timing.cc (10665:aef704eaedd2) timing.cc (10669:aae98c1cf4a0)
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2013 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "arch/locked_mem.hh"
45#include "arch/mmapped_ipr.hh"
46#include "arch/utility.hh"
47#include "base/bigint.hh"
48#include "config/the_isa.hh"
49#include "cpu/simple/timing.hh"
50#include "cpu/exetrace.hh"
51#include "debug/Config.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/SimpleCPU.hh"
55#include "mem/packet.hh"
56#include "mem/packet_access.hh"
57#include "params/TimingSimpleCPU.hh"
58#include "sim/faults.hh"
59#include "sim/full_system.hh"
60#include "sim/system.hh"
61
62#include "debug/Mwait.hh"
63
64using namespace std;
65using namespace TheISA;
66
67void
68TimingSimpleCPU::init()
69{
70 BaseCPU::init();
71
72 // Initialise the ThreadContext's memory proxies
73 tcBase()->initMemProxies(tcBase());
74
75 if (FullSystem && !params()->switched_out) {
76 for (int i = 0; i < threadContexts.size(); ++i) {
77 ThreadContext *tc = threadContexts[i];
78 // initialize CPU, including PC
79 TheISA::initCPU(tc, _cpuId);
80 }
81 }
82}
83
84void
85TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
86{
87 pkt = _pkt;
88 cpu->schedule(this, t);
89}
90
91TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
92 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
93 dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
94 fetchEvent(this), drainManager(NULL)
95{
96 _status = Idle;
97
98 system->totalNumInsts = 0;
99}
100
101
102
103TimingSimpleCPU::~TimingSimpleCPU()
104{
105}
106
107unsigned int
108TimingSimpleCPU::drain(DrainManager *drain_manager)
109{
110 assert(!drainManager);
111 if (switchedOut())
112 return 0;
113
114 if (_status == Idle ||
115 (_status == BaseSimpleCPU::Running && isDrained())) {
116 DPRINTF(Drain, "No need to drain.\n");
117 return 0;
118 } else {
119 drainManager = drain_manager;
120 DPRINTF(Drain, "Requesting drain: %s\n", pcState());
121
122 // The fetch event can become descheduled if a drain didn't
123 // succeed on the first attempt. We need to reschedule it if
124 // the CPU is waiting for a microcode routine to complete.
125 if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
126 schedule(fetchEvent, clockEdge());
127
128 return 1;
129 }
130}
131
132void
133TimingSimpleCPU::drainResume()
134{
135 assert(!fetchEvent.scheduled());
136 assert(!drainManager);
137 if (switchedOut())
138 return;
139
140 DPRINTF(SimpleCPU, "Resume\n");
141 verifyMemoryMode();
142
143 assert(!threadContexts.empty());
144 if (threadContexts.size() > 1)
145 fatal("The timing CPU only supports one thread.\n");
146
147 if (thread->status() == ThreadContext::Active) {
148 schedule(fetchEvent, nextCycle());
149 _status = BaseSimpleCPU::Running;
150 notIdleFraction = 1;
151 } else {
152 _status = BaseSimpleCPU::Idle;
153 notIdleFraction = 0;
154 }
155}
156
157bool
158TimingSimpleCPU::tryCompleteDrain()
159{
160 if (!drainManager)
161 return false;
162
163 DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
164 if (!isDrained())
165 return false;
166
167 DPRINTF(Drain, "CPU done draining, processing drain event\n");
168 drainManager->signalDrainDone();
169 drainManager = NULL;
170
171 return true;
172}
173
174void
175TimingSimpleCPU::switchOut()
176{
177 BaseSimpleCPU::switchOut();
178
179 assert(!fetchEvent.scheduled());
180 assert(_status == BaseSimpleCPU::Running || _status == Idle);
181 assert(!stayAtPC);
182 assert(microPC() == 0);
183
184 updateCycleCounts();
185}
186
187
188void
189TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
190{
191 BaseSimpleCPU::takeOverFrom(oldCPU);
192
193 previousCycle = curCycle();
194}
195
196void
197TimingSimpleCPU::verifyMemoryMode() const
198{
199 if (!system->isTimingMode()) {
200 fatal("The timing CPU requires the memory system to be in "
201 "'timing' mode.\n");
202 }
203}
204
205void
206TimingSimpleCPU::activateContext(ThreadID thread_num)
207{
208 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
209
210 assert(thread_num == 0);
211 assert(thread);
212
213 assert(_status == Idle);
214
215 notIdleFraction = 1;
216 _status = BaseSimpleCPU::Running;
217
218 // kick things off by initiating the fetch of the next instruction
219 schedule(fetchEvent, clockEdge(Cycles(0)));
220}
221
222
223void
224TimingSimpleCPU::suspendContext(ThreadID thread_num)
225{
226 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
227
228 assert(thread_num == 0);
229 assert(thread);
230
231 if (_status == Idle)
232 return;
233
234 assert(_status == BaseSimpleCPU::Running);
235
236 // just change status to Idle... if status != Running,
237 // completeInst() will not initiate fetch of next instruction.
