Deleted Added
sdiff udiff text old ( 6658:f4de76601762 ) new ( 6739:48d10ba361c9 )
full compact
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "config/the_isa.hh"
36#include "cpu/exetrace.hh"
37#include "cpu/simple/timing.hh"
38#include "mem/packet.hh"
39#include "mem/packet_access.hh"
40#include "params/TimingSimpleCPU.hh"
41#include "sim/system.hh"
42
43using namespace std;
44using namespace TheISA;
45
46Port *
47TimingSimpleCPU::getPort(const std::string &if_name, int idx)
48{
49 if (if_name == "dcache_port")
50 return &dcachePort;
51 else if (if_name == "icache_port")
52 return &icachePort;
53 else
54 panic("No Such Port\n");
55}
56
57void
58TimingSimpleCPU::init()
59{
60 BaseCPU::init();
61#if FULL_SYSTEM
62 for (int i = 0; i < threadContexts.size(); ++i) {
63 ThreadContext *tc = threadContexts[i];
64
65 // initialize CPU, including PC
66 TheISA::initCPU(tc, _cpuId);
67 }
68#endif
69}
70
71Tick
72TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
73{
74 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
75 return curTick;
76}
77
78void
79TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
80{
81 //No internal storage to update, jusst return
82 return;
83}
84
85void
86TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
87{
88 if (status == RangeChange) {
89 if (!snoopRangeSent) {
90 snoopRangeSent = true;
91 sendStatusChange(Port::RangeChange);
92 }
93 return;
94 }
95
96 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
97}
98
99
100void
101TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
102{
103 pkt = _pkt;
104 cpu->schedule(this, t);
105}
106
107TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
108 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this, p->clock),
109 dcachePort(this, p->clock), fetchEvent(this)
110{
111 _status = Idle;
112
113 icachePort.snoopRangeSent = false;
114 dcachePort.snoopRangeSent = false;
115
116 ifetch_pkt = dcache_pkt = NULL;
117 drainEvent = NULL;
118 previousTick = 0;
119 changeState(SimObject::Running);
120}
121
122
123TimingSimpleCPU::~TimingSimpleCPU()
124{
125}
126
127void
128TimingSimpleCPU::serialize(ostream &os)
129{
130 SimObject::State so_state = SimObject::getState();
131 SERIALIZE_ENUM(so_state);
132 BaseSimpleCPU::serialize(os);
133}
134
135void
136TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
137{
138 SimObject::State so_state;
139 UNSERIALIZE_ENUM(so_state);
140 BaseSimpleCPU::unserialize(cp, section);
141}
142
143unsigned int
144TimingSimpleCPU::drain(Event *drain_event)
145{
146 // TimingSimpleCPU is ready to drain if it's not waiting for
147 // an access to complete.
148 if (_status == Idle || _status == Running || _status == SwitchedOut) {
149 changeState(SimObject::Drained);
150 return 0;
151 } else {
152 changeState(SimObject::Draining);
153 drainEvent = drain_event;
154 return 1;
155 }
156}
157
158void
159TimingSimpleCPU::resume()
160{
161 DPRINTF(SimpleCPU, "Resume\n");
162 if (_status != SwitchedOut && _status != Idle) {
163 assert(system->getMemoryMode() == Enums::timing);
164
165 if (fetchEvent.scheduled())
166 deschedule(fetchEvent);
167
168 schedule(fetchEvent, nextCycle());
169 }
170
171 changeState(SimObject::Running);
172}
173
174void
175TimingSimpleCPU::switchOut()
176{
177 assert(_status == Running || _status == Idle);
178 _status = SwitchedOut;
179 numCycles += tickToCycles(curTick - previousTick);
180
181 // If we've been scheduled to resume but are then told to switch out,
182 // we'll need to cancel it.
183 if (fetchEvent.scheduled())
184 deschedule(fetchEvent);
185}
186
187
188void
189TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
190{
191 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
192
193 // if any of this CPU's ThreadContexts are active, mark the CPU as
194 // running and schedule its tick event.
