Deleted Added
sdiff udiff text old ( 10529:05b5a6cf3521 ) new ( 10533:d1dce0b728b6 )
full compact
1/*
2 * Copyright (c) 2010-2013 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "config/the_isa.hh"
48#include "cpu/simple/timing.hh"
49#include "cpu/exetrace.hh"
50#include "debug/Config.hh"
51#include "debug/Drain.hh"
52#include "debug/ExecFaulting.hh"
53#include "debug/SimpleCPU.hh"
54#include "mem/packet.hh"
55#include "mem/packet_access.hh"
56#include "params/TimingSimpleCPU.hh"
57#include "sim/faults.hh"
58#include "sim/full_system.hh"
59#include "sim/system.hh"
60
61#include "debug/Mwait.hh"
62
63using namespace std;
64using namespace TheISA;
65
66void
67TimingSimpleCPU::init()
68{
69 BaseCPU::init();
70
71 // Initialise the ThreadContext's memory proxies
72 tcBase()->initMemProxies(tcBase());
73
74 if (FullSystem && !params()->switched_out) {
75 for (int i = 0; i < threadContexts.size(); ++i) {
76 ThreadContext *tc = threadContexts[i];
77 // initialize CPU, including PC
78 TheISA::initCPU(tc, _cpuId);
79 }
80 }
81}
82
83void
84TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
85{
86 pkt = _pkt;
87 cpu->schedule(this, t);
88}
89
90TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
91 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
92 dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
93 fetchEvent(this), drainManager(NULL)
94{
95 _status = Idle;
96
97 system->totalNumInsts = 0;
98}
99
100
101
102TimingSimpleCPU::~TimingSimpleCPU()
103{
104}
105
106unsigned int
107TimingSimpleCPU::drain(DrainManager *drain_manager)
108{
109 assert(!drainManager);
110 if (switchedOut())
111 return 0;
112
113 if (_status == Idle ||
114 (_status == BaseSimpleCPU::Running && isDrained())) {
115 DPRINTF(Drain, "No need to drain.\n");
116 return 0;
117 } else {
118 drainManager = drain_manager;
119 DPRINTF(Drain, "Requesting drain: %s\n", pcState());
120
121 // The fetch event can become descheduled if a drain didn't
122 // succeed on the first attempt. We need to reschedule it if
123 // the CPU is waiting for a microcode routine to complete.
124 if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
125 schedule(fetchEvent, clockEdge());
126
127 return 1;
128 }
129}
130
131void
132TimingSimpleCPU::drainResume()
133{
134 assert(!fetchEvent.scheduled());
135 assert(!drainManager);
136 if (switchedOut())
137 return;
138
139 DPRINTF(SimpleCPU, "Resume\n");
140 verifyMemoryMode();
141
142 assert(!threadContexts.empty());
143 if (threadContexts.size() > 1)
144 fatal("The timing CPU only supports one thread.\n");
145
146 if (thread->status() == ThreadContext::Active) {
147 schedule(fetchEvent, nextCycle());
148 _status = BaseSimpleCPU::Running;
149 notIdleFraction = 1;
150 } else {
151 _status = BaseSimpleCPU::Idle;
152 notIdleFraction = 0;
153 }
154}
155
156bool
157TimingSimpleCPU::tryCompleteDrain()
158{
159 if (!drainManager)
160 return false;
161
162 DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
163 if (!isDrained())
164 return false;
165
166 DPRINTF(Drain, "CPU done draining, processing drain event\n");
167 drainManager->signalDrainDone();
168 drainManager = NULL;
169
170 return true;
171}
172
173void
174TimingSimpleCPU::switchOut()
175{
176 BaseSimpleCPU::switchOut();
177
178 assert(!fetchEvent.scheduled());
179 assert(_status == BaseSimpleCPU::Running || _status == Idle);
180 assert(!stayAtPC);
181 assert(microPC() == 0);
182
183 updateCycleCounts();
184}
185
186
187void
188TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
189{
190 BaseSimpleCPU::takeOverFrom(oldCPU);
191
192 previousCycle = curCycle();
193}
194
195void
196TimingSimpleCPU::verifyMemoryMode() const
197{
198 if (!system->isTimingMode()) {
199 fatal("The timing CPU requires the memory system to be in "
200 "'timing' mode.\n");
201 }
202}
203
204void
205TimingSimpleCPU::activateContext(ThreadID thread_num)
206{
207 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
208
209 assert(thread_num == 0);
210 assert(thread);
211
212 assert(_status == Idle);
213
214 notIdleFraction = 1;
215 _status = BaseSimpleCPU::Running;
216
217 // kick things off by initiating the fetch of the next instruction
218 schedule(fetchEvent, clockEdge(Cycles(0)));
219}
220
221
222void
223TimingSimpleCPU::suspendContext(ThreadID thread_num)
224{
225 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
226
227 assert(thread_num == 0);
228 assert(thread);
229
230 if (_status == Idle)
231 return;
232
233 assert(_status == BaseSimpleCPU::Running);
234
235 // just change status to Idle... if status != Running,
236 // completeInst() will not initiate fetch of next instruction.
