timing.cc (12748:ae5ce8e42de7) timing.cc (12749:223c83ed9979)
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2013,2015,2017 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "cpu/simple/timing.hh"
45
46#include "arch/locked_mem.hh"
47#include "arch/mmapped_ipr.hh"
48#include "arch/utility.hh"
49#include "config/the_isa.hh"
50#include "cpu/exetrace.hh"
51#include "debug/Config.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/Mwait.hh"
55#include "debug/SimpleCPU.hh"
56#include "mem/packet.hh"
57#include "mem/packet_access.hh"
58#include "params/TimingSimpleCPU.hh"
59#include "sim/faults.hh"
60#include "sim/full_system.hh"
61#include "sim/system.hh"
62
63using namespace std;
64using namespace TheISA;
65
66void
67TimingSimpleCPU::init()
68{
69 BaseSimpleCPU::init();
70}
71
72void
73TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
74{
75 pkt = _pkt;
76 cpu->schedule(this, t);
77}
78
79TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
80 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
81 dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
82 fetchEvent([this]{ fetch(); }, name())
83{
84 _status = Idle;
85}
86
87
88
89TimingSimpleCPU::~TimingSimpleCPU()
90{
91}
92
93DrainState
94TimingSimpleCPU::drain()
95{
96 // Deschedule any power gating event (if any)
97 deschedulePowerGatingEvent();
98
99 if (switchedOut())
100 return DrainState::Drained;
101
102 if (_status == Idle ||
103 (_status == BaseSimpleCPU::Running && isDrained())) {
104 DPRINTF(Drain, "No need to drain.\n");
105 activeThreads.clear();
106 return DrainState::Drained;
107 } else {
108 DPRINTF(Drain, "Requesting drain.\n");
109
110 // The fetch event can become descheduled if a drain didn't
111 // succeed on the first attempt. We need to reschedule it if
112 // the CPU is waiting for a microcode routine to complete.
113 if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
114 schedule(fetchEvent, clockEdge());
115
116 return DrainState::Draining;
117 }
118}
119
120void
121TimingSimpleCPU::drainResume()
122{
123 assert(!fetchEvent.scheduled());
124 if (switchedOut())
125 return;
126
127 DPRINTF(SimpleCPU, "Resume\n");
128 verifyMemoryMode();
129
130 assert(!threadContexts.empty());
131
132 _status = BaseSimpleCPU::Idle;
133
134 for (ThreadID tid = 0; tid < numThreads; tid++) {
135 if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
136 threadInfo[tid]->notIdleFraction = 1;
137
138 activeThreads.push_back(tid);
139
140 _status = BaseSimpleCPU::Running;
141
142 // Fetch if any threads active
143 if (!fetchEvent.scheduled()) {
144 schedule(fetchEvent, nextCycle());
145 }
146 } else {
147 threadInfo[tid]->notIdleFraction = 0;
148 }
149 }
150
151 // Reschedule any power gating event (if any)
152 schedulePowerGatingEvent();
153
154 system->totalNumInsts = 0;
155}
156
157bool
158TimingSimpleCPU::tryCompleteDrain()
159{
160 if (drainState() != DrainState::Draining)
161 return false;
162
163 DPRINTF(Drain, "tryCompleteDrain.\n");
164 if (!isDrained())
165 return false;
166
167 DPRINTF(Drain, "CPU done draining, processing drain event\n");
168 signalDrainDone();
169
170 return true;
171}
172
173void
174TimingSimpleCPU::switchOut()
175{
176 SimpleExecContext& t_info = *threadInfo[curThread];
177 M5_VAR_USED SimpleThread* thread = t_info.thread;
178
179 BaseSimpleCPU::switchOut();
180
181 assert(!fetchEvent.scheduled());
182 assert(_status == BaseSimpleCPU::Running || _status == Idle);
183 assert(!t_info.stayAtPC);
184 assert(thread->microPC() == 0);
185
186 updateCycleCounts();
187 updateCycleCounters(BaseCPU::CPU_STATE_ON);
188}
189
190
191void
192TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
193{
194 BaseSimpleCPU::takeOverFrom(oldCPU);
195
196 previousCycle = curCycle();
197}
198
199void
200TimingSimpleCPU::verifyMemoryMode() const
201{
202 if (!system->isTimingMode()) {
203 fatal("The timing CPU requires the memory system to be in "
204 "'timing' mode.\n");
205 }
206}
207
208void
209TimingSimpleCPU::activateContext(ThreadID thread_num)
210{
211 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
212
213 assert(thread_num < numThreads);
214
215 threadInfo[thread_num]->notIdleFraction = 1;
216 if (_status == BaseSimpleCPU::Idle)
217 _status = BaseSimpleCPU::Running;
218
219 // kick things off by initiating the fetch of the next instruction
220 if (!fetchEvent.scheduled())
221 schedule(fetchEvent, clockEdge(Cycles(0)));
222
223 if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
224 == activeThreads.end()) {
225 activeThreads.push_back(thread_num);
226 }
227
228 BaseCPU::activateContext(thread_num);
229}
230
231
232void
233TimingSimpleCPU::suspendContext(ThreadID thread_num)
234{
235 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
236
237 assert(thread_num < numThreads);
238 activeThreads.remove(thread_num);
239
240 if (_status == Idle)
241 return;
242
243 assert(_status == BaseSimpleCPU::Running);
244
245 threadInfo[thread_num]->notIdleFraction = 0;
246
247 if (activeThreads.empty()) {
248 _status = Idle;
249
250 if (fetchEvent.scheduled()) {
251 deschedule(fetchEvent);
252 }
253 }
254
255 BaseCPU::suspendContext(thread_num);
256}
257
258bool
259TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
260{
261 SimpleExecContext &t_info = *threadInfo[curThread];
262 SimpleThread* thread = t_info.thread;
263
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2013,2015,2017 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "cpu/simple/timing.hh"
45
46#include "arch/locked_mem.hh"
47#include "arch/mmapped_ipr.hh"
48#include "arch/utility.hh"
49#include "config/the_isa.hh"
50#include "cpu/exetrace.hh"
51#include "debug/Config.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/Mwait.hh"
55#include "debug/SimpleCPU.hh"
56#include "mem/packet.hh"
57#include "mem/packet_access.hh"
58#include "params/TimingSimpleCPU.hh"
59#include "sim/faults.hh"
60#include "sim/full_system.hh"
61#include "sim/system.hh"
62
63using namespace std;
64using namespace TheISA;
65
66void
67TimingSimpleCPU::init()
68{
69 BaseSimpleCPU::init();
70}
71
72void
73TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
74{
75 pkt = _pkt;
76 cpu->schedule(this, t);
77}
78
79TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
80 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
81 dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
82 fetchEvent([this]{ fetch(); }, name())
83{
84 _status = Idle;
85}
86
87
88
89TimingSimpleCPU::~TimingSimpleCPU()
90{
91}
92
93DrainState
94TimingSimpleCPU::drain()
95{
96 // Deschedule any power gating event (if any)
97 deschedulePowerGatingEvent();
98
99 if (switchedOut())
100 return DrainState::Drained;
101
102 if (_status == Idle ||
103 (_status == BaseSimpleCPU::Running && isDrained())) {
104 DPRINTF(Drain, "No need to drain.\n");
105 activeThreads.clear();
106 return DrainState::Drained;
107 } else {
108 DPRINTF(Drain, "Requesting drain.\n");
109
110 // The fetch event can become descheduled if a drain didn't
111 // succeed on the first attempt. We need to reschedule it if
112 // the CPU is waiting for a microcode routine to complete.