195 for (int i = 0; i < threadContexts.size(); ++i) {
196 ThreadContext *tc = threadContexts[i];
197 if (tc->status() == ThreadContext::Active && _status != Running) {
198 _status = Running;
199 break;
200 }
201 }
202
203 if (_status != Running) {
204 _status = Idle;
205 }
206 assert(threadContexts.size() == 1);
207 previousTick = curTick;
208}
209
210
211void
212TimingSimpleCPU::activateContext(int thread_num, int delay)
213{
214 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
215
216 assert(thread_num == 0);
217 assert(thread);
218
219 assert(_status == Idle);
220
221 notIdleFraction++;
222 _status = Running;
223
224 // kick things off by initiating the fetch of the next instruction
225 schedule(fetchEvent, nextCycle(curTick + ticks(delay)));
226}
227
228
229void
230TimingSimpleCPU::suspendContext(int thread_num)
231{
232 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
233
234 assert(thread_num == 0);
235 assert(thread);
236
237 if (_status == Idle)
238 return;
239
240 assert(_status == Running);
241
242 // just change status to Idle... if status != Running,
243 // completeInst() will not initiate fetch of next instruction.
244
245 notIdleFraction--;
246 _status = Idle;
247}
248
249bool
250TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
251{
252 RequestPtr req = pkt->req;
253 if (req->isMmapedIpr()) {
254 Tick delay;
255 delay = TheISA::handleIprRead(thread->getTC(), pkt);
256 new IprEvent(pkt, this, nextCycle(curTick + delay));
257 _status = DcacheWaitResponse;
258 dcache_pkt = NULL;
259 } else if (!dcachePort.sendTiming(pkt)) {
260 _status = DcacheRetry;
261 dcache_pkt = pkt;
262 } else {
263 _status = DcacheWaitResponse;
264 // memory system takes ownership of packet
265 dcache_pkt = NULL;
266 }
267 return dcache_pkt == NULL;
268}
269
270void
271TimingSimpleCPU::sendData(Fault fault, RequestPtr req,
272 uint8_t *data, uint64_t *res, bool read)
273{
274 _status = Running;
275 if (fault != NoFault) {
276 delete data;
277 delete req;
278
279 translationFault(fault);
280 return;
281 }
282 PacketPtr pkt;
283 buildPacket(pkt, req, read);
284 pkt->dataDynamic<uint8_t>(data);
285 if (req->getFlags().isSet(Request::NO_ACCESS)) {
286 assert(!dcache_pkt);
287 pkt->makeResponse();
288 completeDataAccess(pkt);
289 } else if (read) {
290 handleReadPacket(pkt);
291 } else {
292 bool do_access = true; // flag to suppress cache access
293
294 if (req->isLLSC()) {
295 do_access = TheISA::handleLockedWrite(thread, req);
296 } else if (req->isCondSwap()) {
297 assert(res);
298 req->setExtraData(*res);
299 }
300
301 if (do_access) {
302 dcache_pkt = pkt;
303 handleWritePacket();
304 } else {
305 _status = DcacheWaitResponse;
306 completeDataAccess(pkt);
307 }
308 }
309}
310
311void
312TimingSimpleCPU::sendSplitData(Fault fault1, Fault fault2,
313 RequestPtr req1, RequestPtr req2, RequestPtr req,
314 uint8_t *data, bool read)
315{
316 _status = Running;
317 if (fault1 != NoFault || fault2 != NoFault) {
318 delete data;
319 delete req1;
320 delete req2;
321 if (fault1 != NoFault)
322 translationFault(fault1);
323 else if (fault2 != NoFault)
324 translationFault(fault2);
325 return;
326 }
327 PacketPtr pkt1, pkt2;
328 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
329 if (req->getFlags().isSet(Request::NO_ACCESS)) {
330 assert(!dcache_pkt);
331 pkt1->makeResponse();
332 completeDataAccess(pkt1);
333 } else if (read) {
334 if (handleReadPacket(pkt1)) {
335 SplitFragmentSenderState * send_state =
336 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
337 send_state->clearFromParent();
338 if (handleReadPacket(pkt2)) {
339 send_state = dynamic_cast<SplitFragmentSenderState *>(
340 pkt1->senderState);
341 send_state->clearFromParent();
342 }
343 }
344 } else {
345 dcache_pkt = pkt1;
346 if (handleWritePacket()) {
347 SplitFragmentSenderState * send_state =
348 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
349 send_state->clearFromParent();
350 dcache_pkt = pkt2;
351 if (handleWritePacket()) {
352 send_state = dynamic_cast<SplitFragmentSenderState *>(
353 pkt1->senderState);
354 send_state->clearFromParent();
355 }
356 }
357 }
358}
359
360void
361TimingSimpleCPU::translationFault(Fault fault)
362{
363 numCycles += tickToCycles(curTick - previousTick);
364 previousTick = curTick;
365
366 if (traceData) {
367 // Since there was a fault, we shouldn't trace this instruction.