238
239 notIdleFraction = 0;
240 _status = Idle;
241}
242
243bool
244TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
245{
246 RequestPtr req = pkt->req;
247
248 // We're about the issues a locked load, so tell the monitor
249 // to start caring about this address
250 if (pkt->isRead() && pkt->req->isLLSC()) {
251 TheISA::handleLockedRead(thread, pkt->req);
252 }
253 if (req->isMmappedIpr()) {
254 Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
255 new IprEvent(pkt, this, clockEdge(delay));
256 _status = DcacheWaitResponse;
257 dcache_pkt = NULL;
258 } else if (!dcachePort.sendTimingReq(pkt)) {
259 _status = DcacheRetry;
260 dcache_pkt = pkt;
261 } else {
262 _status = DcacheWaitResponse;
263 // memory system takes ownership of packet
264 dcache_pkt = NULL;
265 }
266 return dcache_pkt == NULL;
267}
268
269void
270TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
271 bool read)
272{
273 PacketPtr pkt = buildPacket(req, read);
274 pkt->dataDynamic<uint8_t>(data);
275 if (req->getFlags().isSet(Request::NO_ACCESS)) {
276 assert(!dcache_pkt);
277 pkt->makeResponse();
278 completeDataAccess(pkt);
279 } else if (read) {
280 handleReadPacket(pkt);
281 } else {
282 bool do_access = true; // flag to suppress cache access
283
284 if (req->isLLSC()) {
285 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
286 } else if (req->isCondSwap()) {
287 assert(res);
288 req->setExtraData(*res);
289 }
290
291 if (do_access) {
292 dcache_pkt = pkt;
293 handleWritePacket();
294 } else {
295 _status = DcacheWaitResponse;
296 completeDataAccess(pkt);
297 }
298 }
299}
300
301void
302TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
303 RequestPtr req, uint8_t *data, bool read)
304{
305 PacketPtr pkt1, pkt2;
306 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
307 if (req->getFlags().isSet(Request::NO_ACCESS)) {
308 assert(!dcache_pkt);
309 pkt1->makeResponse();
310 completeDataAccess(pkt1);
311 } else if (read) {
312 SplitFragmentSenderState * send_state =
313 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
314 if (handleReadPacket(pkt1)) {
315 send_state->clearFromParent();
316 send_state = dynamic_cast<SplitFragmentSenderState *>(
317 pkt2->senderState);
318 if (handleReadPacket(pkt2)) {
319 send_state->clearFromParent();
320 }
321 }
322 } else {
323 dcache_pkt = pkt1;
324 SplitFragmentSenderState * send_state =
325 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
326 if (handleWritePacket()) {
327 send_state->clearFromParent();
328 dcache_pkt = pkt2;
329 send_state = dynamic_cast<SplitFragmentSenderState *>(
330 pkt2->senderState);
331 if (handleWritePacket()) {
332 send_state->clearFromParent();
333 }
334 }
335 }
336}
337
338void
339TimingSimpleCPU::translationFault(const Fault &fault)
340{
341 // fault may be NoFault in cases where a fault is suppressed,
342 // for instance prefetches.
343 updateCycleCounts();
344
345 if (traceData) {
346 // Since there was a fault, we shouldn't trace this instruction.
347 delete traceData;
348 traceData = NULL;
349 }
350
351 postExecute();
352
353 advanceInst(fault);
354}
355
356PacketPtr
357TimingSimpleCPU::buildPacket(RequestPtr req, bool read)
358{
359 return read ? Packet::createRead(req) : Packet::createWrite(req);
360}
361
362void
363TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
364 RequestPtr req1, RequestPtr req2, RequestPtr req,
365 uint8_t *data, bool read)
366{
367 pkt1 = pkt2 = NULL;
368
369 assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
370
371 if (req->getFlags().isSet(Request::NO_ACCESS)) {
372 pkt1 = buildPacket(req, read);
373 return;
374 }
375
376 pkt1 = buildPacket(req1, read);
377 pkt2 = buildPacket(req2, read);
378
379 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
380
381 pkt->dataDynamic<uint8_t>(data);
382 pkt1->dataStatic<uint8_t>(data);
383 pkt2->dataStatic<uint8_t>(data + req1->getSize());
384
385 SplitMainSenderState * main_send_state = new SplitMainSenderState;
386 pkt->senderState = main_send_state;
387 main_send_state->fragments[0] = pkt1;
388 main_send_state->fragments[1] = pkt2;
389 main_send_state->outstanding = 2;
390 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
391 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
392}
393
394Fault
395TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
396 unsigned size, unsigned flags)
397{
398 Fault fault;
399 const int asid = 0;
400 const ThreadID tid = 0;
401 const Addr pc = thread->instAddr();
402 unsigned block_size = cacheLineSize();
403 BaseTLB::Mode mode = BaseTLB::Read;
404
405 if (traceData)
406 traceData->setMem(addr, size, flags);
407
408 RequestPtr req = new Request(asid, addr, size,
409 flags, dataMasterId(), pc, _cpuId, tid);
410
411 req->taskId(taskId());
412
413 Addr split_addr = roundDown(addr + size - 1, block_size);
414 assert(split_addr <= addr || split_addr - addr < block_size);
415
416 _status = DTBWaitResponse;
417 if (split_addr > addr) {
418 RequestPtr req1, req2;
419 assert(!req->isLLSC() && !req->isSwap());
420 req->splitOnVaddr(split_addr, req1, req2);
421
422 WholeTranslationState *state =
423 new WholeTranslationState(req, req1, req2, new uint8_t[size],
424 NULL, mode);
425 DataTranslation<TimingSimpleCPU *> *trans1 =
426 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
427 DataTranslation<TimingSimpleCPU *> *trans2 =
428 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
429
430 thread->dtb->translateTiming(req1, tc, trans1, mode);
431 thread->dtb->translateTiming(req2, tc, trans2, mode);
432 } else {
433 WholeTranslationState *state =
434 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
435 DataTranslation<TimingSimpleCPU *> *translation
436 = new DataTranslation<TimingSimpleCPU *>(this, state);
437 thread->dtb->translateTiming(req, tc, translation, mode);
438 }
439
440 return NoFault;
441}
442
443bool
444TimingSimpleCPU::handleWritePacket()
445{
446 RequestPtr req = dcache_pkt->req;
447 if (req->isMmappedIpr()) {
448 Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
449 new IprEvent(dcache_pkt, this, clockEdge(delay));
450 _status = DcacheWaitResponse;
451 dcache_pkt = NULL;