237
238 notIdleFraction = 0;
239 _status = Idle;
240}
241
242bool
243TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
244{
245 RequestPtr req = pkt->req;
246 if (req->isMmappedIpr()) {
247 Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
248 new IprEvent(pkt, this, clockEdge(delay));
249 _status = DcacheWaitResponse;
250 dcache_pkt = NULL;
251 } else if (!dcachePort.sendTimingReq(pkt)) {
252 _status = DcacheRetry;
253 dcache_pkt = pkt;
254 } else {
255 _status = DcacheWaitResponse;
256 // memory system takes ownership of packet
257 dcache_pkt = NULL;
258 }
259 return dcache_pkt == NULL;
260}
261
262void
263TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
264 bool read)
265{
266 PacketPtr pkt;
267 buildPacket(pkt, req, read);
268 pkt->dataDynamicArray<uint8_t>(data);
269 if (req->getFlags().isSet(Request::NO_ACCESS)) {
270 assert(!dcache_pkt);
271 pkt->makeResponse();
272 completeDataAccess(pkt);
273 } else if (read) {
274 handleReadPacket(pkt);
275 } else {
276 bool do_access = true; // flag to suppress cache access
277
278 if (req->isLLSC()) {
279 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
280 } else if (req->isCondSwap()) {
281 assert(res);
282 req->setExtraData(*res);
283 }
284
285 if (do_access) {
286 dcache_pkt = pkt;
287 handleWritePacket();
288 } else {
289 _status = DcacheWaitResponse;
290 completeDataAccess(pkt);
291 }
292 }
293}
294
295void
296TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
297 RequestPtr req, uint8_t *data, bool read)
298{
299 PacketPtr pkt1, pkt2;
300 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
301 if (req->getFlags().isSet(Request::NO_ACCESS)) {
302 assert(!dcache_pkt);
303 pkt1->makeResponse();
304 completeDataAccess(pkt1);
305 } else if (read) {
306 SplitFragmentSenderState * send_state =
307 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
308 if (handleReadPacket(pkt1)) {
309 send_state->clearFromParent();
310 send_state = dynamic_cast<SplitFragmentSenderState *>(
311 pkt2->senderState);
312 if (handleReadPacket(pkt2)) {
313 send_state->clearFromParent();
314 }
315 }
316 } else {
317 dcache_pkt = pkt1;
318 SplitFragmentSenderState * send_state =
319 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
320 if (handleWritePacket()) {
321 send_state->clearFromParent();
322 dcache_pkt = pkt2;
323 send_state = dynamic_cast<SplitFragmentSenderState *>(
324 pkt2->senderState);
325 if (handleWritePacket()) {
326 send_state->clearFromParent();
327 }
328 }
329 }
330}
331
332void
333TimingSimpleCPU::translationFault(const Fault &fault)
334{
335 // fault may be NoFault in cases where a fault is suppressed,
336 // for instance prefetches.
337 updateCycleCounts();
338
339 if (traceData) {
340 // Since there was a fault, we shouldn't trace this instruction.