368 delete traceData;
369 traceData = NULL;
370 }
371
372 postExecute();
373
374 if (getState() == SimObject::Draining) {
375 advancePC(fault);
376 completeDrain();
377 } else {
378 advanceInst(fault);
379 }
380}
381
382void
383TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
384{
385 MemCmd cmd;
386 if (read) {
387 cmd = MemCmd::ReadReq;
388 if (req->isLLSC())
389 cmd = MemCmd::LoadLockedReq;
390 } else {
391 cmd = MemCmd::WriteReq;
392 if (req->isLLSC()) {
393 cmd = MemCmd::StoreCondReq;
394 } else if (req->isSwap()) {
395 cmd = MemCmd::SwapReq;
396 }
397 }
398 pkt = new Packet(req, cmd, Packet::Broadcast);
399}
400
401void
402TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
403 RequestPtr req1, RequestPtr req2, RequestPtr req,
404 uint8_t *data, bool read)
405{
406 pkt1 = pkt2 = NULL;
407
408 assert(!req1->isMmapedIpr() && !req2->isMmapedIpr());
409
410 if (req->getFlags().isSet(Request::NO_ACCESS)) {
411 buildPacket(pkt1, req, read);
412 return;
413 }
414
415 buildPacket(pkt1, req1, read);
416 buildPacket(pkt2, req2, read);
417
418 req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags());
419 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand(),
420 Packet::Broadcast);
421
422 pkt->dataDynamic<uint8_t>(data);
423 pkt1->dataStatic<uint8_t>(data);
424 pkt2->dataStatic<uint8_t>(data + req1->getSize());
425
426 SplitMainSenderState * main_send_state = new SplitMainSenderState;
427 pkt->senderState = main_send_state;
428 main_send_state->fragments[0] = pkt1;
429 main_send_state->fragments[1] = pkt2;
430 main_send_state->outstanding = 2;
431 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
432 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
433}
434
435template <class T>
436Fault
437TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
438{
439 Fault fault;
440 const int asid = 0;
441 const ThreadID tid = 0;
442 const Addr pc = thread->readPC();
443 unsigned block_size = dcachePort.peerBlockSize();
444 int data_size = sizeof(T);
445
446 RequestPtr req = new Request(asid, addr, data_size,
447 flags, pc, _cpuId, tid);
448
449 Addr split_addr = roundDown(addr + data_size - 1, block_size);
450 assert(split_addr <= addr || split_addr - addr < block_size);
451
452
453 _status = DTBWaitResponse;
454 if (split_addr > addr) {
455 RequestPtr req1, req2;
456 assert(!req->isLLSC() && !req->isSwap());
457 req->splitOnVaddr(split_addr, req1, req2);
458
459 typedef SplitDataTranslation::WholeTranslationState WholeState;
460 WholeState *state = new WholeState(req1, req2, req,
461 (uint8_t *)(new T), BaseTLB::Read);
462 thread->dtb->translateTiming(req1, tc,
463 new SplitDataTranslation(this, 0, state), BaseTLB::Read);
464 thread->dtb->translateTiming(req2, tc,
465 new SplitDataTranslation(this, 1, state), BaseTLB::Read);
466 } else {
467 DataTranslation *translation =
468 new DataTranslation(this, (uint8_t *)(new T), NULL, BaseTLB::Read);
469 thread->dtb->translateTiming(req, tc, translation, BaseTLB::Read);
470 }
471
472 if (traceData) {
473 traceData->setData(data);
474 traceData->setAddr(addr);
475 }
476
477 // This will need a new way to tell if it has a dcache attached.