452 } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
453 _status = DcacheRetry;
454 } else {
455 _status = DcacheWaitResponse;
456 // memory system takes ownership of packet
457 dcache_pkt = NULL;
458 }
459 return dcache_pkt == NULL;
460}
461
462Fault
463TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
464 Addr addr, unsigned flags, uint64_t *res)
465{
466 uint8_t *newData = new uint8_t[size];
467 const int asid = 0;
468 const ThreadID tid = 0;
469 const Addr pc = thread->instAddr();
470 unsigned block_size = cacheLineSize();
471 BaseTLB::Mode mode = BaseTLB::Write;
472
473 if (data == NULL) {
474 assert(flags & Request::CACHE_BLOCK_ZERO);
475 // This must be a cache block cleaning request
476 memset(newData, 0, size);
477 } else {
478 memcpy(newData, data, size);
479 }
480
481 if (traceData)
482 traceData->setMem(addr, size, flags);
483
484 RequestPtr req = new Request(asid, addr, size,
485 flags, dataMasterId(), pc, _cpuId, tid);
486
487 req->taskId(taskId());
488
489 Addr split_addr = roundDown(addr + size - 1, block_size);
490 assert(split_addr <= addr || split_addr - addr < block_size);
491
492 _status = DTBWaitResponse;
493 if (split_addr > addr) {
494 RequestPtr req1, req2;
495 assert(!req->isLLSC() && !req->isSwap());
496 req->splitOnVaddr(split_addr, req1, req2);
497
498 WholeTranslationState *state =
499 new WholeTranslationState(req, req1, req2, newData, res, mode);
500 DataTranslation<TimingSimpleCPU *> *trans1 =
501 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
502 DataTranslation<TimingSimpleCPU *> *trans2 =
503 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
504
505 thread->dtb->translateTiming(req1, tc, trans1, mode);
506 thread->dtb->translateTiming(req2, tc, trans2, mode);
507 } else {
508 WholeTranslationState *state =
509 new WholeTranslationState(req, newData, res, mode);
510 DataTranslation<TimingSimpleCPU *> *translation =
511 new DataTranslation<TimingSimpleCPU *>(this, state);
512 thread->dtb->translateTiming(req, tc, translation, mode);
513 }
514
515 // Translation faults will be returned via finishTranslation()
516 return NoFault;
517}
518
519
520void
521TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
522{
523 _status = BaseSimpleCPU::Running;
524
525 if (state->getFault() != NoFault) {
526 if (state->isPrefetch()) {
527 state->setNoFault();
528 }
529 delete [] state->data;
530 state->deleteReqs();
531 translationFault(state->getFault());
532 } else {
533 if (!state->isSplit) {
534 sendData(state->mainReq, state->data, state->res,
535 state->mode == BaseTLB::Read);
536 } else {
537 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
538 state->data, state->mode == BaseTLB::Read);
539 }
540 }
541
542 delete state;
543}
544
545
546void
547TimingSimpleCPU::fetch()
548{
549 DPRINTF(SimpleCPU, "Fetch\n");
550
551 if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
552 checkForInterrupts();
553 checkPcEventQueue();
554 }
555
556 // We must have just got suspended by a PC event
557 if (_status == Idle)
558 return;
559
560 TheISA::PCState pcState = thread->pcState();
561 bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst;
562
563 if (needToFetch) {
564 _status = BaseSimpleCPU::Running;
565 Request *ifetch_req = new Request();
566 ifetch_req->taskId(taskId());
567 ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
568 setupFetchRequest(ifetch_req);
569 DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
570 thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
571 BaseTLB::Execute);
572 } else {
573 _status = IcacheWaitResponse;
574 completeIfetch(NULL);
575
576 updateCycleCounts();
577 }
578}
579
580
581void
582TimingSimpleCPU::sendFetch(const Fault &fault, RequestPtr req,
583 ThreadContext *tc)
584{
585 if (fault == NoFault) {
586 DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
587 req->getVaddr(), req->getPaddr());
588 ifetch_pkt = new Packet(req, MemCmd::ReadReq);
589 ifetch_pkt->dataStatic(&inst);
590 DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
591
592 if (!icachePort.sendTimingReq(ifetch_pkt)) {
593 // Need to wait for retry
594 _status = IcacheRetry;
595 } else {
596 // Need to wait for cache to respond
597 _status = IcacheWaitResponse;
598 // ownership of packet transferred to memory system
599 ifetch_pkt = NULL;
600 }
601 } else {
602 DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
603 delete req;
604 // fetch fault: advance directly to next instruction (fault handler)
605 _status = BaseSimpleCPU::Running;
606 advanceInst(fault);
607 }
608
609 updateCycleCounts();
610}
611
612
613void
614TimingSimpleCPU::advanceInst(const Fault &fault)
615{
616 if (_status == Faulting)
617 return;
618
619 if (fault != NoFault) {
620 advancePC(fault);
621 DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
622 reschedule(fetchEvent, clockEdge(), true);
623 _status = Faulting;
624 return;
625 }
626
627
628 if (!stayAtPC)
629 advancePC(fault);
630
631 if (tryCompleteDrain())
632 return;
633
634 if (_status == BaseSimpleCPU::Running) {
635 // kick off fetch of next instruction... callback from icache
636 // response will cause that instruction to be executed,
637 // keeping the CPU running.
638 fetch();
639 }
640}
641
642
643void
644TimingSimpleCPU::completeIfetch(PacketPtr pkt)
645{
646 DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
647 pkt->getAddr() : 0);
648
649 // received a response from the icache: execute the received
650 // instruction
651 assert(!pkt || !pkt->isError());
652 assert(_status == IcacheWaitResponse);
653
654 _status = BaseSimpleCPU::Running;
655
656 updateCycleCounts();
657
658 if (pkt)
659 pkt->req->setAccessLatency();
660
661
662 preExecute();
663 if (curStaticInst && curStaticInst->isMemRef()) {
664 // load or store: just send to dcache
665 Fault fault = curStaticInst->initiateAcc(this, traceData);
666
667 // If we're not running now the instruction will complete in a dcache
668 // response callback or the instruction faulted and has started an
669 // ifetch
670 if (_status == BaseSimpleCPU::Running) {
671 if (fault != NoFault && traceData) {
672 // If there was a fault, we shouldn't trace this instruction.
