Deleted Added
sdiff udiff text old ( 5177:4307a768e10e ) new ( 5221:dba788e614fe )
full compact
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/timing.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/TimingSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45Port *
46TimingSimpleCPU::getPort(const std::string &if_name, int idx)
47{
48 if (if_name == "dcache_port")
49 return &dcachePort;
50 else if (if_name == "icache_port")
51 return &icachePort;
52 else
53 panic("No Such Port\n");
54}
55
56void
57TimingSimpleCPU::init()
58{
59 BaseCPU::init();
60#if FULL_SYSTEM
61 for (int i = 0; i < threadContexts.size(); ++i) {
62 ThreadContext *tc = threadContexts[i];
63
64 // initialize CPU, including PC
65 TheISA::initCPU(tc, tc->readCpuId());
66 }
67#endif
68}
69
70Tick
71TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
72{
73 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
74 return curTick;
75}
76
77void
78TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
79{
80 //No internal storage to update, jusst return
81 return;
82}
83
84void
85TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
86{
87 if (status == RangeChange) {
88 if (!snoopRangeSent) {
89 snoopRangeSent = true;
90 sendStatusChange(Port::RangeChange);
91 }
92 return;
93 }
94
95 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
96}
97
98
99void
100TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
101{
102 pkt = _pkt;
103 Event::schedule(t);
104}
105
106TimingSimpleCPU::TimingSimpleCPU(Params *p)
107 : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock)
108{
109 _status = Idle;
110
111 icachePort.snoopRangeSent = false;
112 dcachePort.snoopRangeSent = false;
113
114 ifetch_pkt = dcache_pkt = NULL;
115 drainEvent = NULL;
116 fetchEvent = NULL;
117 previousTick = 0;
118 changeState(SimObject::Running);
119}
120
121
122TimingSimpleCPU::~TimingSimpleCPU()
123{
124}
125
126void
127TimingSimpleCPU::serialize(ostream &os)
128{
129 SimObject::State so_state = SimObject::getState();
130 SERIALIZE_ENUM(so_state);
131 BaseSimpleCPU::serialize(os);
132}
133
134void
135TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
136{
137 SimObject::State so_state;
138 UNSERIALIZE_ENUM(so_state);
139 BaseSimpleCPU::unserialize(cp, section);
140}
141
142unsigned int
143TimingSimpleCPU::drain(Event *drain_event)
144{
145 // TimingSimpleCPU is ready to drain if it's not waiting for
146 // an access to complete.
147 if (status() == Idle || status() == Running || status() == SwitchedOut) {
148 changeState(SimObject::Drained);
149 return 0;
150 } else {
151 changeState(SimObject::Draining);
152 drainEvent = drain_event;
153 return 1;
154 }
155}
156
157void
158TimingSimpleCPU::resume()
159{
160 DPRINTF(SimpleCPU, "Resume\n");
161 if (_status != SwitchedOut && _status != Idle) {
162 assert(system->getMemoryMode() == Enums::timing);
163
164 // Delete the old event if it existed.
165 if (fetchEvent) {
166 if (fetchEvent->scheduled())
167 fetchEvent->deschedule();
168
169 delete fetchEvent;
170 }
171
172 fetchEvent = new FetchEvent(this, nextCycle());
173 }
174
175 changeState(SimObject::Running);
176}
177
178void
179TimingSimpleCPU::switchOut()
180{
181 assert(status() == Running || status() == Idle);
182 _status = SwitchedOut;
183 numCycles += tickToCycles(curTick - previousTick);
184
185 // If we've been scheduled to resume but are then told to switch out,
186 // we'll need to cancel it.
187 if (fetchEvent && fetchEvent->scheduled())
188 fetchEvent->deschedule();
189}
190
191
192void
193TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
194{
195 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
196
197 // if any of this CPU's ThreadContexts are active, mark the CPU as
198 // running and schedule its tick event.