478 if (req->isUncacheable())
479 recordEvent("Uncached Read");
480
481 return NoFault;
482}
483
484#ifndef DOXYGEN_SHOULD_SKIP_THIS
485
486template
487Fault
488TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
489
490template
491Fault
492TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
493
494template
495Fault
496TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
497
498template
499Fault
500TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
501
502template
503Fault
504TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
505
506template
507Fault
508TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
509
510#endif //DOXYGEN_SHOULD_SKIP_THIS
511
512template<>
513Fault
514TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
515{
516 return read(addr, *(uint64_t*)&data, flags);
517}
518
519template<>
520Fault
521TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
522{
523 return read(addr, *(uint32_t*)&data, flags);
524}
525
526
527template<>
528Fault
529TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
530{
531 return read(addr, (uint32_t&)data, flags);
532}
533
534bool
535TimingSimpleCPU::handleWritePacket()
536{
537 RequestPtr req = dcache_pkt->req;
538 if (req->isMmapedIpr()) {
539 Tick delay;
540 delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
541 new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
542 _status = DcacheWaitResponse;
543 dcache_pkt = NULL;
544 } else if (!dcachePort.sendTiming(dcache_pkt)) {
545 _status = DcacheRetry;
546 } else {
547 _status = DcacheWaitResponse;
548 // memory system takes ownership of packet
549 dcache_pkt = NULL;
550 }
551 return dcache_pkt == NULL;
552}
553
554template <class T>
555Fault
556TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
557{
558 const int asid = 0;
559 const ThreadID tid = 0;
560 const Addr pc = thread->readPC();
561 unsigned block_size = dcachePort.peerBlockSize();
562 int data_size = sizeof(T);
563
564 RequestPtr req = new Request(asid, addr, data_size,
565 flags, pc, _cpuId, tid);
566
567 Addr split_addr = roundDown(addr + data_size - 1, block_size);
568 assert(split_addr <= addr || split_addr - addr < block_size);
569
570 T *dataP = new T;
571 *dataP = TheISA::htog(data);
572 _status = DTBWaitResponse;
573 if (split_addr > addr) {
574 RequestPtr req1, req2;
575 assert(!req->isLLSC() && !req->isSwap());
576 req->splitOnVaddr(split_addr, req1, req2);
577
578 typedef SplitDataTranslation::WholeTranslationState WholeState;
579 WholeState *state = new WholeState(req1, req2, req,
580 (uint8_t *)dataP, BaseTLB::Write);
581 thread->dtb->translateTiming(req1, tc,
582 new SplitDataTranslation(this, 0, state), BaseTLB::Write);
583 thread->dtb->translateTiming(req2, tc,
584 new SplitDataTranslation(this, 1, state), BaseTLB::Write);
585 } else {
586 DataTranslation *translation =
587 new DataTranslation(this, (uint8_t *)dataP, res, BaseTLB::Write);
588 thread->dtb->translateTiming(req, tc, translation, BaseTLB::Write);
589 }
590
591 if (traceData) {
592 traceData->setAddr(req->getVaddr());
593 traceData->setData(data);
594 }
595
596 // This will need a new way to tell if it's hooked up to a cache or not.
597 if (req->isUncacheable())
598 recordEvent("Uncached Write");
599
600 // If the write needs to have a fault on the access, consider calling
601 // changeStatus() and changing it to "bad addr write" or something.