673 delete traceData;
674 traceData = NULL;
675 }
676
677 postExecute();
678 // @todo remove me after debugging with legion done
679 if (curStaticInst && (!curStaticInst->isMicroop() ||
680 curStaticInst->isFirstMicroop()))
681 instCnt++;
682 advanceInst(fault);
683 }
684 } else if (curStaticInst) {
685 // non-memory instruction: execute completely now
686 Fault fault = curStaticInst->execute(this, traceData);
687
688 // keep an instruction count
689 if (fault == NoFault)
690 countInst();
691 else if (traceData && !DTRACE(ExecFaulting)) {
692 delete traceData;
693 traceData = NULL;
694 }
695
696 postExecute();
697 // @todo remove me after debugging with legion done
698 if (curStaticInst && (!curStaticInst->isMicroop() ||
699 curStaticInst->isFirstMicroop()))
700 instCnt++;
701 advanceInst(fault);
702 } else {
703 advanceInst(NoFault);
704 }
705
706 if (pkt) {
707 delete pkt->req;
708 delete pkt;
709 }
710}
711
712void
713TimingSimpleCPU::IcachePort::ITickEvent::process()
714{
715 cpu->completeIfetch(pkt);
716}
717
718bool
719TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
720{
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2013 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "arch/locked_mem.hh"
45#include "arch/mmapped_ipr.hh"
46#include "arch/utility.hh"
47#include "base/bigint.hh"
48#include "config/the_isa.hh"
49#include "cpu/simple/timing.hh"
50#include "cpu/exetrace.hh"
51#include "debug/Config.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/SimpleCPU.hh"
55#include "mem/packet.hh"
56#include "mem/packet_access.hh"
57#include "params/TimingSimpleCPU.hh"
58#include "sim/faults.hh"
59#include "sim/full_system.hh"
60#include "sim/system.hh"
61
62#include "debug/Mwait.hh"
63
64using namespace std;
65using namespace TheISA;
66
67void
68TimingSimpleCPU::init()
69{
70 BaseCPU::init();
71
72 // Initialise the ThreadContext's memory proxies
73 tcBase()->initMemProxies(tcBase());
74
75 if (FullSystem && !params()->switched_out) {
76 for (int i = 0; i < threadContexts.size(); ++i) {
77 ThreadContext *tc = threadContexts[i];
78 // initialize CPU, including PC
79 TheISA::initCPU(tc, _cpuId);
80 }
81 }
82}
83
84void
85TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
86{
87 pkt = _pkt;
88 cpu->schedule(this, t);
89}
90
91TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
92 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
93 dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
94 fetchEvent(this), drainManager(NULL)
95{
96 _status = Idle;
97
98 system->totalNumInsts = 0;
99}
100
101
102
103TimingSimpleCPU::~TimingSimpleCPU()
104{
105}
106
107unsigned int
108TimingSimpleCPU::drain(DrainManager *drain_manager)
109{
110 assert(!drainManager);
111 if (switchedOut())
112 return 0;
113
114 if (_status == Idle ||
115 (_status == BaseSimpleCPU::Running && isDrained())) {
116 DPRINTF(Drain, "No need to drain.\n");
117 return 0;
118 } else {
119 drainManager = drain_manager;
120 DPRINTF(Drain, "Requesting drain: %s\n", pcState());
121
122 // The fetch event can become descheduled if a drain didn't
123 // succeed on the first attempt. We need to reschedule it if
124 // the CPU is waiting for a microcode routine to complete.
125 if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
126 schedule(fetchEvent, clockEdge());
127
128 return 1;
129 }
130}
131
132void
133TimingSimpleCPU::drainResume()
134{
135 assert(!fetchEvent.scheduled());
136 assert(!drainManager);
137 if (switchedOut())
138 return;
139
140 DPRINTF(SimpleCPU, "Resume\n");
141 verifyMemoryMode();
142
143 assert(!threadContexts.empty());
144 if (threadContexts.size() > 1)
145 fatal("The timing CPU only supports one thread.\n");
146
147 if (thread->status() == ThreadContext::Active) {
148 schedule(fetchEvent, nextCycle());
149 _status = BaseSimpleCPU::Running;
150 notIdleFraction = 1;
151 } else {
152 _status = BaseSimpleCPU::Idle;
153 notIdleFraction = 0;
154 }
155}
156
157bool
158TimingSimpleCPU::tryCompleteDrain()
159{
160 if (!drainManager)
161 return false;
162
163 DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
164 if (!isDrained())
165 return false;
166
167 DPRINTF(Drain, "CPU done draining, processing drain event\n");
168 drainManager->signalDrainDone();
169 drainManager = NULL;
170
171 return true;
172}
173
174void
175TimingSimpleCPU::switchOut()
176{
177 BaseSimpleCPU::switchOut();
178
179 assert(!fetchEvent.scheduled());
180 assert(_status == BaseSimpleCPU::Running || _status == Idle);
181 assert(!stayAtPC);
182 assert(microPC() == 0);
183
184 updateCycleCounts();
185}
186
187
188void
189TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
190{
191 BaseSimpleCPU::takeOverFrom(oldCPU);
192
193 previousCycle = curCycle();
194}
195
196void
197TimingSimpleCPU::verifyMemoryMode() const
198{
199 if (!system->isTimingMode()) {
200 fatal("The timing CPU requires the memory system to be in "
201 "'timing' mode.\n");
202 }
203}
204
205void
206TimingSimpleCPU::activateContext(ThreadID thread_num)
207{
208 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
209
210 assert(thread_num == 0);
211 assert(thread);
212
213 assert(_status == Idle);
214
215 notIdleFraction = 1;
216 _status = BaseSimpleCPU::Running;
217
218 // kick things off by initiating the fetch of the next instruction
219 schedule(fetchEvent, clockEdge(Cycles(0)));
220}
221
222
223void
224TimingSimpleCPU::suspendContext(ThreadID thread_num)
225{
226 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
227
228 assert(thread_num == 0);
229 assert(thread);
230
231 if (_status == Idle)
232 return;
233
234 assert(_status == BaseSimpleCPU::Running);
235
236 // just change status to Idle... if status != Running,
237 // completeInst() will not initiate fetch of next instruction.