341 delete traceData;
342 traceData = NULL;
343 }
344
345 postExecute();
346
347 advanceInst(fault);
348}
349
350void
351TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
352{
353 pkt = read ? Packet::createRead(req) : Packet::createWrite(req);
354}
355
356void
357TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
358 RequestPtr req1, RequestPtr req2, RequestPtr req,
359 uint8_t *data, bool read)
360{
361 pkt1 = pkt2 = NULL;
362
363 assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
364
365 if (req->getFlags().isSet(Request::NO_ACCESS)) {
366 buildPacket(pkt1, req, read);
367 return;
368 }
369
370 buildPacket(pkt1, req1, read);
371 buildPacket(pkt2, req2, read);
372
373 req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags(), dataMasterId());
374 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
375
376 pkt->dataDynamicArray<uint8_t>(data);
377 pkt1->dataStatic<uint8_t>(data);
378 pkt2->dataStatic<uint8_t>(data + req1->getSize());
379
380 SplitMainSenderState * main_send_state = new SplitMainSenderState;
381 pkt->senderState = main_send_state;
382 main_send_state->fragments[0] = pkt1;
383 main_send_state->fragments[1] = pkt2;
384 main_send_state->outstanding = 2;
385 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
386 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
387}
388
389Fault
390TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
391 unsigned size, unsigned flags)
392{
393 Fault fault;
394 const int asid = 0;
395 const ThreadID tid = 0;
396 const Addr pc = thread->instAddr();
397 unsigned block_size = cacheLineSize();
398 BaseTLB::Mode mode = BaseTLB::Read;
399
400 if (traceData) {
401 traceData->setAddr(addr);
402 }
403
404 RequestPtr req = new Request(asid, addr, size,
405 flags, dataMasterId(), pc, _cpuId, tid);
406
407 req->taskId(taskId());
408
409 Addr split_addr = roundDown(addr + size - 1, block_size);
410 assert(split_addr <= addr || split_addr - addr < block_size);
411
412 _status = DTBWaitResponse;
413 if (split_addr > addr) {
414 RequestPtr req1, req2;
415 assert(!req->isLLSC() && !req->isSwap());
416 req->splitOnVaddr(split_addr, req1, req2);
417
418 WholeTranslationState *state =
419 new WholeTranslationState(req, req1, req2, new uint8_t[size],
420 NULL, mode);
421 DataTranslation<TimingSimpleCPU *> *trans1 =
422 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
423 DataTranslation<TimingSimpleCPU *> *trans2 =
424 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
425
426 thread->dtb->translateTiming(req1, tc, trans1, mode);
427 thread->dtb->translateTiming(req2, tc, trans2, mode);
428 } else {
429 WholeTranslationState *state =
430 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
431 DataTranslation<TimingSimpleCPU *> *translation
432 = new DataTranslation<TimingSimpleCPU *>(this, state);
433 thread->dtb->translateTiming(req, tc, translation, mode);
434 }
435
436 return NoFault;
437}
438
439bool
440TimingSimpleCPU::handleWritePacket()
441{
442 RequestPtr req = dcache_pkt->req;
443 if (req->isMmappedIpr()) {
444 Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
445 new IprEvent(dcache_pkt, this, clockEdge(delay));
446 _status = DcacheWaitResponse;
447 dcache_pkt = NULL;
448 } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
449 _status = DcacheRetry;
450 } else {
451 _status = DcacheWaitResponse;
452 // memory system takes ownership of packet
453 dcache_pkt = NULL;
454 }
455 return dcache_pkt == NULL;
456}
457
458Fault
459TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
460 Addr addr, unsigned flags, uint64_t *res)
461{
462 uint8_t *newData = new uint8_t[size];
463 const int asid = 0;
464 const ThreadID tid = 0;
465 const Addr pc = thread->instAddr();
466 unsigned block_size = cacheLineSize();
467 BaseTLB::Mode mode = BaseTLB::Write;
468
469 if (data == NULL) {
470 assert(flags & Request::CACHE_BLOCK_ZERO);
471 // This must be a cache block cleaning request
472 memset(newData, 0, size);
473 } else {
474 memcpy(newData, data, size);
475 }
476
477 if (traceData) {
478 traceData->setAddr(addr);
479 }
480
481 RequestPtr req = new Request(asid, addr, size,
482 flags, dataMasterId(), pc, _cpuId, tid);
483
484 req->taskId(taskId());