602 return NoFault;
603}
604
605
606#ifndef DOXYGEN_SHOULD_SKIP_THIS
607template
608Fault
609TimingSimpleCPU::write(Twin32_t data, Addr addr,
610 unsigned flags, uint64_t *res);
611
612template
613Fault
614TimingSimpleCPU::write(Twin64_t data, Addr addr,
615 unsigned flags, uint64_t *res);
616
617template
618Fault
619TimingSimpleCPU::write(uint64_t data, Addr addr,
620 unsigned flags, uint64_t *res);
621
622template
623Fault
624TimingSimpleCPU::write(uint32_t data, Addr addr,
625 unsigned flags, uint64_t *res);
626
627template
628Fault
629TimingSimpleCPU::write(uint16_t data, Addr addr,
630 unsigned flags, uint64_t *res);
631
632template
633Fault
634TimingSimpleCPU::write(uint8_t data, Addr addr,
635 unsigned flags, uint64_t *res);
636
637#endif //DOXYGEN_SHOULD_SKIP_THIS
638
639template<>
640Fault
641TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
642{
643 return write(*(uint64_t*)&data, addr, flags, res);
644}
645
646template<>
647Fault
648TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
649{
650 return write(*(uint32_t*)&data, addr, flags, res);
651}
652
653
654template<>
655Fault
656TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
657{
658 return write((uint32_t)data, addr, flags, res);
659}
660
661
662void
663TimingSimpleCPU::fetch()
664{
665 DPRINTF(SimpleCPU, "Fetch\n");
666
667 if (!curStaticInst || !curStaticInst->isDelayedCommit())
668 checkForInterrupts();
669
670 checkPcEventQueue();
671
672 bool fromRom = isRomMicroPC(thread->readMicroPC());
673
674 if (!fromRom && !curMacroStaticInst) {
675 Request *ifetch_req = new Request();
676 ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
677 setupFetchRequest(ifetch_req);
678 thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
679 BaseTLB::Execute);
680 } else {
681 _status = IcacheWaitResponse;
682 completeIfetch(NULL);
683
684 numCycles += tickToCycles(curTick - previousTick);
685 previousTick = curTick;
686 }
687}
688
689
690void
691TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
692{
693 if (fault == NoFault) {
694 ifetch_pkt = new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
695 ifetch_pkt->dataStatic(&inst);
696
697 if (!icachePort.sendTiming(ifetch_pkt)) {
698 // Need to wait for retry
699 _status = IcacheRetry;
700 } else {
701 // Need to wait for cache to respond
702 _status = IcacheWaitResponse;
703 // ownership of packet transferred to memory system
704 ifetch_pkt = NULL;
705 }
706 } else {
707 delete req;
708 // fetch fault: advance directly to next instruction (fault handler)
709 advanceInst(fault);
710 }
711
712 numCycles += tickToCycles(curTick - previousTick);
713 previousTick = curTick;
714}
715
716
717void
718TimingSimpleCPU::advanceInst(Fault fault)
719{
720 if (fault != NoFault || !stayAtPC)
721 advancePC(fault);
722
723 if (_status == Running) {
724 // kick off fetch of next instruction... callback from icache
725 // response will cause that instruction to be executed,
726 // keeping the CPU running.
727 fetch();
728 }
729}
730
731
732void
733TimingSimpleCPU::completeIfetch(PacketPtr pkt)
734{
735 DPRINTF(SimpleCPU, "Complete ICache Fetch\n");
736
737 // received a response from the icache: execute the received
738 // instruction
739
740 assert(!pkt || !pkt->isError());
741 assert(_status == IcacheWaitResponse);
742
743 _status = Running;
744
745 numCycles += tickToCycles(curTick - previousTick);
746 previousTick = curTick;
747
748 if (getState() == SimObject::Draining) {
749 if (pkt) {
750 delete pkt->req;
751 delete pkt;
752 }
753
754 completeDrain();
755 return;
756 }
757
758 preExecute();
759 if (curStaticInst &&
760 curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
761 // load or store: just send to dcache
762 Fault fault = curStaticInst->initiateAcc(this, traceData);
763 if (_status != Running) {
764 // instruction will complete in dcache response callback
765 assert(_status == DcacheWaitResponse ||
766 _status == DcacheRetry || DTBWaitResponse);
767 assert(fault == NoFault);
768 } else {
769 if (fault != NoFault && traceData) {
770 // If there was a fault, we shouldn't trace this instruction.