238
239 notIdleFraction = 0;
240 _status = Idle;
241}
242
243bool
244TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
245{
246 RequestPtr req = pkt->req;
247
248 // We're about the issues a locked load, so tell the monitor
249 // to start caring about this address
250 if (pkt->isRead() && pkt->req->isLLSC()) {
251 TheISA::handleLockedRead(thread, pkt->req);
252 }
253 if (req->isMmappedIpr()) {
254 Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
255 new IprEvent(pkt, this, clockEdge(delay));
256 _status = DcacheWaitResponse;
257 dcache_pkt = NULL;
258 } else if (!dcachePort.sendTimingReq(pkt)) {
259 _status = DcacheRetry;
260 dcache_pkt = pkt;
261 } else {
262 _status = DcacheWaitResponse;
263 // memory system takes ownership of packet
264 dcache_pkt = NULL;
265 }
266 return dcache_pkt == NULL;
267}
268
269void
270TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
271 bool read)
272{
273 PacketPtr pkt = buildPacket(req, read);
274 pkt->dataDynamic<uint8_t>(data);
275 if (req->getFlags().isSet(Request::NO_ACCESS)) {
276 assert(!dcache_pkt);
277 pkt->makeResponse();
278 completeDataAccess(pkt);
279 } else if (read) {
280 handleReadPacket(pkt);
281 } else {
282 bool do_access = true; // flag to suppress cache access
283
284 if (req->isLLSC()) {
285 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
286 } else if (req->isCondSwap()) {
287 assert(res);
288 req->setExtraData(*res);
289 }
290
291 if (do_access) {
292 dcache_pkt = pkt;
293 handleWritePacket();
294 } else {
295 _status = DcacheWaitResponse;
296 completeDataAccess(pkt);
297 }
298 }
299}
300
301void
302TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
303 RequestPtr req, uint8_t *data, bool read)
304{
305 PacketPtr pkt1, pkt2;
306 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
307 if (req->getFlags().isSet(Request::NO_ACCESS)) {
308 assert(!dcache_pkt);
309 pkt1->makeResponse();
310 completeDataAccess(pkt1);
311 } else if (read) {
312 SplitFragmentSenderState * send_state =
313 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
314 if (handleReadPacket(pkt1)) {
315 send_state->clearFromParent();
316 send_state = dynamic_cast<SplitFragmentSenderState *>(
317 pkt2->senderState);
318 if (handleReadPacket(pkt2)) {
319 send_state->clearFromParent();
320 }
321 }
322 } else {
323 dcache_pkt = pkt1;
324 SplitFragmentSenderState * send_state =
325 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
326 if (handleWritePacket()) {
327 send_state->clearFromParent();
328 dcache_pkt = pkt2;
329 send_state = dynamic_cast<SplitFragmentSenderState *>(
330 pkt2->senderState);
331 if (handleWritePacket()) {
332 send_state->clearFromParent();
333 }
334 }
335 }
336}
337
338void
339TimingSimpleCPU::translationFault(const Fault &fault)
340{
341 // fault may be NoFault in cases where a fault is suppressed,
342 // for instance prefetches.
343 updateCycleCounts();
344
345 if (traceData) {
346 // Since there was a fault, we shouldn't trace this instruction.
347 delete traceData;
348 traceData = NULL;
349 }
350
351 postExecute();
352
353 advanceInst(fault);
354}
355
356PacketPtr
357TimingSimpleCPU::buildPacket(RequestPtr req, bool read)
358{
359 return read ? Packet::createRead(req) : Packet::createWrite(req);
360}
361
362void
363TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
364 RequestPtr req1, RequestPtr req2, RequestPtr req,
365 uint8_t *data, bool read)
366{
367 pkt1 = pkt2 = NULL;
368
369 assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
370
371 if (req->getFlags().isSet(Request::NO_ACCESS)) {
372 pkt1 = buildPacket(req, read);
373 return;
374 }
375
376 pkt1 = buildPacket(req1, read);
377 pkt2 = buildPacket(req2, read);
378
379 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
380
381 pkt->dataDynamic<uint8_t>(data);
382 pkt1->dataStatic<uint8_t>(data);
383 pkt2->dataStatic<uint8_t>(data + req1->getSize());
384
385 SplitMainSenderState * main_send_state = new SplitMainSenderState;
386 pkt->senderState = main_send_state;
387 main_send_state->fragments[0] = pkt1;
388 main_send_state->fragments[1] = pkt2;
389 main_send_state->outstanding = 2;
390 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
391 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
392}
393
394Fault
395TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
396 unsigned size, unsigned flags)
397{
398 Fault fault;
399 const int asid = 0;
400 const ThreadID tid = 0;
401 const Addr pc = thread->instAddr();
402 unsigned block_size = cacheLineSize();
403 BaseTLB::Mode mode = BaseTLB::Read;
404
405 if (traceData)
406 traceData->setMem(addr, size, flags);
407
408 RequestPtr req = new Request(asid, addr, size,
409 flags, dataMasterId(), pc, _cpuId, tid);
410
411 req->taskId(taskId());
412
413 Addr split_addr = roundDown(addr + size - 1, block_size);
414 assert(split_addr <= addr || split_addr - addr < block_size);
415
416 _status = DTBWaitResponse;
417 if (split_addr > addr) {
418 RequestPtr req1, req2;
419 assert(!req->isLLSC() && !req->isSwap());
420 req->splitOnVaddr(split_addr, req1, req2);
421
422 WholeTranslationState *state =
423 new WholeTranslationState(req, req1, req2, new uint8_t[size],
424 NULL, mode);
425 DataTranslation<TimingSimpleCPU *> *trans1 =
426 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
427 DataTranslation<TimingSimpleCPU *> *trans2 =
428 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
429
430 thread->dtb->translateTiming(req1, tc, trans1, mode);
431 thread->dtb->translateTiming(req2, tc, trans2, mode);
432 } else {
433 WholeTranslationState *state =
434 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
435 DataTranslation<TimingSimpleCPU *> *translation
436 = new DataTranslation<TimingSimpleCPU *>(this, state);
437 thread->dtb->translateTiming(req, tc, translation, mode);
438 }
439
440 return NoFault;
441}
442
443bool
444TimingSimpleCPU::handleWritePacket()
445{
446 RequestPtr req = dcache_pkt->req;
447 if (req->isMmappedIpr()) {
448 Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
449 new IprEvent(dcache_pkt, this, clockEdge(delay));
450 _status = DcacheWaitResponse;
451 dcache_pkt = NULL;