113 if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
114 schedule(fetchEvent, clockEdge());
115
116 return DrainState::Draining;
117 }
118}
119
120void
121TimingSimpleCPU::drainResume()
122{
123 assert(!fetchEvent.scheduled());
124 if (switchedOut())
125 return;
126
127 DPRINTF(SimpleCPU, "Resume\n");
128 verifyMemoryMode();
129
130 assert(!threadContexts.empty());
131
132 _status = BaseSimpleCPU::Idle;
133
134 for (ThreadID tid = 0; tid < numThreads; tid++) {
135 if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
136 threadInfo[tid]->notIdleFraction = 1;
137
138 activeThreads.push_back(tid);
139
140 _status = BaseSimpleCPU::Running;
141
142 // Fetch if any threads active
143 if (!fetchEvent.scheduled()) {
144 schedule(fetchEvent, nextCycle());
145 }
146 } else {
147 threadInfo[tid]->notIdleFraction = 0;
148 }
149 }
150
151 // Reschedule any power gating event (if any)
152 schedulePowerGatingEvent();
153
154 system->totalNumInsts = 0;
155}
156
157bool
158TimingSimpleCPU::tryCompleteDrain()
159{
160 if (drainState() != DrainState::Draining)
161 return false;
162
163 DPRINTF(Drain, "tryCompleteDrain.\n");
164 if (!isDrained())
165 return false;
166
167 DPRINTF(Drain, "CPU done draining, processing drain event\n");
168 signalDrainDone();
169
170 return true;
171}
172
173void
174TimingSimpleCPU::switchOut()
175{
176 SimpleExecContext& t_info = *threadInfo[curThread];
177 M5_VAR_USED SimpleThread* thread = t_info.thread;
178
179 BaseSimpleCPU::switchOut();
180
181 assert(!fetchEvent.scheduled());
182 assert(_status == BaseSimpleCPU::Running || _status == Idle);
183 assert(!t_info.stayAtPC);
184 assert(thread->microPC() == 0);
185
186 updateCycleCounts();
187 updateCycleCounters(BaseCPU::CPU_STATE_ON);
188}
189
190
191void
192TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
193{
194 BaseSimpleCPU::takeOverFrom(oldCPU);
195
196 previousCycle = curCycle();
197}
198
199void
200TimingSimpleCPU::verifyMemoryMode() const
201{
202 if (!system->isTimingMode()) {
203 fatal("The timing CPU requires the memory system to be in "
204 "'timing' mode.\n");
205 }
206}
207
208void
209TimingSimpleCPU::activateContext(ThreadID thread_num)
210{
211 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
212
213 assert(thread_num < numThreads);
214
215 threadInfo[thread_num]->notIdleFraction = 1;
216 if (_status == BaseSimpleCPU::Idle)
217 _status = BaseSimpleCPU::Running;
218
219 // kick things off by initiating the fetch of the next instruction
220 if (!fetchEvent.scheduled())
221 schedule(fetchEvent, clockEdge(Cycles(0)));
222
223 if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
224 == activeThreads.end()) {
225 activeThreads.push_back(thread_num);
226 }
227
228 BaseCPU::activateContext(thread_num);
229}
230
231
232void
233TimingSimpleCPU::suspendContext(ThreadID thread_num)
234{
235 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
236
237 assert(thread_num < numThreads);
238 activeThreads.remove(thread_num);
239
240 if (_status == Idle)
241 return;
242
243 assert(_status == BaseSimpleCPU::Running);
244
245 threadInfo[thread_num]->notIdleFraction = 0;
246
247 if (activeThreads.empty()) {
248 _status = Idle;
249
250 if (fetchEvent.scheduled()) {
251 deschedule(fetchEvent);
252 }
253 }
254
255 BaseCPU::suspendContext(thread_num);
256}
257
258bool
259TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
260{
261 SimpleExecContext &t_info = *threadInfo[curThread];
262 SimpleThread* thread = t_info.thread;
263
264 RequestPtr req = pkt->req;
264 const RequestPtr &req = pkt->req;
265
266 // We're about the issues a locked load, so tell the monitor
267 // to start caring about this address
268 if (pkt->isRead() && pkt->req->isLLSC()) {
269 TheISA::handleLockedRead(thread, pkt->req);
270 }
271 if (req->isMmappedIpr()) {
272 Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
273 new IprEvent(pkt, this, clockEdge(delay));
274 _status = DcacheWaitResponse;
275 dcache_pkt = NULL;
276 } else if (!dcachePort.sendTimingReq(pkt)) {
277 _status = DcacheRetry;
278 dcache_pkt = pkt;
279 } else {
280 _status = DcacheWaitResponse;
281 // memory system takes ownership of packet
282 dcache_pkt = NULL;
283 }
284 return dcache_pkt == NULL;
285}
286
287void
265
266 // We're about the issues a locked load, so tell the monitor
267 // to start caring about this address
268 if (pkt->isRead() && pkt->req->isLLSC()) {
269 TheISA::handleLockedRead(thread, pkt->req);
270 }
271 if (req->isMmappedIpr()) {
272 Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
273 new IprEvent(pkt, this, clockEdge(delay));
274 _status = DcacheWaitResponse;
275 dcache_pkt = NULL;
276 } else if (!dcachePort.sendTimingReq(pkt)) {
277 _status = DcacheRetry;
278 dcache_pkt = pkt;
279 } else {
280 _status = DcacheWaitResponse;
281 // memory system takes ownership of packet
282 dcache_pkt = NULL;
283 }
284 return dcache_pkt == NULL;
285}
286
287void
288TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
288TimingSimpleCPU::sendData(const RequestPtr &req, uint8_t *data, uint64_t *res,
289 bool read)
290{
291 SimpleExecContext &t_info = *threadInfo[curThread];
292 SimpleThread* thread = t_info.thread;
293
294 PacketPtr pkt = buildPacket(req, read);
295 pkt->dataDynamic<uint8_t>(data);
296 if (req->getFlags().isSet(Request::NO_ACCESS)) {
297 assert(!dcache_pkt);
298 pkt->makeResponse();
299 completeDataAccess(pkt);
300 } else if (read) {
301 handleReadPacket(pkt);
302 } else {
303 bool do_access = true; // flag to suppress cache access
304
305 if (req->isLLSC()) {
306 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
307 } else if (req->isCondSwap()) {
308 assert(res);
309 req->setExtraData(*res);
310 }
311
312 if (do_access) {
313 dcache_pkt = pkt;
314 handleWritePacket();
315 threadSnoop(pkt, curThread);
316 } else {
317 _status = DcacheWaitResponse;
318 completeDataAccess(pkt);
319 }
320 }
321}
322
323void
289 bool read)
290{
291 SimpleExecContext &t_info = *threadInfo[curThread];
292 SimpleThread* thread = t_info.thread;
293
294 PacketPtr pkt = buildPacket(req, read);
295 pkt->dataDynamic<uint8_t>(data);
296 if (req->getFlags().isSet(Request::NO_ACCESS)) {
297 assert(!dcache_pkt);
298 pkt->makeResponse();
299 completeDataAccess(pkt);
300 } else if (read) {
301 handleReadPacket(pkt);
302 } else {
303 bool do_access = true; // flag to suppress cache access
304
305 if (req->isLLSC()) {
306 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
307 } else if (req->isCondSwap()) {
308 assert(res);
309 req->setExtraData(*res);
310 }
311
312 if (do_access) {
313 dcache_pkt = pkt;
314 handleWritePacket();
315 threadSnoop(pkt, curThread);
316 } else {
317 _status = DcacheWaitResponse;
318 completeDataAccess(pkt);
319 }
320 }
321}
322
323void
324TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
325 RequestPtr req, uint8_t *data, bool read)