771 delete traceData;
772 traceData = NULL;
773 }
774
775 postExecute();
776 // @todo remove me after debugging with legion done
777 if (curStaticInst && (!curStaticInst->isMicroop() ||
778 curStaticInst->isFirstMicroop()))
779 instCnt++;
780 advanceInst(fault);
781 }
782 } else if (curStaticInst) {
783 // non-memory instruction: execute completely now
784 Fault fault = curStaticInst->execute(this, traceData);
785
786 // keep an instruction count
787 if (fault == NoFault)
788 countInst();
789 else if (traceData) {
790 // If there was a fault, we shouldn't trace this instruction.
791 delete traceData;
792 traceData = NULL;
793 }
794
795 postExecute();
796 // @todo remove me after debugging with legion done
797 if (curStaticInst && (!curStaticInst->isMicroop() ||
798 curStaticInst->isFirstMicroop()))
799 instCnt++;
800 advanceInst(fault);
801 } else {
802 advanceInst(NoFault);
803 }
804
805 if (pkt) {
806 delete pkt->req;
807 delete pkt;
808 }
809}
810
811void
812TimingSimpleCPU::IcachePort::ITickEvent::process()
813{
814 cpu->completeIfetch(pkt);
815}
816
817bool
818TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
819{
820 if (pkt->isResponse() && !pkt->wasNacked()) {
821 // delay processing of returned data until next CPU clock edge
822 Tick next_tick = cpu->nextCycle(curTick);
823
824 if (next_tick == curTick)
825 cpu->completeIfetch(pkt);
826 else
827 tickEvent.schedule(pkt, next_tick);
828
829 return true;
830 }
831 else if (pkt->wasNacked()) {
832 assert(cpu->_status == IcacheWaitResponse);
833 pkt->reinitNacked();
834 if (!sendTiming(pkt)) {
835 cpu->_status = IcacheRetry;
836 cpu->ifetch_pkt = pkt;
837 }
838 }
839 //Snooping a Coherence Request, do nothing
840 return true;
841}
842
843void
844TimingSimpleCPU::IcachePort::recvRetry()
845{
846 // we shouldn't get a retry unless we have a packet that we're
847 // waiting to transmit
848 assert(cpu->ifetch_pkt != NULL);
849 assert(cpu->_status == IcacheRetry);
850 PacketPtr tmp = cpu->ifetch_pkt;
851 if (sendTiming(tmp)) {
852 cpu->_status = IcacheWaitResponse;
853 cpu->ifetch_pkt = NULL;
854 }
855}
856
857void
858TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
859{
860 // received a response from the dcache: complete the load or store
861 // instruction
862 assert(!pkt->isError());
863
864 numCycles += tickToCycles(curTick - previousTick);
865 previousTick = curTick;
866
867 if (pkt->senderState) {
868 SplitFragmentSenderState * send_state =
869 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
870 assert(send_state);
871 delete pkt->req;
872 delete pkt;
873 PacketPtr big_pkt = send_state->bigPkt;
874 delete send_state;
875
876 SplitMainSenderState * main_send_state =
877 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
878 assert(main_send_state);
879 // Record the fact that this packet is no longer outstanding.
880 assert(main_send_state->outstanding != 0);
881 main_send_state->outstanding--;
882
883 if (main_send_state->outstanding) {
884 return;
885 } else {
886 delete main_send_state;
887 big_pkt->senderState = NULL;
888 pkt = big_pkt;
889 }
890 }
891
892 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse);
893 _status = Running;
894
895 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
896
897 // keep an instruction count
898 if (fault == NoFault)
899 countInst();
900 else if (traceData) {
901 // If there was a fault, we shouldn't trace this instruction.