452 } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
453 _status = DcacheRetry;
454 } else {
455 _status = DcacheWaitResponse;
456 // memory system takes ownership of packet
457 dcache_pkt = NULL;
458 }
459 return dcache_pkt == NULL;
460}
461
462Fault
463TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
464 Addr addr, unsigned flags, uint64_t *res)
465{
466 uint8_t *newData = new uint8_t[size];
467 const int asid = 0;
468 const ThreadID tid = 0;
469 const Addr pc = thread->instAddr();
470 unsigned block_size = cacheLineSize();
471 BaseTLB::Mode mode = BaseTLB::Write;
472
473 if (data == NULL) {
474 assert(flags & Request::CACHE_BLOCK_ZERO);
475 // This must be a cache block cleaning request
476 memset(newData, 0, size);
477 } else {
478 memcpy(newData, data, size);
479 }
480
481 if (traceData)
482 traceData->setMem(addr, size, flags);
483
484 RequestPtr req = new Request(asid, addr, size,
485 flags, dataMasterId(), pc, _cpuId, tid);
486
487 req->taskId(taskId());
488
489 Addr split_addr = roundDown(addr + size - 1, block_size);
490 assert(split_addr <= addr || split_addr - addr < block_size);
491
492 _status = DTBWaitResponse;
493 if (split_addr > addr) {
494 RequestPtr req1, req2;
495 assert(!req->isLLSC() && !req->isSwap());
496 req->splitOnVaddr(split_addr, req1, req2);
497
498 WholeTranslationState *state =
499 new WholeTranslationState(req, req1, req2, newData, res, mode);
500 DataTranslation<TimingSimpleCPU *> *trans1 =
501 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
502 DataTranslation<TimingSimpleCPU *> *trans2 =
503 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
504
505 thread->dtb->translateTiming(req1, tc, trans1, mode);
506 thread->dtb->translateTiming(req2, tc, trans2, mode);
507 } else {
508 WholeTranslationState *state =
509 new WholeTranslationState(req, newData, res, mode);
510 DataTranslation<TimingSimpleCPU *> *translation =
511 new DataTranslation<TimingSimpleCPU *>(this, state);
512 thread->dtb->translateTiming(req, tc, translation, mode);
513 }
514
515 // Translation faults will be returned via finishTranslation()
516 return NoFault;
517}
518
519
520void
521TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
522{
523 _status = BaseSimpleCPU::Running;
524
525 if (state->getFault() != NoFault) {
526 if (state->isPrefetch()) {
527 state->setNoFault();
528 }
529 delete [] state->data;
530 state->deleteReqs();
531 translationFault(state->getFault());
532 } else {
533 if (!state->isSplit) {
534 sendData(state->mainReq, state->data, state->res,
535 state->mode == BaseTLB::Read);
536 } else {
537 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
538 state->data, state->mode == BaseTLB::Read);
539 }
540 }
541
542 delete state;
543}
544
545
546void
547TimingSimpleCPU::fetch()
548{
549 DPRINTF(SimpleCPU, "Fetch\n");
550
551 if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
552 checkForInterrupts();
553 checkPcEventQueue();
554 }
555
556 // We must have just got suspended by a PC event
557 if (_status == Idle)
558 return;
559
560 TheISA::PCState pcState = thread->pcState();
561 bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst;
562
563 if (needToFetch) {
564 _status = BaseSimpleCPU::Running;
565 Request *ifetch_req = new Request();
566 ifetch_req->taskId(taskId());
567 ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
568 setupFetchRequest(ifetch_req);
569 DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
570 thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
571 BaseTLB::Execute);
572 } else {
573 _status = IcacheWaitResponse;
574 completeIfetch(NULL);
575
576 updateCycleCounts();
577 }
578}
579
580
581void
582TimingSimpleCPU::sendFetch(const Fault &fault, RequestPtr req,
583 ThreadContext *tc)
584{
585 if (fault == NoFault) {
586 DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
587 req->getVaddr(), req->getPaddr());
588 ifetch_pkt = new Packet(req, MemCmd::ReadReq);
589 ifetch_pkt->dataStatic(&inst);
590 DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
591
592 if (!icachePort.sendTimingReq(ifetch_pkt)) {
593 // Need to wait for retry
594 _status = IcacheRetry;
595 } else {
596 // Need to wait for cache to respond
597 _status = IcacheWaitResponse;
598 // ownership of packet transferred to memory system
599 ifetch_pkt = NULL;
600 }
601 } else {
602 DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
603 delete req;
604 // fetch fault: advance directly to next instruction (fault handler)
605 _status = BaseSimpleCPU::Running;
606 advanceInst(fault);
607 }
608
609 updateCycleCounts();
610}
611
612
613void
614TimingSimpleCPU::advanceInst(const Fault &fault)
615{
616 if (_status == Faulting)
617 return;
618
619 if (fault != NoFault) {
620 advancePC(fault);
621 DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
622 reschedule(fetchEvent, clockEdge(), true);
623 _status = Faulting;
624 return;
625 }
626
627
628 if (!stayAtPC)
629 advancePC(fault);
630
631 if (tryCompleteDrain())
632 return;
633
634 if (_status == BaseSimpleCPU::Running) {
635 // kick off fetch of next instruction... callback from icache
636 // response will cause that instruction to be executed,
637 // keeping the CPU running.
638 fetch();
639 }
640}
641
642
643void
644TimingSimpleCPU::completeIfetch(PacketPtr pkt)
645{
646 DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
647 pkt->getAddr() : 0);
648
649 // received a response from the icache: execute the received
650 // instruction
651 assert(!pkt || !pkt->isError());
652 assert(_status == IcacheWaitResponse);
653
654 _status = BaseSimpleCPU::Running;
655
656 updateCycleCounts();
657
658 if (pkt)
659 pkt->req->setAccessLatency();
660
661
662 preExecute();
663 if (curStaticInst && curStaticInst->isMemRef()) {
664 // load or store: just send to dcache
665 Fault fault = curStaticInst->initiateAcc(this, traceData);
666
667 // If we're not running now the instruction will complete in a dcache
668 // response callback or the instruction faulted and has started an
669 // ifetch
670 if (_status == BaseSimpleCPU::Running) {
671 if (fault != NoFault && traceData) {
672 // If there was a fault, we shouldn't trace this instruction.