324TimingSimpleCPU::sendSplitData(const RequestPtr &req1, const RequestPtr &req2,
325 const RequestPtr &req, uint8_t *data, bool read)
326{
327 PacketPtr pkt1, pkt2;
328 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
329 if (req->getFlags().isSet(Request::NO_ACCESS)) {
330 assert(!dcache_pkt);
331 pkt1->makeResponse();
332 completeDataAccess(pkt1);
333 } else if (read) {
334 SplitFragmentSenderState * send_state =
335 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
336 if (handleReadPacket(pkt1)) {
337 send_state->clearFromParent();
338 send_state = dynamic_cast<SplitFragmentSenderState *>(
339 pkt2->senderState);
340 if (handleReadPacket(pkt2)) {
341 send_state->clearFromParent();
342 }
343 }
344 } else {
345 dcache_pkt = pkt1;
346 SplitFragmentSenderState * send_state =
347 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
348 if (handleWritePacket()) {
349 send_state->clearFromParent();
350 dcache_pkt = pkt2;
351 send_state = dynamic_cast<SplitFragmentSenderState *>(
352 pkt2->senderState);
353 if (handleWritePacket()) {
354 send_state->clearFromParent();
355 }
356 }
357 }
358}
359
360void
361TimingSimpleCPU::translationFault(const Fault &fault)
362{
363 // fault may be NoFault in cases where a fault is suppressed,
364 // for instance prefetches.
365 updateCycleCounts();
366 updateCycleCounters(BaseCPU::CPU_STATE_ON);
367
368 if (traceData) {
369 // Since there was a fault, we shouldn't trace this instruction.
370 delete traceData;
371 traceData = NULL;
372 }
373
374 postExecute();
375
376 advanceInst(fault);
377}
378
379PacketPtr
326{
327 PacketPtr pkt1, pkt2;
328 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
329 if (req->getFlags().isSet(Request::NO_ACCESS)) {
330 assert(!dcache_pkt);
331 pkt1->makeResponse();
332 completeDataAccess(pkt1);
333 } else if (read) {
334 SplitFragmentSenderState * send_state =
335 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
336 if (handleReadPacket(pkt1)) {
337 send_state->clearFromParent();
338 send_state = dynamic_cast<SplitFragmentSenderState *>(
339 pkt2->senderState);
340 if (handleReadPacket(pkt2)) {
341 send_state->clearFromParent();
342 }
343 }
344 } else {
345 dcache_pkt = pkt1;
346 SplitFragmentSenderState * send_state =
347 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
348 if (handleWritePacket()) {
349 send_state->clearFromParent();
350 dcache_pkt = pkt2;
351 send_state = dynamic_cast<SplitFragmentSenderState *>(
352 pkt2->senderState);
353 if (handleWritePacket()) {
354 send_state->clearFromParent();
355 }
356 }
357 }
358}
359
360void
361TimingSimpleCPU::translationFault(const Fault &fault)
362{
363 // fault may be NoFault in cases where a fault is suppressed,
364 // for instance prefetches.
365 updateCycleCounts();
366 updateCycleCounters(BaseCPU::CPU_STATE_ON);
367
368 if (traceData) {
369 // Since there was a fault, we shouldn't trace this instruction.
370 delete traceData;
371 traceData = NULL;
372 }
373
374 postExecute();
375
376 advanceInst(fault);
377}
378
379PacketPtr
380TimingSimpleCPU::buildPacket(RequestPtr req, bool read)
380TimingSimpleCPU::buildPacket(const RequestPtr &req, bool read)
381{
382 return read ? Packet::createRead(req) : Packet::createWrite(req);
383}
384
385void
386TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
381{
382 return read ? Packet::createRead(req) : Packet::createWrite(req);
383}
384
385void
386TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
387 RequestPtr req1, RequestPtr req2, RequestPtr req,
387 const RequestPtr &req1, const RequestPtr &req2, const RequestPtr &req,
388 uint8_t *data, bool read)
389{
390 pkt1 = pkt2 = NULL;
391
392 assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
393
394 if (req->getFlags().isSet(Request::NO_ACCESS)) {
395 pkt1 = buildPacket(req, read);
396 return;
397 }
398
399 pkt1 = buildPacket(req1, read);
400 pkt2 = buildPacket(req2, read);
401
402 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
403
404 pkt->dataDynamic<uint8_t>(data);
405 pkt1->dataStatic<uint8_t>(data);
406 pkt2->dataStatic<uint8_t>(data + req1->getSize());
407
408 SplitMainSenderState * main_send_state = new SplitMainSenderState;
409 pkt->senderState = main_send_state;
410 main_send_state->fragments[0] = pkt1;
411 main_send_state->fragments[1] = pkt2;
412 main_send_state->outstanding = 2;
413 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
414 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
415}
416
417Fault
418TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
419 unsigned size, Request::Flags flags)
420{
421 panic("readMem() is for atomic accesses, and should "
422 "never be called on TimingSimpleCPU.\n");
423}
424
425Fault
426TimingSimpleCPU::initiateMemRead(Addr addr, unsigned size,
427 Request::Flags flags)
428{
429 SimpleExecContext &t_info = *threadInfo[curThread];
430 SimpleThread* thread = t_info.thread;
431
432 Fault fault;
433 const int asid = 0;
434 const Addr pc = thread->instAddr();
435 unsigned block_size = cacheLineSize();
436 BaseTLB::Mode mode = BaseTLB::Read;
437
438 if (traceData)
439 traceData->setMem(addr, size, flags);
440
388 uint8_t *data, bool read)
389{
390 pkt1 = pkt2 = NULL;
391
392 assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
393
394 if (req->getFlags().isSet(Request::NO_ACCESS)) {
395 pkt1 = buildPacket(req, read);
396 return;
397 }
398
399 pkt1 = buildPacket(req1, read);
400 pkt2 = buildPacket(req2, read);
401
402 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
403
404 pkt->dataDynamic<uint8_t>(data);
405 pkt1->dataStatic<uint8_t>(data);
406 pkt2->dataStatic<uint8_t>(data + req1->getSize());
407
408 SplitMainSenderState * main_send_state = new SplitMainSenderState;
409 pkt->senderState = main_send_state;
410 main_send_state->fragments[0] = pkt1;
411 main_send_state->fragments[1] = pkt2;
412 main_send_state->outstanding = 2;
413 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
414 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
415}
416
417Fault
418TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
419 unsigned size, Request::Flags flags)
420{
421 panic("readMem() is for atomic accesses, and should "
422 "never be called on TimingSimpleCPU.\n");
423}
424
425Fault
426TimingSimpleCPU::initiateMemRead(Addr addr, unsigned size,
427 Request::Flags flags)
428{
429 SimpleExecContext &t_info = *threadInfo[curThread];
430 SimpleThread* thread = t_info.thread;
431
432 Fault fault;
433 const int asid = 0;
434 const Addr pc = thread->instAddr();
435 unsigned block_size = cacheLineSize();
436 BaseTLB::Mode mode = BaseTLB::Read;
437
438 if (traceData)
439 traceData->setMem(addr, size, flags);
440
441 RequestPtr req = new Request(asid, addr, size, flags, dataMasterId(), pc,
442 thread->contextId());
441 RequestPtr req = std::make_shared<Request>(
442 asid, addr, size, flags, dataMasterId(), pc,
443 thread->contextId());
443