902 delete traceData;
903 traceData = NULL;
904 }
905
906 // the locked flag may be cleared on the response packet, so check
907 // pkt->req and not pkt to see if it was a load-locked
908 if (pkt->isRead() && pkt->req->isLLSC()) {
909 TheISA::handleLockedRead(thread, pkt->req);
910 }
911
912 delete pkt->req;
913 delete pkt;
914
915 postExecute();
916
917 if (getState() == SimObject::Draining) {
918 advancePC(fault);
919 completeDrain();
920
921 return;
922 }
923
924 advanceInst(fault);
925}
926
927
928void
929TimingSimpleCPU::completeDrain()
930{
931 DPRINTF(Config, "Done draining\n");
932 changeState(SimObject::Drained);
933 drainEvent->process();
934}
935
936void
937TimingSimpleCPU::DcachePort::setPeer(Port *port)
938{
939 Port::setPeer(port);
940
941#if FULL_SYSTEM
942 // Update the ThreadContext's memory ports (Functional/Virtual
943 // Ports)
944 cpu->tcBase()->connectMemPorts(cpu->tcBase());
945#endif
946}
947
948bool
949TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
950{
951 if (pkt->isResponse() && !pkt->wasNacked()) {
952 // delay processing of returned data until next CPU clock edge
953 Tick next_tick = cpu->nextCycle(curTick);
954
955 if (next_tick == curTick) {
956 cpu->completeDataAccess(pkt);
957 } else {
958 tickEvent.schedule(pkt, next_tick);
959 }
960
961 return true;
962 }
963 else if (pkt->wasNacked()) {
964 assert(cpu->_status == DcacheWaitResponse);
965 pkt->reinitNacked();
966 if (!sendTiming(pkt)) {
967 cpu->_status = DcacheRetry;
968 cpu->dcache_pkt = pkt;
969 }
970 }
971 //Snooping a Coherence Request, do nothing
972 return true;
973}
974
975void
976TimingSimpleCPU::DcachePort::DTickEvent::process()
977{
978 cpu->completeDataAccess(pkt);
979}
980
981void
982TimingSimpleCPU::DcachePort::recvRetry()
983{
984 // we shouldn't get a retry unless we have a packet that we're
985 // waiting to transmit
986 assert(cpu->dcache_pkt != NULL);
987 assert(cpu->_status == DcacheRetry);
988 PacketPtr tmp = cpu->dcache_pkt;
989 if (tmp->senderState) {
990 // This is a packet from a split access.
991 SplitFragmentSenderState * send_state =
992 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
993 assert(send_state);
994 PacketPtr big_pkt = send_state->bigPkt;
995
996 SplitMainSenderState * main_send_state =
997 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
998 assert(main_send_state);
999
1000 if (sendTiming(tmp)) {
1001 // If we were able to send without retrying, record that fact
1002 // and try sending the other fragment.
1003 send_state->clearFromParent();
1004 int other_index = main_send_state->getPendingFragment();
1005 if (other_index > 0) {
1006 tmp = main_send_state->fragments[other_index];
1007 cpu->dcache_pkt = tmp;
1008 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
1009 (big_pkt->isWrite() && cpu->handleWritePacket())) {
1010 main_send_state->fragments[other_index] = NULL;
1011 }
1012 } else {
1013 cpu->_status = DcacheWaitResponse;
1014 // memory system takes ownership of packet
1015 cpu->dcache_pkt = NULL;
1016 }
1017 }
1018 } else if (sendTiming(tmp)) {
1019 cpu->_status = DcacheWaitResponse;
1020 // memory system takes ownership of packet
1021 cpu->dcache_pkt = NULL;
1022 }
1023}
1024
1025TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
1026 Tick t)
1027 : pkt(_pkt), cpu(_cpu)
1028{
1029 cpu->schedule(this, t);
1030}
1031
1032void
1033TimingSimpleCPU::IprEvent::process()
1034{
1035 cpu->completeDataAccess(pkt);
1036}
1037
1038const char *
1039TimingSimpleCPU::IprEvent::description() const
1040{
1041 return "Timing Simple CPU Delay IPR event";
1042}
1043
1044
1045void
1046TimingSimpleCPU::printAddr(Addr a)
1047{
1048 dcachePort.printAddr(a);
1049}
1050
1051
1052////////////////////////////////////////////////////////////////////////
1053//
1054// TimingSimpleCPU Simulation Object
1055//
1056TimingSimpleCPU *
1057TimingSimpleCPUParams::create()
1058{
1059 numThreads = 1;
1060#if !FULL_SYSTEM
1061 if (workload.size() != 1)
1062 panic("only one workload allowed");
1063#endif
1064 return new TimingSimpleCPU(this);
1065}