base.hh (6658:f4de76601762) base.hh (7045:e21fe6a62b1c)
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 * Dave Greene
30 * Nathan Binkert
31 */
32
33#ifndef __CPU_SIMPLE_BASE_HH__
34#define __CPU_SIMPLE_BASE_HH__
35
36#include "arch/predecoder.hh"
37#include "base/statistics.hh"
38#include "config/full_system.hh"
39#include "config/the_isa.hh"
40#include "cpu/base.hh"
41#include "cpu/simple_thread.hh"
42#include "cpu/pc_event.hh"
43#include "cpu/static_inst.hh"
44#include "mem/packet.hh"
45#include "mem/port.hh"
46#include "mem/request.hh"
47#include "sim/eventq.hh"
48#include "sim/system.hh"
49
50// forward declarations
51#if FULL_SYSTEM
52class Processor;
53namespace TheISA
54{
55 class ITB;
56 class DTB;
57}
58class MemObject;
59
60#else
61
62class Process;
63
64#endif // FULL_SYSTEM
65
66class RemoteGDB;
67class GDBListener;
68
69namespace TheISA
70{
71 class Predecoder;
72}
73class ThreadContext;
74class Checkpoint;
75
76namespace Trace {
77 class InstRecord;
78}
79
80class BaseSimpleCPUParams;
81
82
83class BaseSimpleCPU : public BaseCPU
84{
85 protected:
86 typedef TheISA::MiscReg MiscReg;
87 typedef TheISA::FloatReg FloatReg;
88 typedef TheISA::FloatRegBits FloatRegBits;
89
90 protected:
91 Trace::InstRecord *traceData;
92
93 inline void checkPcEventQueue() {
94 Addr oldpc;
95 do {
96 oldpc = thread->readPC();
97 system->pcEventQueue.service(tc);
98 } while (oldpc != thread->readPC());
99 }
100
101 public:
102 void wakeup();
103
104 void zero_fill_64(Addr addr) {
105 static int warned = 0;
106 if (!warned) {
107 warn ("WH64 is not implemented");
108 warned = 1;
109 }
110 };
111
112 public:
113 BaseSimpleCPU(BaseSimpleCPUParams *params);
114 virtual ~BaseSimpleCPU();
115
116 public:
117 /** SimpleThread object, provides all the architectural state. */
118 SimpleThread *thread;
119
120 /** ThreadContext object, provides an interface for external
121 * objects to modify this thread's state.
122 */
123 ThreadContext *tc;
124 protected:
125
126 enum Status {
127 Idle,
128 Running,
129 ITBWaitResponse,
130 IcacheRetry,
131 IcacheWaitResponse,
132 IcacheWaitSwitch,
133 DTBWaitResponse,
134 DcacheRetry,
135 DcacheWaitResponse,
136 DcacheWaitSwitch,
137 SwitchedOut
138 };
139
140 Status _status;
141
142 public:
143
144#if FULL_SYSTEM
145 Addr dbg_vtophys(Addr addr);
146
147 bool interval_stats;
148#endif
149
150 // current instruction
151 TheISA::MachInst inst;
152
153 // The predecoder
154 TheISA::Predecoder predecoder;
155
156 StaticInstPtr curStaticInst;
157 StaticInstPtr curMacroStaticInst;
158
159 //This is the offset from the current pc that fetch should be performed at
160 Addr fetchOffset;
161 //This flag says to stay at the current pc. This is useful for
162 //instructions which go beyond MachInst boundaries.
163 bool stayAtPC;
164
165 void checkForInterrupts();
166 void setupFetchRequest(Request *req);
167 void preExecute();
168 void postExecute();
169 void advancePC(Fault fault);
170
171 virtual void deallocateContext(int thread_num);
172 virtual void haltContext(int thread_num);
173
174 // statistics
175 virtual void regStats();
176 virtual void resetStats();
177
178 // number of simulated instructions
179 Counter numInst;
180 Counter startNumInst;
181 Stats::Scalar numInsts;
182
183 void countInst()
184 {
185 numInst++;
186 numInsts++;
187
188 thread->funcExeInst++;
189 }
190
191 virtual Counter totalInstructions() const
192 {
193 return numInst - startNumInst;
194 }
195
196 // Mask to align PCs to MachInst sized boundaries
197 static const Addr PCMask = ~((Addr)sizeof(TheISA::MachInst) - 1);
198
199 // number of simulated memory references
200 Stats::Scalar numMemRefs;
201
202 // number of simulated loads
203 Counter numLoad;
204 Counter startNumLoad;
205
206 // number of idle cycles
207 Stats::Average notIdleFraction;
208 Stats::Formula idleFraction;
209
210 // number of cycles stalled for I-cache responses
211 Stats::Scalar icacheStallCycles;
212 Counter lastIcacheStall;
213
214 // number of cycles stalled for I-cache retries
215 Stats::Scalar icacheRetryCycles;
216 Counter lastIcacheRetry;
217
218 // number of cycles stalled for D-cache responses
219 Stats::Scalar dcacheStallCycles;
220 Counter lastDcacheStall;
221
222 // number of cycles stalled for D-cache retries
223 Stats::Scalar dcacheRetryCycles;
224 Counter lastDcacheRetry;
225
226 virtual void serialize(std::ostream &os);
227 virtual void unserialize(Checkpoint *cp, const std::string &section);
228
229 // These functions are only used in CPU models that split
230 // effective address computation from the actual memory access.