673 delete traceData;
674 traceData = NULL;
675 }
676
677 postExecute();
678 // @todo remove me after debugging with legion done
679 if (curStaticInst && (!curStaticInst->isMicroop() ||
680 curStaticInst->isFirstMicroop()))
681 instCnt++;
682 advanceInst(fault);
683 }
684 } else if (curStaticInst) {
685 // non-memory instruction: execute completely now
686 Fault fault = curStaticInst->execute(this, traceData);
687
688 // keep an instruction count
689 if (fault == NoFault)
690 countInst();
691 else if (traceData && !DTRACE(ExecFaulting)) {
692 delete traceData;
693 traceData = NULL;
694 }
695
696 postExecute();
697 // @todo remove me after debugging with legion done
698 if (curStaticInst && (!curStaticInst->isMicroop() ||
699 curStaticInst->isFirstMicroop()))
700 instCnt++;
701 advanceInst(fault);
702 } else {
703 advanceInst(NoFault);
704 }
705
706 if (pkt) {
707 delete pkt->req;
708 delete pkt;
709 }
710}
711
712void
713TimingSimpleCPU::IcachePort::ITickEvent::process()
714{
715 cpu->completeIfetch(pkt);
716}
717
718bool
719TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
720{
721 DPRINTF(SimpleCPU, "Received timing response %#x\n", pkt->getAddr());
721 DPRINTF(SimpleCPU, "Received fetch response %#x\n", pkt->getAddr());
722 // we should only ever see one response per cycle since we only
723 // issue a new request once this response is sunk
724 assert(!tickEvent.scheduled());
722 // delay processing of returned data until next CPU clock edge
725 // delay processing of returned data until next CPU clock edge
723 Tick next_tick = cpu->clockEdge();
726 tickEvent.schedule(pkt, cpu->clockEdge());
724
727
725 if (next_tick == curTick())
726 cpu->completeIfetch(pkt);
727 else
728 tickEvent.schedule(pkt, next_tick);
729
730 return true;
731}
732
733void
734TimingSimpleCPU::IcachePort::recvRetry()
735{
736 // we shouldn't get a retry unless we have a packet that we're
737 // waiting to transmit
738 assert(cpu->ifetch_pkt != NULL);
739 assert(cpu->_status == IcacheRetry);
740 PacketPtr tmp = cpu->ifetch_pkt;
741 if (sendTimingReq(tmp)) {
742 cpu->_status = IcacheWaitResponse;
743 cpu->ifetch_pkt = NULL;
744 }
745}
746
747void
748TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
749{
750 // received a response from the dcache: complete the load or store
751 // instruction
752 assert(!pkt->isError());
753 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
754 pkt->req->getFlags().isSet(Request::NO_ACCESS));
755
756 pkt->req->setAccessLatency();
757
758 updateCycleCounts();
759
760 if (pkt->senderState) {
761 SplitFragmentSenderState * send_state =
762 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
763 assert(send_state);
764 delete pkt->req;
765 delete pkt;
766 PacketPtr big_pkt = send_state->bigPkt;
767 delete send_state;
768
769 SplitMainSenderState * main_send_state =
770 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
771 assert(main_send_state);
772 // Record the fact that this packet is no longer outstanding.
773 assert(main_send_state->outstanding != 0);
774 main_send_state->outstanding--;
775
776 if (main_send_state->outstanding) {
777 return;
778 } else {
779 delete main_send_state;
780 big_pkt->senderState = NULL;
781 pkt = big_pkt;
782 }
783 }
784
785 _status = BaseSimpleCPU::Running;
786
787 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
788
789 // keep an instruction count
790 if (fault == NoFault)
791 countInst();
792 else if (traceData) {
793 // If there was a fault, we shouldn't trace this instruction.
794 delete traceData;
795 traceData = NULL;
796 }
797
798 delete pkt->req;
799 delete pkt;
800
801 postExecute();
802
803 advanceInst(fault);
804}
805
806void
807TimingSimpleCPU::updateCycleCounts()
808{
809 const Cycles delta(curCycle() - previousCycle);
810
811 numCycles += delta;
812 ppCycles->notify(delta);
813
814 previousCycle = curCycle();
815}
816
817void
818TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
819{
820 // X86 ISA: Snooping an invalidation for monitor/mwait
821 if(cpu->getAddrMonitor()->doMonitor(pkt)) {
822 cpu->wakeup();
823 }
824 TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask);
825}
826
827void
828TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
829{
830 // X86 ISA: Snooping an invalidation for monitor/mwait
831 if(cpu->getAddrMonitor()->doMonitor(pkt)) {
832 cpu->wakeup();
833 }
834}
835
836bool
837TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
838{
728 return true;
729}
730
731void
732TimingSimpleCPU::IcachePort::recvRetry()
733{
734 // we shouldn't get a retry unless we have a packet that we're
735 // waiting to transmit
736 assert(cpu->ifetch_pkt != NULL);
737 assert(cpu->_status == IcacheRetry);
738 PacketPtr tmp = cpu->ifetch_pkt;
739 if (sendTimingReq(tmp)) {
740 cpu->_status = IcacheWaitResponse;
741 cpu->ifetch_pkt = NULL;
742 }
743}
744
745void
746TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
747{
748 // received a response from the dcache: complete the load or store
749 // instruction
750 assert(!pkt->isError());
751 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
752 pkt->req->getFlags().isSet(Request::NO_ACCESS));
753
754 pkt->req->setAccessLatency();
755
756 updateCycleCounts();
757
758 if (pkt->senderState) {
759 SplitFragmentSenderState * send_state =
760 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
761 assert(send_state);
762 delete pkt->req;
763 delete pkt;
764 PacketPtr big_pkt = send_state->bigPkt;
765 delete send_state;
766
767 SplitMainSenderState * main_send_state =
768 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
769 assert(main_send_state);
770 // Record the fact that this packet is no longer outstanding.
771 assert(main_send_state->outstanding != 0);
772 main_send_state->outstanding--;
773
774 if (main_send_state->outstanding) {
775 return;
776 } else {
777 delete main_send_state;
778 big_pkt->senderState = NULL;
779 pkt = big_pkt;
780 }
781 }
782
783 _status = BaseSimpleCPU::Running;
784
785 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
786
787 // keep an instruction count
788 if (fault == NoFault)
789 countInst();
790 else if (traceData) {
791 // If there was a fault, we shouldn't trace this instruction.
792 delete traceData;
793 traceData = NULL;
794 }
795
796 delete pkt->req;
797 delete pkt;
798
799 postExecute();
800
801 advanceInst(fault);
802}
803
804void
805TimingSimpleCPU::updateCycleCounts()
806{
807 const Cycles delta(curCycle() - previousCycle);
808
809 numCycles += delta;
810 ppCycles->notify(delta);
811
812 previousCycle = curCycle();
813}
814
815void
816TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
817{
818 // X86 ISA: Snooping an invalidation for monitor/mwait
819 if(cpu->getAddrMonitor()->doMonitor(pkt)) {
820 cpu->wakeup();
821 }
822 TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask);
823}
824
825void
826TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
827{
828 // X86 ISA: Snooping an invalidation for monitor/mwait
829 if(cpu->getAddrMonitor()->doMonitor(pkt)) {
830 cpu->wakeup();
831 }
832}
833
834bool
835TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
836{
839 // delay processing of returned data until next CPU clock edge
840 Tick next_tick = cpu->clockEdge();
837 DPRINTF(SimpleCPU, "Received load/store response %#x\n", pkt->getAddr());
841
838
842 if (next_tick == curTick()) {
843 cpu->completeDataAccess(pkt);
839 // The timing CPU is not really ticked, instead it relies on the
840 // memory system (fetch and load/store) to set the pace.