444 req->taskId(taskId());
445
446 Addr split_addr = roundDown(addr + size - 1, block_size);
447 assert(split_addr <= addr || split_addr - addr < block_size);
448
449 _status = DTBWaitResponse;
450 if (split_addr > addr) {
451 RequestPtr req1, req2;
452 assert(!req->isLLSC() && !req->isSwap());
453 req->splitOnVaddr(split_addr, req1, req2);
454
455 WholeTranslationState *state =
456 new WholeTranslationState(req, req1, req2, new uint8_t[size],
457 NULL, mode);
458 DataTranslation<TimingSimpleCPU *> *trans1 =
459 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
460 DataTranslation<TimingSimpleCPU *> *trans2 =
461 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
462
463 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
464 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
465 } else {
466 WholeTranslationState *state =
467 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
468 DataTranslation<TimingSimpleCPU *> *translation
469 = new DataTranslation<TimingSimpleCPU *>(this, state);
470 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
471 }
472
473 return NoFault;
474}
475
476bool
477TimingSimpleCPU::handleWritePacket()
478{
479 SimpleExecContext &t_info = *threadInfo[curThread];
480 SimpleThread* thread = t_info.thread;
481
444
445 req->taskId(taskId());
446
447 Addr split_addr = roundDown(addr + size - 1, block_size);
448 assert(split_addr <= addr || split_addr - addr < block_size);
449
450 _status = DTBWaitResponse;
451 if (split_addr > addr) {
452 RequestPtr req1, req2;
453 assert(!req->isLLSC() && !req->isSwap());
454 req->splitOnVaddr(split_addr, req1, req2);
455
456 WholeTranslationState *state =
457 new WholeTranslationState(req, req1, req2, new uint8_t[size],
458 NULL, mode);
459 DataTranslation<TimingSimpleCPU *> *trans1 =
460 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
461 DataTranslation<TimingSimpleCPU *> *trans2 =
462 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
463
464 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
465 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
466 } else {
467 WholeTranslationState *state =
468 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
469 DataTranslation<TimingSimpleCPU *> *translation
470 = new DataTranslation<TimingSimpleCPU *>(this, state);
471 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
472 }
473
474 return NoFault;
475}
476
477bool
478TimingSimpleCPU::handleWritePacket()
479{
480 SimpleExecContext &t_info = *threadInfo[curThread];
481 SimpleThread* thread = t_info.thread;
482
482 RequestPtr req = dcache_pkt->req;
483 const RequestPtr &req = dcache_pkt->req;
483 if (req->isMmappedIpr()) {
484 Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
485 new IprEvent(dcache_pkt, this, clockEdge(delay));
486 _status = DcacheWaitResponse;
487 dcache_pkt = NULL;
488 } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
489 _status = DcacheRetry;
490 } else {
491 _status = DcacheWaitResponse;
492 // memory system takes ownership of packet
493 dcache_pkt = NULL;
494 }
495 return dcache_pkt == NULL;
496}
497
498Fault
499TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
500 Addr addr, Request::Flags flags, uint64_t *res)
501{
502 SimpleExecContext &t_info = *threadInfo[curThread];
503 SimpleThread* thread = t_info.thread;
504
505 uint8_t *newData = new uint8_t[size];
506 const int asid = 0;
507 const Addr pc = thread->instAddr();
508 unsigned block_size = cacheLineSize();
509 BaseTLB::Mode mode = BaseTLB::Write;
510
511 if (data == NULL) {
512 assert(flags & Request::STORE_NO_DATA);
513 // This must be a cache block cleaning request
514 memset(newData, 0, size);
515 } else {
516 memcpy(newData, data, size);
517 }
518
519 if (traceData)
520 traceData->setMem(addr, size, flags);
521
484 if (req->isMmappedIpr()) {
485 Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
486 new IprEvent(dcache_pkt, this, clockEdge(delay));
487 _status = DcacheWaitResponse;
488 dcache_pkt = NULL;
489 } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
490 _status = DcacheRetry;
491 } else {
492 _status = DcacheWaitResponse;
493 // memory system takes ownership of packet
494 dcache_pkt = NULL;
495 }
496 return dcache_pkt == NULL;
497}
498
499Fault
500TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
501 Addr addr, Request::Flags flags, uint64_t *res)
502{
503 SimpleExecContext &t_info = *threadInfo[curThread];
504 SimpleThread* thread = t_info.thread;
505
506 uint8_t *newData = new uint8_t[size];
507 const int asid = 0;
508 const Addr pc = thread->instAddr();
509 unsigned block_size = cacheLineSize();
510 BaseTLB::Mode mode = BaseTLB::Write;
511
512 if (data == NULL) {
513 assert(flags & Request::STORE_NO_DATA);
514 // This must be a cache block cleaning request
515 memset(newData, 0, size);
516 } else {
517 memcpy(newData, data, size);
518 }
519
520 if (traceData)
521 traceData->setMem(addr, size, flags);
522
522 RequestPtr req = new Request(asid, addr, size, flags, dataMasterId(), pc,
523 thread->contextId());
523 RequestPtr req = std::make_shared<Request>(
524 asid, addr, size, flags, dataMasterId(), pc,
525 thread->contextId());
524
525 req->taskId(taskId());
526
527 Addr split_addr = roundDown(addr + size - 1, block_size);
528 assert(split_addr <= addr || split_addr - addr < block_size);
529
530 _status = DTBWaitResponse;
531 if (split_addr > addr) {
532 RequestPtr req1, req2;
533 assert(!req->isLLSC() && !req->isSwap());
534 req->splitOnVaddr(split_addr, req1, req2);
535
536 WholeTranslationState *state =
537 new WholeTranslationState(req, req1, req2, newData, res, mode);
538 DataTranslation<TimingSimpleCPU *> *trans1 =
539 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
540 DataTranslation<TimingSimpleCPU *> *trans2 =
541 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
542
543 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
544 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
545 } else {
546 WholeTranslationState *state =
547 new WholeTranslationState(req, newData, res, mode);
548 DataTranslation<TimingSimpleCPU *> *translation =
549 new DataTranslation<TimingSimpleCPU *>(this, state);
550 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
551 }
552
553 // Translation faults will be returned via finishTranslation()
554 return NoFault;
555}
556
557void
558TimingSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
559{
560 for (ThreadID tid = 0; tid < numThreads; tid++) {
561 if (tid != sender) {
562 if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
563 wakeup(tid);
564 }
565 TheISA::handleLockedSnoop(threadInfo[tid]->thread, pkt,
566 dcachePort.cacheBlockMask);
567 }
568 }
569}
570
571void
572TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
573{
574 _status = BaseSimpleCPU::Running;
575
576 if (state->getFault() != NoFault) {
577 if (state->isPrefetch()) {
578 state->setNoFault();