485
486 Addr split_addr = roundDown(addr + size - 1, block_size);
487 assert(split_addr <= addr || split_addr - addr < block_size);
488
489 _status = DTBWaitResponse;
490 if (split_addr > addr) {
491 RequestPtr req1, req2;
492 assert(!req->isLLSC() && !req->isSwap());
493 req->splitOnVaddr(split_addr, req1, req2);
494
495 WholeTranslationState *state =
496 new WholeTranslationState(req, req1, req2, newData, res, mode);
497 DataTranslation<TimingSimpleCPU *> *trans1 =
498 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
499 DataTranslation<TimingSimpleCPU *> *trans2 =
500 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
501
502 thread->dtb->translateTiming(req1, tc, trans1, mode);
503 thread->dtb->translateTiming(req2, tc, trans2, mode);
504 } else {
505 WholeTranslationState *state =
506 new WholeTranslationState(req, newData, res, mode);
507 DataTranslation<TimingSimpleCPU *> *translation =
508 new DataTranslation<TimingSimpleCPU *>(this, state);
509 thread->dtb->translateTiming(req, tc, translation, mode);
510 }
511
512 // Translation faults will be returned via finishTranslation()
513 return NoFault;
514}
515
516
517void
518TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
519{
520 _status = BaseSimpleCPU::Running;
521
522 if (state->getFault() != NoFault) {
523 if (state->isPrefetch()) {
524 state->setNoFault();
525 }
526 delete [] state->data;
527 state->deleteReqs();
528 translationFault(state->getFault());
529 } else {
530 if (!state->isSplit) {
531 sendData(state->mainReq, state->data, state->res,
532 state->mode == BaseTLB::Read);
533 } else {
534 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
535 state->data, state->mode == BaseTLB::Read);
536 }
537 }
538
539 delete state;
540}
541
542
543void
544TimingSimpleCPU::fetch()
545{
546 DPRINTF(SimpleCPU, "Fetch\n");
547
548 if (!curStaticInst || !curStaticInst->isDelayedCommit())
549 checkForInterrupts();
550
551 checkPcEventQueue();
552
553 // We must have just got suspended by a PC event
554 if (_status == Idle)
555 return;
556
557 TheISA::PCState pcState = thread->pcState();
558 bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst;
559
560 if (needToFetch) {
561 _status = BaseSimpleCPU::Running;
562 Request *ifetch_req = new Request();
563 ifetch_req->taskId(taskId());
564 ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
565 setupFetchRequest(ifetch_req);
566 DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
567 thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
568 BaseTLB::Execute);
569 } else {
570 _status = IcacheWaitResponse;
571 completeIfetch(NULL);
572
573 updateCycleCounts();
574 }
575}
576
577
578void
579TimingSimpleCPU::sendFetch(const Fault &fault, RequestPtr req,
580 ThreadContext *tc)
581{
582 if (fault == NoFault) {
583 DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
584 req->getVaddr(), req->getPaddr());
585 ifetch_pkt = new Packet(req, MemCmd::ReadReq);
586 ifetch_pkt->dataStatic(&inst);
587 DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
588
589 if (!icachePort.sendTimingReq(ifetch_pkt)) {
590 // Need to wait for retry
591 _status = IcacheRetry;
592 } else {
593 // Need to wait for cache to respond
594 _status = IcacheWaitResponse;
595 // ownership of packet transferred to memory system
596 ifetch_pkt = NULL;
597 }
598 } else {
599 DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
600 delete req;
601 // fetch fault: advance directly to next instruction (fault handler)
602 _status = BaseSimpleCPU::Running;
603 advanceInst(fault);
604 }
605
606 updateCycleCounts();
607}
608
609
610void
611TimingSimpleCPU::advanceInst(const Fault &fault)
612{
613 if (_status == Faulting)
614 return;
615
616 if (fault != NoFault) {
617 advancePC(fault);
618 DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
619 reschedule(fetchEvent, clockEdge(), true);
620 _status = Faulting;
621 return;
622 }
623
624
625 if (!stayAtPC)
626 advancePC(fault);
627
628 if (tryCompleteDrain())
629 return;
630
631 if (_status == BaseSimpleCPU::Running) {
632 // kick off fetch of next instruction... callback from icache
633 // response will cause that instruction to be executed,
634 // keeping the CPU running.