841 if (!tickEvent.scheduled()) {
842 // Delay processing of returned data until next CPU clock edge
843 tickEvent.schedule(pkt, cpu->clockEdge());
844 return true;
844 } else {
845 } else {
845 if (!tickEvent.scheduled()) {
846 tickEvent.schedule(pkt, next_tick);
847 } else {
848 // In the case of a split transaction and a cache that is
849 // faster than a CPU we could get two responses before
850 // next_tick expires
851 if (!retryEvent.scheduled())
852 cpu->schedule(retryEvent, next_tick);
853 return false;
854 }
846 // In the case of a split transaction and a cache that is
847 // faster than a CPU we could get two responses in the
848 // same tick, delay the second one
849 if (!retryEvent.scheduled())
850 cpu->schedule(retryEvent, cpu->clockEdge(Cycles(1)));
851 return false;
855 }
852 }
856
857 return true;
858}
859
860void
861TimingSimpleCPU::DcachePort::DTickEvent::process()
862{
863 cpu->completeDataAccess(pkt);
864}
865
866void
867TimingSimpleCPU::DcachePort::recvRetry()
868{
869 // we shouldn't get a retry unless we have a packet that we're
870 // waiting to transmit
871 assert(cpu->dcache_pkt != NULL);
872 assert(cpu->_status == DcacheRetry);
873 PacketPtr tmp = cpu->dcache_pkt;
874 if (tmp->senderState) {
875 // This is a packet from a split access.
876 SplitFragmentSenderState * send_state =
877 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
878 assert(send_state);
879 PacketPtr big_pkt = send_state->bigPkt;
880
881 SplitMainSenderState * main_send_state =
882 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
883 assert(main_send_state);
884
885 if (sendTimingReq(tmp)) {
886 // If we were able to send without retrying, record that fact
887 // and try sending the other fragment.
888 send_state->clearFromParent();
889 int other_index = main_send_state->getPendingFragment();
890 if (other_index > 0) {
891 tmp = main_send_state->fragments[other_index];
892 cpu->dcache_pkt = tmp;
893 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
894 (big_pkt->isWrite() && cpu->handleWritePacket())) {
895 main_send_state->fragments[other_index] = NULL;
896 }
897 } else {
898 cpu->_status = DcacheWaitResponse;
899 // memory system takes ownership of packet
900 cpu->dcache_pkt = NULL;
901 }
902 }
903 } else if (sendTimingReq(tmp)) {
904 cpu->_status = DcacheWaitResponse;
905 // memory system takes ownership of packet
906 cpu->dcache_pkt = NULL;
907 }
908}
909
910TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
911 Tick t)
912 : pkt(_pkt), cpu(_cpu)
913{
914 cpu->schedule(this, t);
915}
916
917void
918TimingSimpleCPU::IprEvent::process()
919{
920 cpu->completeDataAccess(pkt);
921}
922
923const char *
924TimingSimpleCPU::IprEvent::description() const
925{
926 return "Timing Simple CPU Delay IPR event";
927}
928
929
930void
931TimingSimpleCPU::printAddr(Addr a)
932{
933 dcachePort.printAddr(a);
934}
935
936
937////////////////////////////////////////////////////////////////////////
938//
939// TimingSimpleCPU Simulation Object
940//
941TimingSimpleCPU *
942TimingSimpleCPUParams::create()
943{
944 numThreads = 1;
945 if (!FullSystem && workload.size() != 1)
946 panic("only one workload allowed");
947 return new TimingSimpleCPU(this);
948}
853}
854
855void
856TimingSimpleCPU::DcachePort::DTickEvent::process()
857{
858 cpu->completeDataAccess(pkt);
859}
860
861void
862TimingSimpleCPU::DcachePort::recvRetry()
863{
864 // we shouldn't get a retry unless we have a packet that we're
865 // waiting to transmit
866 assert(cpu->dcache_pkt != NULL);
867 assert(cpu->_status == DcacheRetry);
868 PacketPtr tmp = cpu->dcache_pkt;
869 if (tmp->senderState) {
870 // This is a packet from a split access.
871 SplitFragmentSenderState * send_state =
872 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
873 assert(send_state);
874 PacketPtr big_pkt = send_state->bigPkt;
875
876 SplitMainSenderState * main_send_state =
877 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
878 assert(main_send_state);
879
880 if (sendTimingReq(tmp)) {
881 // If we were able to send without retrying, record that fact
882 // and try sending the other fragment.
883 send_state->clearFromParent();
884 int other_index = main_send_state->getPendingFragment();
885 if (other_index > 0) {
886 tmp = main_send_state->fragments[other_index];
887 cpu->dcache_pkt = tmp;
888 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
889 (big_pkt->isWrite() && cpu->handleWritePacket())) {
890 main_send_state->fragments[other_index] = NULL;
891 }
892 } else {
893 cpu->_status = DcacheWaitResponse;
894 // memory system takes ownership of packet
895 cpu->dcache_pkt = NULL;
896 }
897 }
898 } else if (sendTimingReq(tmp)) {
899 cpu->_status = DcacheWaitResponse;
900 // memory system takes ownership of packet
901 cpu->dcache_pkt = NULL;
902 }
903}
904
905TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
906 Tick t)
907 : pkt(_pkt), cpu(_cpu)
908{
909 cpu->schedule(this, t);
910}
911
912void
913TimingSimpleCPU::IprEvent::process()
914{
915 cpu->completeDataAccess(pkt);
916}
917
918const char *
919TimingSimpleCPU::IprEvent::description() const
920{
921 return "Timing Simple CPU Delay IPR event";
922}
923
924
925void
926TimingSimpleCPU::printAddr(Addr a)
927{
928 dcachePort.printAddr(a);
929}
930
931
932////////////////////////////////////////////////////////////////////////
933//
934// TimingSimpleCPU Simulation Object
935//
936TimingSimpleCPU *
937TimingSimpleCPUParams::create()
938{
939 numThreads = 1;
940 if (!FullSystem && workload.size() != 1)
941 panic("only one workload allowed");
942 return new TimingSimpleCPU(this);
943}