579 }
580 delete [] state->data;
581 state->deleteReqs();
582 translationFault(state->getFault());
583 } else {
584 if (!state->isSplit) {
585 sendData(state->mainReq, state->data, state->res,
586 state->mode == BaseTLB::Read);
587 } else {
588 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
589 state->data, state->mode == BaseTLB::Read);
590 }
591 }
592
593 delete state;
594}
595
596
597void
598TimingSimpleCPU::fetch()
599{
600 // Change thread if multi-threaded
601 swapActiveThread();
602
603 SimpleExecContext &t_info = *threadInfo[curThread];
604 SimpleThread* thread = t_info.thread;
605
606 DPRINTF(SimpleCPU, "Fetch\n");
607
608 if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
609 checkForInterrupts();
610 checkPcEventQueue();
611 }
612
613 // We must have just got suspended by a PC event
614 if (_status == Idle)
615 return;
616
617 TheISA::PCState pcState = thread->pcState();
618 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
619 !curMacroStaticInst;
620
621 if (needToFetch) {
622 _status = BaseSimpleCPU::Running;
526
527 req->taskId(taskId());
528
529 Addr split_addr = roundDown(addr + size - 1, block_size);
530 assert(split_addr <= addr || split_addr - addr < block_size);
531
532 _status = DTBWaitResponse;
533 if (split_addr > addr) {
534 RequestPtr req1, req2;
535 assert(!req->isLLSC() && !req->isSwap());
536 req->splitOnVaddr(split_addr, req1, req2);
537
538 WholeTranslationState *state =
539 new WholeTranslationState(req, req1, req2, newData, res, mode);
540 DataTranslation<TimingSimpleCPU *> *trans1 =
541 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
542 DataTranslation<TimingSimpleCPU *> *trans2 =
543 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
544
545 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
546 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
547 } else {
548 WholeTranslationState *state =
549 new WholeTranslationState(req, newData, res, mode);
550 DataTranslation<TimingSimpleCPU *> *translation =
551 new DataTranslation<TimingSimpleCPU *>(this, state);
552 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
553 }
554
555 // Translation faults will be returned via finishTranslation()
556 return NoFault;
557}
558
559void
560TimingSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
561{
562 for (ThreadID tid = 0; tid < numThreads; tid++) {
563 if (tid != sender) {
564 if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
565 wakeup(tid);
566 }
567 TheISA::handleLockedSnoop(threadInfo[tid]->thread, pkt,
568 dcachePort.cacheBlockMask);
569 }
570 }
571}
572
573void
574TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
575{
576 _status = BaseSimpleCPU::Running;
577
578 if (state->getFault() != NoFault) {
579 if (state->isPrefetch()) {
580 state->setNoFault();
581 }
582 delete [] state->data;
583 state->deleteReqs();
584 translationFault(state->getFault());
585 } else {
586 if (!state->isSplit) {
587 sendData(state->mainReq, state->data, state->res,
588 state->mode == BaseTLB::Read);
589 } else {
590 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
591 state->data, state->mode == BaseTLB::Read);
592 }
593 }
594
595 delete state;
596}
597
598
599void
600TimingSimpleCPU::fetch()
601{
602 // Change thread if multi-threaded
603 swapActiveThread();
604
605 SimpleExecContext &t_info = *threadInfo[curThread];
606 SimpleThread* thread = t_info.thread;
607
608 DPRINTF(SimpleCPU, "Fetch\n");
609
610 if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
611 checkForInterrupts();
612 checkPcEventQueue();
613 }
614
615 // We must have just got suspended by a PC event
616 if (_status == Idle)
617 return;
618
619 TheISA::PCState pcState = thread->pcState();
620 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
621 !curMacroStaticInst;
622
623 if (needToFetch) {
624 _status = BaseSimpleCPU::Running;
623 RequestPtr ifetch_req = new Request();
625 RequestPtr ifetch_req = std::make_shared<Request>();
624 ifetch_req->taskId(taskId());
625 ifetch_req->setContext(thread->contextId());
626 setupFetchRequest(ifetch_req);
627 DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
628 thread->itb->translateTiming(ifetch_req, thread->getTC(),
629 &fetchTranslation, BaseTLB::Execute);
630 } else {
631 _status = IcacheWaitResponse;
632 completeIfetch(NULL);
633
634 updateCycleCounts();
635 updateCycleCounters(BaseCPU::CPU_STATE_ON);
636 }
637}
638
639
640void
626 ifetch_req->taskId(taskId());
627 ifetch_req->setContext(thread->contextId());
628 setupFetchRequest(ifetch_req);
629 DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
630 thread->itb->translateTiming(ifetch_req, thread->getTC(),
631 &fetchTranslation, BaseTLB::Execute);
632 } else {
633 _status = IcacheWaitResponse;
634 completeIfetch(NULL);
635
636 updateCycleCounts();
637 updateCycleCounters(BaseCPU::CPU_STATE_ON);
638 }
639}
640
641
642void
641TimingSimpleCPU::sendFetch(const Fault &fault, RequestPtr req,
643TimingSimpleCPU::sendFetch(const Fault &fault, const RequestPtr &req,
642 ThreadContext *tc)
643{
644 if (fault == NoFault) {
645 DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
646 req->getVaddr(), req->getPaddr());
647 ifetch_pkt = new Packet(req, MemCmd::ReadReq);
648 ifetch_pkt->dataStatic(&inst);
649 DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
650
651 if (!icachePort.sendTimingReq(ifetch_pkt)) {
652 // Need to wait for retry
653 _status = IcacheRetry;
654 } else {
655 // Need to wait for cache to respond
656 _status = IcacheWaitResponse;
657 // ownership of packet transferred to memory system
658 ifetch_pkt = NULL;
659 }
660 } else {
661 DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
644 ThreadContext *tc)
645{
646 if (fault == NoFault) {
647 DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
648 req->getVaddr(), req->getPaddr());
649 ifetch_pkt = new Packet(req, MemCmd::ReadReq);
650 ifetch_pkt->dataStatic(&inst);
651 DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
652
653 if (!icachePort.sendTimingReq(ifetch_pkt)) {
654 // Need to wait for retry
655 _status = IcacheRetry;
656 } else {
657 // Need to wait for cache to respond
658 _status = IcacheWaitResponse;
659 // ownership of packet transferred to memory system
660 ifetch_pkt = NULL;
661 }
662 } else {
663 DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
662 delete req;
663 // fetch fault: advance directly to next instruction (fault handler)
664 _status = BaseSimpleCPU::Running;
665 advanceInst(fault);
666 }
667
668 updateCycleCounts();
669 updateCycleCounters(BaseCPU::CPU_STATE_ON);
670}
671
672
673void
674TimingSimpleCPU::advanceInst(const Fault &fault)
675{
676 SimpleExecContext &t_info = *threadInfo[curThread];
677
678 if (_status == Faulting)
679 return;
680
681 if (fault != NoFault) {
682 DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
683
684 advancePC(fault);