635 fetch();
636 }
637}
638
639
640void
641TimingSimpleCPU::completeIfetch(PacketPtr pkt)
642{
643 DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
644 pkt->getAddr() : 0);
645
646 // received a response from the icache: execute the received
647 // instruction
648 assert(!pkt || !pkt->isError());
649 assert(_status == IcacheWaitResponse);
650
651 _status = BaseSimpleCPU::Running;
652
653 updateCycleCounts();
654
655 if (pkt)
656 pkt->req->setAccessLatency();
657
658
659 preExecute();
660 if (curStaticInst && curStaticInst->isMemRef()) {
661 // load or store: just send to dcache
662 Fault fault = curStaticInst->initiateAcc(this, traceData);
663
664 // If we're not running now the instruction will complete in a dcache
665 // response callback or the instruction faulted and has started an
666 // ifetch
667 if (_status == BaseSimpleCPU::Running) {
668 if (fault != NoFault && traceData) {
669 // If there was a fault, we shouldn't trace this instruction.
670 delete traceData;
671 traceData = NULL;
672 }
673
674 postExecute();
675 // @todo remove me after debugging with legion done
676 if (curStaticInst && (!curStaticInst->isMicroop() ||
677 curStaticInst->isFirstMicroop()))
678 instCnt++;
679 advanceInst(fault);
680 }
681 } else if (curStaticInst) {
682 // non-memory instruction: execute completely now
683 Fault fault = curStaticInst->execute(this, traceData);
684
685 // keep an instruction count
686 if (fault == NoFault)
687 countInst();
688 else if (traceData && !DTRACE(ExecFaulting)) {
689 delete traceData;
690 traceData = NULL;
691 }
692
693 postExecute();
694 // @todo remove me after debugging with legion done
695 if (curStaticInst && (!curStaticInst->isMicroop() ||
696 curStaticInst->isFirstMicroop()))
697 instCnt++;
698 advanceInst(fault);
699 } else {
700 advanceInst(NoFault);
701 }
702
703 if (pkt) {
704 delete pkt->req;
705 delete pkt;
706 }
707}
708
709void
710TimingSimpleCPU::IcachePort::ITickEvent::process()
711{
712 cpu->completeIfetch(pkt);
713}
714
715bool
716TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
717{
718 DPRINTF(SimpleCPU, "Received timing response %#x\n", pkt->getAddr());
719 // delay processing of returned data until next CPU clock edge
720 Tick next_tick = cpu->clockEdge();
721
722 if (next_tick == curTick())
723 cpu->completeIfetch(pkt);
724 else
725 tickEvent.schedule(pkt, next_tick);
726
727 return true;
728}
729
730void
731TimingSimpleCPU::IcachePort::recvRetry()
732{
733 // we shouldn't get a retry unless we have a packet that we're
734 // waiting to transmit
735 assert(cpu->ifetch_pkt != NULL);
736 assert(cpu->_status == IcacheRetry);
737 PacketPtr tmp = cpu->ifetch_pkt;
738 if (sendTimingReq(tmp)) {
739 cpu->_status = IcacheWaitResponse;
740 cpu->ifetch_pkt = NULL;
741 }
742}
743
744void
745TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
746{
747 // received a response from the dcache: complete the load or store
748 // instruction
749 assert(!pkt->isError());
750 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
751 pkt->req->getFlags().isSet(Request::NO_ACCESS));
752
753 pkt->req->setAccessLatency();
754
755 updateCycleCounts();
756
757 if (pkt->senderState) {
758 SplitFragmentSenderState * send_state =
759 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
760 assert(send_state);
761 delete pkt->req;
762 delete pkt;
763 PacketPtr big_pkt = send_state->bigPkt;
764 delete send_state;
765
766 SplitMainSenderState * main_send_state =
767 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
768 assert(main_send_state);
769 // Record the fact that this packet is no longer outstanding.
770 assert(main_send_state->outstanding != 0);
771 main_send_state->outstanding--;
772
773 if (main_send_state->outstanding) {
774 return;
775 } else {
776 delete main_send_state;
777 big_pkt->senderState = NULL;
778 pkt = big_pkt;
779 }
780 }
781
782 _status = BaseSimpleCPU::Running;
783
784 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
785
786 // keep an instruction count
787 if (fault == NoFault)
788 countInst();
789 else if (traceData) {
790 // If there was a fault, we shouldn't trace this instruction.