199 for (int i = 0; i < threadContexts.size(); ++i) {
200 ThreadContext *tc = threadContexts[i];
201 if (tc->status() == ThreadContext::Active && _status != Running) {
202 _status = Running;
203 break;
204 }
205 }
206
207 if (_status != Running) {
208 _status = Idle;
209 }
210 assert(threadContexts.size() == 1);
211 cpuId = tc->readCpuId();
212 previousTick = curTick;
213}
214
215
216void
217TimingSimpleCPU::activateContext(int thread_num, int delay)
218{
219 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
220
221 assert(thread_num == 0);
222 assert(thread);
223
224 assert(_status == Idle);
225
226 notIdleFraction++;
227 _status = Running;
228
229 // kick things off by initiating the fetch of the next instruction
230 fetchEvent = new FetchEvent(this, nextCycle(curTick + ticks(delay)));
231}
232
233
234void
235TimingSimpleCPU::suspendContext(int thread_num)
236{
237 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
238
239 assert(thread_num == 0);
240 assert(thread);
241
242 assert(_status == Running);
243
244 // just change status to Idle... if status != Running,
245 // completeInst() will not initiate fetch of next instruction.
246
247 notIdleFraction--;
248 _status = Idle;
249}
250
251
252template <class T>
253Fault
254TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
255{
256 Request *req =
257 new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
258 cpuId, /* thread ID */ 0);
259
260 if (traceData) {
261 traceData->setAddr(req->getVaddr());
262 }
263
264 // translate to physical address
265 Fault fault = thread->translateDataReadReq(req);
266
267 // Now do the access.
268 if (fault == NoFault) {
269 PacketPtr pkt =
270 new Packet(req,
271 (req->isLocked() ?
272 MemCmd::LoadLockedReq : MemCmd::ReadReq),
273 Packet::Broadcast);
274 pkt->dataDynamic<T>(new T);
275
276 if (req->isMmapedIpr()) {
277 Tick delay;
278 delay = TheISA::handleIprRead(thread->getTC(), pkt);
279 new IprEvent(pkt, this, nextCycle(curTick + delay));
280 _status = DcacheWaitResponse;
281 dcache_pkt = NULL;
282 } else if (!dcachePort.sendTiming(pkt)) {
283 _status = DcacheRetry;
284 dcache_pkt = pkt;
285 } else {
286 _status = DcacheWaitResponse;
287 // memory system takes ownership of packet
288 dcache_pkt = NULL;
289 }
290
291 // This will need a new way to tell if it has a dcache attached.
292 if (req->isUncacheable())
293 recordEvent("Uncached Read");
294 } else {
295 delete req;
296 }
297
298 return fault;
299}
300
301Fault
302TimingSimpleCPU::translateDataReadAddr(Addr vaddr, Addr &paddr,
303 int size, unsigned flags)
304{
305 Request *req =
306 new Request(0, vaddr, size, flags, thread->readPC(), cpuId, 0);
307
308 if (traceData) {
309 traceData->setAddr(vaddr);
310 }
311
312 Fault fault = thread->translateDataWriteReq(req);
313
314 if (fault == NoFault)
315 paddr = req->getPaddr();
316
317 delete req;
318 return fault;
319}
320
321#ifndef DOXYGEN_SHOULD_SKIP_THIS
322
323template
324Fault
325TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
326
327template
328Fault
329TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
330
331template
332Fault
333TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
334
335template
336Fault
337TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
338
339template
340Fault
341TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
342
343template
344Fault
345TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
346
347#endif //DOXYGEN_SHOULD_SKIP_THIS
348
349template<>
350Fault
351TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
352{
353 return read(addr, *(uint64_t*)&data, flags);
354}
355
356template<>
357Fault
358TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
359{
360 return read(addr, *(uint32_t*)&data, flags);
361}
362
363
364template<>
365Fault
366TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
367{
368 return read(addr, (uint32_t&)data, flags);
369}
370
371
372template <class T>
373Fault
374TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
375{
376 Request *req =
377 new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
378 cpuId, /* thread ID */ 0);
379
380 if (traceData) {
381 traceData->setAddr(req->getVaddr());
382 }
383
384 // translate to physical address
385 Fault fault = thread->translateDataWriteReq(req);
386
387 // Now do the access.
388 if (fault == NoFault) {
389 MemCmd cmd = MemCmd::WriteReq; // default
390 bool do_access = true; // flag to suppress cache access
391
392 if (req->isLocked()) {
393 cmd = MemCmd::StoreCondReq;
394 do_access = TheISA::handleLockedWrite(thread, req);
395 } else if (req->isSwap()) {
396 cmd = MemCmd::SwapReq;
397 if (req->isCondSwap()) {
398 assert(res);
399 req->setExtraData(*res);
400 }
401 }
402
403 // Note: need to allocate dcache_pkt even if do_access is
404 // false, as it's used unconditionally to call completeAcc().