685
686 Tick stall = dynamic_pointer_cast<SyscallRetryFault>(fault) ?
687 clockEdge(syscallRetryLatency) : clockEdge();
688
689 reschedule(fetchEvent, stall, true);
690
691 _status = Faulting;
692 return;
693 }
694
695
696 if (!t_info.stayAtPC)
697 advancePC(fault);
698
699 if (tryCompleteDrain())
700 return;
701
702 if (_status == BaseSimpleCPU::Running) {
703 // kick off fetch of next instruction... callback from icache
704 // response will cause that instruction to be executed,
705 // keeping the CPU running.
706 fetch();
707 }
708}
709
710
711void
712TimingSimpleCPU::completeIfetch(PacketPtr pkt)
713{
714 SimpleExecContext& t_info = *threadInfo[curThread];
715
716 DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
717 pkt->getAddr() : 0);
718
719 // received a response from the icache: execute the received
720 // instruction
721 assert(!pkt || !pkt->isError());
722 assert(_status == IcacheWaitResponse);
723
724 _status = BaseSimpleCPU::Running;
725
726 updateCycleCounts();
727 updateCycleCounters(BaseCPU::CPU_STATE_ON);
728
729 if (pkt)
730 pkt->req->setAccessLatency();
731
732
733 preExecute();
734 if (curStaticInst && curStaticInst->isMemRef()) {
735 // load or store: just send to dcache
736 Fault fault = curStaticInst->initiateAcc(&t_info, traceData);
737
738 // If we're not running now the instruction will complete in a dcache
739 // response callback or the instruction faulted and has started an
740 // ifetch
741 if (_status == BaseSimpleCPU::Running) {
742 if (fault != NoFault && traceData) {
743 // If there was a fault, we shouldn't trace this instruction.
744 delete traceData;
745 traceData = NULL;
746 }
747
748 postExecute();
749 // @todo remove me after debugging with legion done
750 if (curStaticInst && (!curStaticInst->isMicroop() ||
751 curStaticInst->isFirstMicroop()))
752 instCnt++;
753 advanceInst(fault);
754 }
755 } else if (curStaticInst) {
756 // non-memory instruction: execute completely now
757 Fault fault = curStaticInst->execute(&t_info, traceData);
758
759 // keep an instruction count
760 if (fault == NoFault)
761 countInst();
762 else if (traceData && !DTRACE(ExecFaulting)) {
763 delete traceData;
764 traceData = NULL;
765 }
766
767 postExecute();
768 // @todo remove me after debugging with legion done
769 if (curStaticInst && (!curStaticInst->isMicroop() ||
770 curStaticInst->isFirstMicroop()))
771 instCnt++;
772 advanceInst(fault);
773 } else {
774 advanceInst(NoFault);
775 }
776
777 if (pkt) {
664 // fetch fault: advance directly to next instruction (fault handler)
665 _status = BaseSimpleCPU::Running;
666 advanceInst(fault);
667 }
668
669 updateCycleCounts();
670 updateCycleCounters(BaseCPU::CPU_STATE_ON);
671}
672
673
674void
675TimingSimpleCPU::advanceInst(const Fault &fault)
676{
677 SimpleExecContext &t_info = *threadInfo[curThread];
678
679 if (_status == Faulting)
680 return;
681
682 if (fault != NoFault) {
683 DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
684
685 advancePC(fault);
686
687 Tick stall = dynamic_pointer_cast<SyscallRetryFault>(fault) ?
688 clockEdge(syscallRetryLatency) : clockEdge();
689
690 reschedule(fetchEvent, stall, true);
691
692 _status = Faulting;
693 return;
694 }
695
696
697 if (!t_info.stayAtPC)
698 advancePC(fault);
699
700 if (tryCompleteDrain())
701 return;
702
703 if (_status == BaseSimpleCPU::Running) {
704 // kick off fetch of next instruction... callback from icache
705 // response will cause that instruction to be executed,
706 // keeping the CPU running.
707 fetch();
708 }
709}
710
711
712void
713TimingSimpleCPU::completeIfetch(PacketPtr pkt)
714{
715 SimpleExecContext& t_info = *threadInfo[curThread];
716
717 DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
718 pkt->getAddr() : 0);
719
720 // received a response from the icache: execute the received
721 // instruction
722 assert(!pkt || !pkt->isError());
723 assert(_status == IcacheWaitResponse);
724
725 _status = BaseSimpleCPU::Running;
726
727 updateCycleCounts();
728 updateCycleCounters(BaseCPU::CPU_STATE_ON);
729
730 if (pkt)
731 pkt->req->setAccessLatency();
732
733
734 preExecute();
735 if (curStaticInst && curStaticInst->isMemRef()) {
736 // load or store: just send to dcache
737 Fault fault = curStaticInst->initiateAcc(&t_info, traceData);
738
739 // If we're not running now the instruction will complete in a dcache
740 // response callback or the instruction faulted and has started an
741 // ifetch
742 if (_status == BaseSimpleCPU::Running) {
743 if (fault != NoFault && traceData) {
744 // If there was a fault, we shouldn't trace this instruction.