791 delete traceData;
792 traceData = NULL;
793 }
794
795 // the locked flag may be cleared on the response packet, so check
796 // pkt->req and not pkt to see if it was a load-locked
797 if (pkt->isRead() && pkt->req->isLLSC()) {
798 TheISA::handleLockedRead(thread, pkt->req);
799 }
800
801 delete pkt->req;
802 delete pkt;
803
804 postExecute();
805
806 advanceInst(fault);
807}
808
809void
810TimingSimpleCPU::updateCycleCounts()
811{
812 const Cycles delta(curCycle() - previousCycle);
813
814 numCycles += delta;
815 ppCycles->notify(delta);
816
817 previousCycle = curCycle();
818}
819
820void
821TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
822{
823 // X86 ISA: Snooping an invalidation for monitor/mwait
824 if(cpu->getAddrMonitor()->doMonitor(pkt)) {
825 cpu->wakeup();
826 }
827 TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask);
828}
829
830void
831TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
832{
833 // X86 ISA: Snooping an invalidation for monitor/mwait
834 if(cpu->getAddrMonitor()->doMonitor(pkt)) {
835 cpu->wakeup();
836 }
837}
838
839bool
840TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
841{
842 // delay processing of returned data until next CPU clock edge
843 Tick next_tick = cpu->clockEdge();
844
845 if (next_tick == curTick()) {
846 cpu->completeDataAccess(pkt);
847 } else {
848 if (!tickEvent.scheduled()) {
849 tickEvent.schedule(pkt, next_tick);
850 } else {
851 // In the case of a split transaction and a cache that is
852 // faster than a CPU we could get two responses before
853 // next_tick expires
854 if (!retryEvent.scheduled())
855 cpu->schedule(retryEvent, next_tick);
856 return false;
857 }
858 }
859
860 return true;
861}
862
863void
864TimingSimpleCPU::DcachePort::DTickEvent::process()
865{
866 cpu->completeDataAccess(pkt);
867}
868
869void
870TimingSimpleCPU::DcachePort::recvRetry()
871{
872 // we shouldn't get a retry unless we have a packet that we're
873 // waiting to transmit
874 assert(cpu->dcache_pkt != NULL);
875 assert(cpu->_status == DcacheRetry);
876 PacketPtr tmp = cpu->dcache_pkt;
877 if (tmp->senderState) {
878 // This is a packet from a split access.
879 SplitFragmentSenderState * send_state =
880 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
881 assert(send_state);
882 PacketPtr big_pkt = send_state->bigPkt;
883
884 SplitMainSenderState * main_send_state =
885 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
886 assert(main_send_state);
887
888 if (sendTimingReq(tmp)) {
889 // If we were able to send without retrying, record that fact
890 // and try sending the other fragment.
891 send_state->clearFromParent();
892 int other_index = main_send_state->getPendingFragment();
893 if (other_index > 0) {
894 tmp = main_send_state->fragments[other_index];
895 cpu->dcache_pkt = tmp;
896 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
897 (big_pkt->isWrite() && cpu->handleWritePacket())) {
898 main_send_state->fragments[other_index] = NULL;
899 }
900 } else {
901 cpu->_status = DcacheWaitResponse;
902 // memory system takes ownership of packet
903 cpu->dcache_pkt = NULL;
904 }
905 }
906 } else if (sendTimingReq(tmp)) {
907 cpu->_status = DcacheWaitResponse;
908 // memory system takes ownership of packet
909 cpu->dcache_pkt = NULL;
910 }
911}
912
913TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
914 Tick t)
915 : pkt(_pkt), cpu(_cpu)
916{
917 cpu->schedule(this, t);
918}
919
920void
921TimingSimpleCPU::IprEvent::process()
922{
923 cpu->completeDataAccess(pkt);
924}
925
926const char *
927TimingSimpleCPU::IprEvent::description() const
928{
929 return "Timing Simple CPU Delay IPR event";
930}
931
932
933void
934TimingSimpleCPU::printAddr(Addr a)
935{
936 dcachePort.printAddr(a);
937}
938
939
940////////////////////////////////////////////////////////////////////////
941//
942// TimingSimpleCPU Simulation Object
943//
944TimingSimpleCPU *
945TimingSimpleCPUParams::create()
946{
947 numThreads = 1;
948 if (!FullSystem && workload.size() != 1)
949 panic("only one workload allowed");
950 return new TimingSimpleCPU(this);
951}