405 assert(dcache_pkt == NULL);
406 dcache_pkt = new Packet(req, cmd, Packet::Broadcast);
407 dcache_pkt->allocate();
408 dcache_pkt->set(data);
409
410 if (do_access) {
411 if (req->isMmapedIpr()) {
412 Tick delay;
413 dcache_pkt->set(htog(data));
414 delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
415 new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
416 _status = DcacheWaitResponse;
417 dcache_pkt = NULL;
418 } else if (!dcachePort.sendTiming(dcache_pkt)) {
419 _status = DcacheRetry;
420 } else {
421 _status = DcacheWaitResponse;
422 // memory system takes ownership of packet
423 dcache_pkt = NULL;
424 }
425 }
426 // This will need a new way to tell if it's hooked up to a cache or not.
427 if (req->isUncacheable())
428 recordEvent("Uncached Write");
429 } else {
430 delete req;
431 }
432
433
434 // If the write needs to have a fault on the access, consider calling
435 // changeStatus() and changing it to "bad addr write" or something.
436 return fault;
437}
438
439Fault
440TimingSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
441 int size, unsigned flags)
442{
443 Request *req =
444 new Request(0, vaddr, size, flags, thread->readPC(), cpuId, 0);
445
446 if (traceData) {
447 traceData->setAddr(vaddr);
448 }
449
450 Fault fault = thread->translateDataWriteReq(req);
451
452 if (fault == NoFault)
453 paddr = req->getPaddr();
454
455 delete req;
456 return fault;
457}
458
459
460#ifndef DOXYGEN_SHOULD_SKIP_THIS
461template
462Fault
463TimingSimpleCPU::write(Twin32_t data, Addr addr,
464 unsigned flags, uint64_t *res);
465
466template
467Fault
468TimingSimpleCPU::write(Twin64_t data, Addr addr,
469 unsigned flags, uint64_t *res);
470
471template
472Fault
473TimingSimpleCPU::write(uint64_t data, Addr addr,
474 unsigned flags, uint64_t *res);
475
476template
477Fault
478TimingSimpleCPU::write(uint32_t data, Addr addr,
479 unsigned flags, uint64_t *res);
480
481template
482Fault
483TimingSimpleCPU::write(uint16_t data, Addr addr,
484 unsigned flags, uint64_t *res);
485
486template
487Fault
488TimingSimpleCPU::write(uint8_t data, Addr addr,
489 unsigned flags, uint64_t *res);
490
491#endif //DOXYGEN_SHOULD_SKIP_THIS
492
493template<>
494Fault
495TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
496{
497 return write(*(uint64_t*)&data, addr, flags, res);
498}
499
500template<>
501Fault
502TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
503{
504 return write(*(uint32_t*)&data, addr, flags, res);
505}
506
507
508template<>
509Fault
510TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
511{
512 return write((uint32_t)data, addr, flags, res);
513}
514
515
516void
517TimingSimpleCPU::fetch()
518{
519 DPRINTF(SimpleCPU, "Fetch\n");
520
521 if (!curStaticInst || !curStaticInst->isDelayedCommit())
522 checkForInterrupts();
523
524 Request *ifetch_req = new Request();
525 ifetch_req->setThreadContext(cpuId, /* thread ID */ 0);
526 Fault fault = setupFetchRequest(ifetch_req);
527
528 ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
529 ifetch_pkt->dataStatic(&inst);
530
531 if (fault == NoFault) {
532 if (!icachePort.sendTiming(ifetch_pkt)) {
533 // Need to wait for retry
534 _status = IcacheRetry;
535 } else {
536 // Need to wait for cache to respond
537 _status = IcacheWaitResponse;
538 // ownership of packet transferred to memory system
539 ifetch_pkt = NULL;
540 }
541 } else {
542 delete ifetch_req;
543 delete ifetch_pkt;
544 // fetch fault: advance directly to next instruction (fault handler)
545 advanceInst(fault);
546 }
547
548 numCycles += tickToCycles(curTick - previousTick);
549 previousTick = curTick;
550}
551
552
553void
554TimingSimpleCPU::advanceInst(Fault fault)
555{
556 advancePC(fault);
557
558 if (_status == Running) {
559 // kick off fetch of next instruction... callback from icache
560 // response will cause that instruction to be executed,
561 // keeping the CPU running.