745 delete traceData;
746 traceData = NULL;
747 }
748
749 postExecute();
750 // @todo remove me after debugging with legion done
751 if (curStaticInst && (!curStaticInst->isMicroop() ||
752 curStaticInst->isFirstMicroop()))
753 instCnt++;
754 advanceInst(fault);
755 }
756 } else if (curStaticInst) {
757 // non-memory instruction: execute completely now
758 Fault fault = curStaticInst->execute(&t_info, traceData);
759
760 // keep an instruction count
761 if (fault == NoFault)
762 countInst();
763 else if (traceData && !DTRACE(ExecFaulting)) {
764 delete traceData;
765 traceData = NULL;
766 }
767
768 postExecute();
769 // @todo remove me after debugging with legion done
770 if (curStaticInst && (!curStaticInst->isMicroop() ||
771 curStaticInst->isFirstMicroop()))
772 instCnt++;
773 advanceInst(fault);
774 } else {
775 advanceInst(NoFault);
776 }
777
778 if (pkt) {
778 delete pkt->req;
779 delete pkt;
780 }
781}
782
783void
784TimingSimpleCPU::IcachePort::ITickEvent::process()
785{
786 cpu->completeIfetch(pkt);
787}
788
789bool
790TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
791{
792 DPRINTF(SimpleCPU, "Received fetch response %#x\n", pkt->getAddr());
793 // we should only ever see one response per cycle since we only
794 // issue a new request once this response is sunk
795 assert(!tickEvent.scheduled());
796 // delay processing of returned data until next CPU clock edge
797 tickEvent.schedule(pkt, cpu->clockEdge());
798
799 return true;
800}
801
802void
803TimingSimpleCPU::IcachePort::recvReqRetry()
804{
805 // we shouldn't get a retry unless we have a packet that we're
806 // waiting to transmit
807 assert(cpu->ifetch_pkt != NULL);
808 assert(cpu->_status == IcacheRetry);
809 PacketPtr tmp = cpu->ifetch_pkt;
810 if (sendTimingReq(tmp)) {
811 cpu->_status = IcacheWaitResponse;
812 cpu->ifetch_pkt = NULL;
813 }
814}
815
816void
817TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
818{
819 // received a response from the dcache: complete the load or store
820 // instruction
821 assert(!pkt->isError());
822 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
823 pkt->req->getFlags().isSet(Request::NO_ACCESS));
824
825 pkt->req->setAccessLatency();
826
827 updateCycleCounts();
828 updateCycleCounters(BaseCPU::CPU_STATE_ON);
829
830 if (pkt->senderState) {
831 SplitFragmentSenderState * send_state =
832 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
833 assert(send_state);
779 delete pkt;
780 }
781}
782
783void
784TimingSimpleCPU::IcachePort::ITickEvent::process()
785{
786 cpu->completeIfetch(pkt);
787}
788
789bool
790TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
791{
792 DPRINTF(SimpleCPU, "Received fetch response %#x\n", pkt->getAddr());
793 // we should only ever see one response per cycle since we only
794 // issue a new request once this response is sunk
795 assert(!tickEvent.scheduled());
796 // delay processing of returned data until next CPU clock edge
797 tickEvent.schedule(pkt, cpu->clockEdge());
798
799 return true;
800}
801
802void
803TimingSimpleCPU::IcachePort::recvReqRetry()
804{
805 // we shouldn't get a retry unless we have a packet that we're
806 // waiting to transmit
807 assert(cpu->ifetch_pkt != NULL);
808 assert(cpu->_status == IcacheRetry);
809 PacketPtr tmp = cpu->ifetch_pkt;
810 if (sendTimingReq(tmp)) {
811 cpu->_status = IcacheWaitResponse;
812 cpu->ifetch_pkt = NULL;
813 }
814}
815
816void
817TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
818{
819 // received a response from the dcache: complete the load or store
820 // instruction
821 assert(!pkt->isError());
822 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
823 pkt->req->getFlags().isSet(Request::NO_ACCESS));
824
825 pkt->req->setAccessLatency();
826
827 updateCycleCounts();
828 updateCycleCounters(BaseCPU::CPU_STATE_ON);
829
830 if (pkt->senderState) {
831 SplitFragmentSenderState * send_state =
832 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
833 assert(send_state);
834 delete pkt->req;
835 delete pkt;
836 PacketPtr big_pkt = send_state->bigPkt;
837 delete send_state;
838
839 SplitMainSenderState * main_send_state =
840 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
841 assert(main_send_state);
842 // Record the fact that this packet is no longer outstanding.
843 assert(main_send_state->outstanding != 0);
844 main_send_state->outstanding--;
845
846 if (main_send_state->outstanding) {
847 return;
848 } else {
849 delete main_send_state;
850 big_pkt->senderState = NULL;
851 pkt = big_pkt;
852 }
853 }
854
855 _status = BaseSimpleCPU::Running;
856
857 Fault fault = curStaticInst->completeAcc(pkt, threadInfo[curThread],
858 traceData);
859
860 // keep an instruction count
861 if (fault == NoFault)
862 countInst();
863 else if (traceData) {
864 // If there was a fault, we shouldn't trace this instruction.
865 delete traceData;
866 traceData = NULL;
867 }
868
834 delete pkt;
835 PacketPtr big_pkt = send_state->bigPkt;
836 delete send_state;
837
838 SplitMainSenderState * main_send_state =
839 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
840 assert(main_send_state);
841 // Record the fact that this packet is no longer outstanding.
842 assert(main_send_state->outstanding != 0);
843 main_send_state->outstanding--;
844
845 if (main_send_state->outstanding) {
846 return;
847 } else {
848 delete main_send_state;
849 big_pkt->senderState = NULL;
850 pkt = big_pkt;
851 }
852 }
853
854 _status = BaseSimpleCPU::Running;
855
856 Fault fault = curStaticInst->completeAcc(pkt, threadInfo[curThread],
857 traceData);
858
859 // keep an instruction count
860 if (fault == NoFault)
861 countInst();
862 else if (traceData) {
863 // If there was a fault, we shouldn't trace this instruction.
864 delete traceData;
865 traceData = NULL;
866 }
867
869 delete pkt->req;
870 delete pkt;
871
872 postExecute();
873
874 advanceInst(fault);
875}
876
877void
878TimingSimpleCPU::updateCycleCounts()
879{
880 const Cycles delta(curCycle() - previousCycle);
881
882 numCycles += delta;
883
884 previousCycle = curCycle();
885}
886
887void
888TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
889{
890 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
891 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
892 cpu->wakeup(tid);
893 }
894 }
895
896 // Making it uniform across all CPUs:
897 // The CPUs need to be woken up only on an invalidation packet (when using caches)
898 // or on an incoming write packet (when not using caches)
899 // It is not necessary to wake up the processor on all incoming packets
900 if (pkt->isInvalidate() || pkt->isWrite()) {
901 for (auto &t_info : cpu->threadInfo) {
902 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
903 }
904 }
905}
906
907void
908TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
909{
910 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
911 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
912 cpu->wakeup(tid);
913 }
914 }
915}
916
917bool
918TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
919{
920 DPRINTF(SimpleCPU, "Received load/store response %#x\n", pkt->getAddr());
921
922 // The timing CPU is not really ticked, instead it relies on the
923 // memory system (fetch and load/store) to set the pace.
