiting to transmit
867 assert(cpu->ifetch_pkt != NULL);
868 assert(cpu->_status == IcacheRetry);
869 PacketPtr tmp = cpu->ifetch_pkt;
870 if (sendTimingReq(tmp)) {
871 cpu->_status = IcacheWaitResponse;
872 cpu->ifetch_pkt = NULL;
873 }
874}
875
876void
877TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
878{
879 // received a response from the dcache: complete the load or store
880 // instruction
881 assert(!pkt->isError());
882 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
883 pkt->req->getFlags().isSet(Request::NO_ACCESS));
884
885 pkt->req->setAccessLatency();
886
887 updateCycleCounts();
888 updateCycleCounters(BaseCPU::CPU_STATE_ON);
889
890 if (pkt->senderState) {
891 SplitFragmentSenderState * send_state =
892 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
893 assert(send_state);
894 delete pkt;
895 PacketPtr big_pkt = send_state->bigPkt;
896 delete send_state;
897
898 SplitMainSenderState * main_send_state =
899 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
900 assert(main_send_state);
901 // Record the fact that this packet is no longer outstanding.
902 assert(main_send_state->outstanding != 0);
903 main_send_state->outstanding--;
904
905 if (main_send_state->outstanding) {
906 return;
907 } else {
908 delete main_send_state;
909 big_pkt->senderState = NULL;
910 pkt = big_pkt;
911 }
912 }
913
914 _status = BaseSimpleCPU::Running;
915
916 Fault fault = curStaticInst->completeAcc(pkt, threadInfo[curThread],
917 traceData);
918
919 // keep an instruction count
920 if (fault == NoFault)
921 countInst();
922 else if (traceData) {
923 // If there was a fault, we shouldn't trace this instruction.
924 delete traceData;
925 traceData = NULL;
926 }
927
928 delete pkt;
929
930 postExecute();
931
932 advanceInst(fault);
933}
934
935void
936TimingSimpleCPU::updateCycleCounts()
937{
938 const Cycles delta(curCycle() - previousCycle);
939
940 numCycles += delta;
941
942 previousCycle = curCycle();
943}
944
945void
946TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
947{
948 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
949 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
950 cpu->wakeup(tid);
951 }
952 }
953
954 // Making it uniform across all CPUs:
955 // The CPUs need to be woken up only on an invalidation packet (when using caches)
956 // or on an incoming write packet (when not using caches)
957 // It is not necessary to wake up the processor on all incoming packets
958 if (pkt->isInvalidate() || pkt->isWrite()) {
959 for (auto &t_info : cpu->threadInfo) {
960 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
961 }
962 }
963}
964
965void
966TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
967{
968 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
969 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
970 cpu->wakeup(tid);
971 }
972 }
973}
974
975bool
976TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
977{
978 DPRINTF(SimpleCPU, "Received load/store response %#x\n", pkt->getAddr());
979
980 // The timing CPU is not really ticked, instead it relies on the
981 // memory system (fetch and load/store) to set the pace.
982 if (!tickEvent.scheduled()) {
983 // Delay processing of returned data until next CPU clock edge
984 tickEvent.schedule(pkt, cpu->clockEdge());
985 return true;
986 } else {
987 // In the case of a split transaction and a cache that is
988 // faster than a CPU we could get two responses in the
989 // same tick, delay the second one
990 if (!retryRespEvent.scheduled())
991 cpu->schedule(retryRespEvent, cpu->clockEdge(Cycles(1)));
992 return false;
993 }
994}
995
996void
997TimingSimpleCPU::DcachePort::DTickEvent::process()
998{
999 cpu->completeDataAccess(pkt);
1000}
1001
1002void
1003TimingSimpleCPU::DcachePort::recvReqRetry()
1004{
1005 // we shouldn't get a retry unless we have a packet that we're
1006 // waiting to transmit
1007 assert(cpu->dcache_pkt != NULL);
1008 assert(cpu->_status == DcacheRetry);
1009 PacketPtr tmp = cpu->dcache_pkt;
1010 if (tmp->senderState) {
1011 // This is a packet from a split access.
1012 SplitFragmentSenderState * send_state =
1013 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
1014 assert(send_state);
1015 PacketPtr big_pkt = send_state->bigPkt;
1016
1017 SplitMainSenderState * main_send_state =
1018 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
1019 assert(main_send_state);
1020
1021 if (sendTimingReq(tmp)) {
1022 // If we were able to send without retrying, record that fact
1023 // and try sending the other fragment.
1024 send_state->clearFromParent();
1025 int other_index = main_send_state->getPendingFragment();
1026 if (other_index > 0) {
1027 tmp = main_send_state->fragments[other_index];
1028 cpu->dcache_pkt = tmp;
1029 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
1030 (big_pkt->isWrite() && cpu->handleWritePacket())) {
1031 main_send_state->fragments[other_index] = NULL;
1032 }
1033 } else {
1034 cpu->_status = DcacheWaitResponse;
1035 // memory system takes ownership of packet
1036 cpu->dcache_pkt = NULL;
1037 }
1038 }
1039 } else if (sendTimingReq(tmp)) {
1040 cpu->_status = DcacheWaitResponse;
1041 // memory system takes ownership of packet
1042 cpu->dcache_pkt = NULL;
1043 }
1044}
1045
1046TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
1047 Tick t)
1048 : pkt(_pkt), cpu(_cpu)
1049{
1050 cpu->schedule(this, t);
1051}
1052
1053void
1054TimingSimpleCPU::IprEvent::process()
1055{
1056 cpu->completeDataAccess(pkt);
1057}
1058
1059const char *
1060TimingSimpleCPU::IprEvent::description() const
1061{
1062 return "Timing Simple CPU Delay IPR event";
1063}
1064
1065
1066void
1067TimingSimpleCPU::printAddr(Addr a)
1068{
1069 dcachePort.printAddr(a);
1070}
1071
1072
1073////////////////////////////////////////////////////////////////////////
1074//
1075// TimingSimpleCPU Simulation Object
1076//
1077TimingSimpleCPU *
1078TimingSimpleCPUParams::create()
1079{
1080 return new TimingSimpleCPU(this);
1081}