562 fetch();
563 }
564}
565
566
567void
568TimingSimpleCPU::completeIfetch(PacketPtr pkt)
569{
570 DPRINTF(SimpleCPU, "Complete ICache Fetch\n");
571
572 // received a response from the icache: execute the received
573 // instruction
574 assert(!pkt->isError());
575 assert(_status == IcacheWaitResponse);
576
577 _status = Running;
578
579 numCycles += tickToCycles(curTick - previousTick);
580 previousTick = curTick;
581
582 if (getState() == SimObject::Draining) {
583 delete pkt->req;
584 delete pkt;
585
586 completeDrain();
587 return;
588 }
589
590 preExecute();
591 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
592 // load or store: just send to dcache
593 Fault fault = curStaticInst->initiateAcc(this, traceData);
594 if (_status != Running) {
595 // instruction will complete in dcache response callback
596 assert(_status == DcacheWaitResponse || _status == DcacheRetry);
597 assert(fault == NoFault);
598 } else {
599 if (fault == NoFault) {
600 // early fail on store conditional: complete now
601 assert(dcache_pkt != NULL);
602 fault = curStaticInst->completeAcc(dcache_pkt, this,
603 traceData);
604 delete dcache_pkt->req;
605 delete dcache_pkt;
606 dcache_pkt = NULL;
607
608 // keep an instruction count
609 if (fault == NoFault)
610 countInst();
611 } else if (traceData) {
612 // If there was a fault, we shouldn't trace this instruction.
613 delete traceData;
614 traceData = NULL;
615 }
616
617 postExecute();
618 // @todo remove me after debugging with legion done
619 if (curStaticInst && (!curStaticInst->isMicroop() ||
620 curStaticInst->isFirstMicroop()))
621 instCnt++;
622 advanceInst(fault);
623 }
624 } else {
625 // non-memory instruction: execute completely now
626 Fault fault = curStaticInst->execute(this, traceData);
627
628 // keep an instruction count
629 if (fault == NoFault)
630 countInst();
631 else if (traceData) {
632 // If there was a fault, we shouldn't trace this instruction.
633 delete traceData;
634 traceData = NULL;
635 }
636
637 postExecute();
638 // @todo remove me after debugging with legion done
639 if (curStaticInst && (!curStaticInst->isMicroop() ||
640 curStaticInst->isFirstMicroop()))
641 instCnt++;
642 advanceInst(fault);
643 }
644
645 delete pkt->req;
646 delete pkt;
647}
648
649void
650TimingSimpleCPU::IcachePort::ITickEvent::process()
651{
652 cpu->completeIfetch(pkt);
653}
654
655bool
656TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
657{
658 if (pkt->isResponse() && !pkt->wasNacked()) {
659 // delay processing of returned data until next CPU clock edge
660 Tick next_tick = cpu->nextCycle(curTick);
661
662 if (next_tick == curTick)
663 cpu->completeIfetch(pkt);
664 else
665 tickEvent.schedule(pkt, next_tick);
666
667 return true;
668 }
669 else if (pkt->wasNacked()) {
670 assert(cpu->_status == IcacheWaitResponse);
671 pkt->reinitNacked();
672 if (!sendTiming(pkt)) {
673 cpu->_status = IcacheRetry;
674 cpu->ifetch_pkt = pkt;
675 }
676 }
677 //Snooping a Coherence Request, do nothing
678 return true;
679}
680
681void
682TimingSimpleCPU::IcachePort::recvRetry()
683{
684 // we shouldn't get a retry unless we have a packet that we're
685 // waiting to transmit
686 assert(cpu->ifetch_pkt != NULL);
687 assert(cpu->_status == IcacheRetry);
688 PacketPtr tmp = cpu->ifetch_pkt;
689 if (sendTiming(tmp)) {
690 cpu->_status = IcacheWaitResponse;
691 cpu->ifetch_pkt = NULL;
692 }
693}
694
695void
696TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
697{
698 // received a response from the dcache: complete the load or store
699 // instruction
700 assert(!pkt->isError());
701 assert(_status == DcacheWaitResponse);
702 _status = Running;
703
704 numCycles += tickToCycles(curTick - previousTick);
705 previousTick = curTick;
706
707 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
708
709 // keep an instruction count
710 if (fault == NoFault)
711 countInst();
712 else if (traceData) {
713 // If there was a fault, we shouldn't trace this instruction.