924 if (!tickEvent.scheduled()) {
925 // Delay processing of returned data until next CPU clock edge
926 tickEvent.schedule(pkt, cpu->clockEdge());
927 return true;
928 } else {
929 // In the case of a split transaction and a cache that is
930 // faster than a CPU we could get two responses in the
931 // same tick, delay the second one
932 if (!retryRespEvent.scheduled())
933 cpu->schedule(retryRespEvent, cpu->clockEdge(Cycles(1)));
934 return false;
935 }
936}
937
938void
939TimingSimpleCPU::DcachePort::DTickEvent::process()
940{
941 cpu->completeDataAccess(pkt);
942}
943
944void
945TimingSimpleCPU::DcachePort::recvReqRetry()
946{
947 // we shouldn't get a retry unless we have a packet that we're
948 // waiting to transmit
949 assert(cpu->dcache_pkt != NULL);
950 assert(cpu->_status == DcacheRetry);
951 PacketPtr tmp = cpu->dcache_pkt;
952 if (tmp->senderState) {
953 // This is a packet from a split access.
954 SplitFragmentSenderState * send_state =
955 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
956 assert(send_state);
957 PacketPtr big_pkt = send_state->bigPkt;
958
959 SplitMainSenderState * main_send_state =
960 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
961 assert(main_send_state);
962
963 if (sendTimingReq(tmp)) {
964 // If we were able to send without retrying, record that fact
965 // and try sending the other fragment.
966 send_state->clearFromParent();
967 int other_index = main_send_state->getPendingFragment();
968 if (other_index > 0) {
969 tmp = main_send_state->fragments[other_index];
970 cpu->dcache_pkt = tmp;
971 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
972 (big_pkt->isWrite() && cpu->handleWritePacket())) {
973 main_send_state->fragments[other_index] = NULL;
974 }
975 } else {
976 cpu->_status = DcacheWaitResponse;
977 // memory system takes ownership of packet
978 cpu->dcache_pkt = NULL;
979 }
980 }
981 } else if (sendTimingReq(tmp)) {
982 cpu->_status = DcacheWaitResponse;
983 // memory system takes ownership of packet
984 cpu->dcache_pkt = NULL;
985 }
986}
987
988TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
989 Tick t)
990 : pkt(_pkt), cpu(_cpu)
991{
992 cpu->schedule(this, t);
993}
994
995void
996TimingSimpleCPU::IprEvent::process()
997{
998 cpu->completeDataAccess(pkt);
999}
1000
1001const char *
1002TimingSimpleCPU::IprEvent::description() const
1003{
1004 return "Timing Simple CPU Delay IPR event";
1005}
1006
1007
1008void
1009TimingSimpleCPU::printAddr(Addr a)
1010{
1011 dcachePort.printAddr(a);
1012}
1013
1014
1015////////////////////////////////////////////////////////////////////////
1016//
1017// TimingSimpleCPU Simulation Object
1018//
1019TimingSimpleCPU *
1020TimingSimpleCPUParams::create()
1021{
1022 return new TimingSimpleCPU(this);
1023}
868 delete pkt;
869
870 postExecute();
871
872 advanceInst(fault);
873}
874
875void
876TimingSimpleCPU::updateCycleCounts()
877{
878 const Cycles delta(curCycle() - previousCycle);
879
880 numCycles += delta;
881
882 previousCycle = curCycle();
883}
884
885void
886TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
887{
888 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
889 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
890 cpu->wakeup(tid);
891 }
892 }
893
894 // Making it uniform across all CPUs:
895 // The CPUs need to be woken up only on an invalidation packet (when using caches)
896 // or on an incoming write packet (when not using caches)
897 // It is not necessary to wake up the processor on all incoming packets
898 if (pkt->isInvalidate() || pkt->isWrite()) {
899 for (auto &t_info : cpu->threadInfo) {
900 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
901 }
902 }
903}
904
905void
906TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
907{
908 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
909 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
910 cpu->wakeup(tid);
911 }
912 }
913}
914
915bool
916TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
917{
918 DPRINTF(SimpleCPU, "Received load/store response %#x\n", pkt->getAddr());
919
920 // The timing CPU is not really ticked, instead it relies on the
921 // memory system (fetch and load/store) to set the pace.
922 if (!tickEvent.scheduled()) {
923 // Delay processing of returned data until next CPU clock edge
924 tickEvent.schedule(pkt, cpu->clockEdge());
925 return true;
926 } else {
927 // In the case of a split transaction and a cache that is
928 // faster than a CPU we could get two responses in the
929 // same tick, delay the second one
930 if (!retryRespEvent.scheduled())
931 cpu->schedule(retryRespEvent, cpu->clockEdge(Cycles(1)));
932 return false;
933 }
934}
935
936void
937TimingSimpleCPU::DcachePort::DTickEvent::process()
938{
939 cpu->completeDataAccess(pkt);
940}
941
942void
943TimingSimpleCPU::DcachePort::recvReqRetry()
944{
945 // we shouldn't get a retry unless we have a packet that we're
946 // waiting to transmit
947 assert(cpu->dcache_pkt != NULL);
948 assert(cpu->_status == DcacheRetry);
949 PacketPtr tmp = cpu->dcache_pkt;
950 if (tmp->senderState) {
951 // This is a packet from a split access.
952 SplitFragmentSenderState * send_state =
953 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
954 assert(send_state);
955 PacketPtr big_pkt = send_state->bigPkt;
956
957 SplitMainSenderState * main_send_state =
958 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
959 assert(main_send_state);
960
961 if (sendTimingReq(tmp)) {
962 // If we were able to send without retrying, record that fact
963 // and try sending the other fragment.
964 send_state->clearFromParent();
965 int other_index = main_send_state->getPendingFragment();
966 if (other_index > 0) {
967 tmp = main_send_state->fragments[other_index];
968 cpu->dcache_pkt = tmp;
969 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
970 (big_pkt->isWrite() && cpu->handleWritePacket())) {
971 main_send_state->fragments[other_index] = NULL;
972 }
973 } else {
974 cpu->_status = DcacheWaitResponse;
975 // memory system takes ownership of packet
976 cpu->dcache_pkt = NULL;
977 }
978 }
979 } else if (sendTimingReq(tmp)) {
980 cpu->_status = DcacheWaitResponse;
981 // memory system takes ownership of packet
982 cpu->dcache_pkt = NULL;
983 }
984}
985
986TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
987 Tick t)
988 : pkt(_pkt), cpu(_cpu)
989{
990 cpu->schedule(this, t);
991}
992
993void
994TimingSimpleCPU::IprEvent::process()
995{
996 cpu->completeDataAccess(pkt);
997}
998
999const char *
1000TimingSimpleCPU::IprEvent::description() const
1001{
1002 return "Timing Simple CPU Delay IPR event";
1003}
1004
1005
1006void
1007TimingSimpleCPU::printAddr(Addr a)
1008{
1009 dcachePort.printAddr(a);
1010}
1011
1012
1013////////////////////////////////////////////////////////////////////////
1014//
1015// TimingSimpleCPU Simulation Object
1016//
1017TimingSimpleCPU *
1018TimingSimpleCPUParams::create()
1019{
1020 return new TimingSimpleCPU(this);
1021}