714 delete traceData;
715 traceData = NULL;
716 }
717
718 if (pkt->isRead() && pkt->isLocked()) {
719 TheISA::handleLockedRead(thread, pkt->req);
720 }
721
722 delete pkt->req;
723 delete pkt;
724
725 postExecute();
726
727 if (getState() == SimObject::Draining) {
728 advancePC(fault);
729 completeDrain();
730
731 return;
732 }
733
734 advanceInst(fault);
735}
736
737
738void
739TimingSimpleCPU::completeDrain()
740{
741 DPRINTF(Config, "Done draining\n");
742 changeState(SimObject::Drained);
743 drainEvent->process();
744}
745
746void
747TimingSimpleCPU::DcachePort::setPeer(Port *port)
748{
749 Port::setPeer(port);
750
751#if FULL_SYSTEM
752 // Update the ThreadContext's memory ports (Functional/Virtual
753 // Ports)
754 cpu->tcBase()->connectMemPorts();
755#endif
756}
757
758bool
759TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
760{
761 if (pkt->isResponse() && !pkt->wasNacked()) {
762 // delay processing of returned data until next CPU clock edge
763 Tick next_tick = cpu->nextCycle(curTick);
764
765 if (next_tick == curTick)
766 cpu->completeDataAccess(pkt);
767 else
768 tickEvent.schedule(pkt, next_tick);
769
770 return true;
771 }
772 else if (pkt->wasNacked()) {
773 assert(cpu->_status == DcacheWaitResponse);
774 pkt->reinitNacked();
775 if (!sendTiming(pkt)) {
776 cpu->_status = DcacheRetry;
777 cpu->dcache_pkt = pkt;
778 }
779 }
780 //Snooping a Coherence Request, do nothing
781 return true;
782}
783
784void
785TimingSimpleCPU::DcachePort::DTickEvent::process()
786{
787 cpu->completeDataAccess(pkt);
788}
789
790void
791TimingSimpleCPU::DcachePort::recvRetry()
792{
793 // we shouldn't get a retry unless we have a packet that we're
794 // waiting to transmit
795 assert(cpu->dcache_pkt != NULL);
796 assert(cpu->_status == DcacheRetry);
797 PacketPtr tmp = cpu->dcache_pkt;
798 if (sendTiming(tmp)) {
799 cpu->_status = DcacheWaitResponse;
800 // memory system takes ownership of packet
801 cpu->dcache_pkt = NULL;
802 }
803}
804
805TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu, Tick t)
806 : Event(&mainEventQueue), pkt(_pkt), cpu(_cpu)
807{
808 schedule(t);
809}
810
811void
812TimingSimpleCPU::IprEvent::process()
813{
814 cpu->completeDataAccess(pkt);
815}
816
817const char *
818TimingSimpleCPU::IprEvent::description()
819{
820 return "Timing Simple CPU Delay IPR event";
821}
822
823
824////////////////////////////////////////////////////////////////////////
825//
826// TimingSimpleCPU Simulation Object
827//
828TimingSimpleCPU *
829TimingSimpleCPUParams::create()
830{
831 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
832 params->name = name;
833 params->numberOfThreads = 1;
834 params->max_insts_any_thread = max_insts_any_thread;
835 params->max_insts_all_threads = max_insts_all_threads;
836 params->max_loads_any_thread = max_loads_any_thread;
837 params->max_loads_all_threads = max_loads_all_threads;
838 params->progress_interval = progress_interval;
839 params->deferRegistration = defer_registration;
840 params->clock = clock;
841 params->phase = phase;
842 params->functionTrace = function_trace;
843 params->functionTraceStart = function_trace_start;
844 params->system = system;
845 params->cpu_id = cpu_id;
846 params->tracer = tracer;
847
848 params->itb = itb;
849 params->dtb = dtb;
850#if FULL_SYSTEM
851 params->profile = profile;
852 params->do_quiesce = do_quiesce;
853 params->do_checkpoint_insts = do_checkpoint_insts;
854 params->do_statistics_insts = do_statistics_insts;
855#else
856 if (workload.size() != 1)
857 panic("only one workload allowed");
858 params->process = workload[0];
859#endif
860
861 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
862 return cpu;
863}