231 void setEA(Addr EA) { panic("BaseSimpleCPU::setEA() not implemented\n"); }
232 Addr getEA() { panic("BaseSimpleCPU::getEA() not implemented\n");
233 M5_DUMMY_RETURN}
234
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 * Dave Greene
30 * Nathan Binkert
31 */
32
33#ifndef __CPU_SIMPLE_BASE_HH__
34#define __CPU_SIMPLE_BASE_HH__
35
36#include "arch/predecoder.hh"
37#include "base/statistics.hh"
38#include "config/full_system.hh"
39#include "config/the_isa.hh"
40#include "cpu/base.hh"
41#include "cpu/simple_thread.hh"
42#include "cpu/pc_event.hh"
43#include "cpu/static_inst.hh"
44#include "mem/packet.hh"
45#include "mem/port.hh"
46#include "mem/request.hh"
47#include "sim/eventq.hh"
48#include "sim/system.hh"
49
50// forward declarations
51#if FULL_SYSTEM
52class Processor;
53namespace TheISA
54{
55 class ITB;
56 class DTB;
57}
58class MemObject;
59
60#else
61
62class Process;
63
64#endif // FULL_SYSTEM
65
66class RemoteGDB;
67class GDBListener;
68
69namespace TheISA
70{
71 class Predecoder;
72}
73class ThreadContext;
74class Checkpoint;
75
76namespace Trace {
77 class InstRecord;
78}
79
80class BaseSimpleCPUParams;
81
82
83class BaseSimpleCPU : public BaseCPU
84{
85 protected:
86 typedef TheISA::MiscReg MiscReg;
87 typedef TheISA::FloatReg FloatReg;
88 typedef TheISA::FloatRegBits FloatRegBits;
89
90 protected:
91 Trace::InstRecord *traceData;
92
93 inline void checkPcEventQueue() {
94 Addr oldpc;
95 do {
96 oldpc = thread->readPC();
97 system->pcEventQueue.service(tc);
98 } while (oldpc != thread->readPC());
99 }
100
101 public:
102 void wakeup();
103
104 void zero_fill_64(Addr addr) {
105 static int warned = 0;
106 if (!warned) {
107 warn ("WH64 is not implemented");
108 warned = 1;
109 }
110 };
111
112 public:
113 BaseSimpleCPU(BaseSimpleCPUParams *params);
114 virtual ~BaseSimpleCPU();
115
116 public:
117 /** SimpleThread object, provides all the architectural state. */
118 SimpleThread *thread;
119
120 /** ThreadContext object, provides an interface for external
121 * objects to modify this thread's state.
122 */
123 ThreadContext *tc;
124 protected:
125
126 enum Status {
127 Idle,
128 Running,
129 ITBWaitResponse,
130 IcacheRetry,
131 IcacheWaitResponse,
132 IcacheWaitSwitch,
133 DTBWaitResponse,
134 DcacheRetry,
135 DcacheWaitResponse,
136 DcacheWaitSwitch,
137 SwitchedOut
138 };
139
140 Status _status;
141
142 public:
143
144#if FULL_SYSTEM
145 Addr dbg_vtophys(Addr addr);
146
147 bool interval_stats;
148#endif
149
150 // current instruction
151 TheISA::MachInst inst;
152
153 // The predecoder
154 TheISA::Predecoder predecoder;
155
156 StaticInstPtr curStaticInst;
157 StaticInstPtr curMacroStaticInst;
158
159 //This is the offset from the current pc that fetch should be performed at
160 Addr fetchOffset;
161 //This flag says to stay at the current pc. This is useful for
162 //instructions which go beyond MachInst boundaries.
163 bool stayAtPC;
164
165 void checkForInterrupts();
166 void setupFetchRequest(Request *req);
167 void preExecute();
168 void postExecute();
169 void advancePC(Fault fault);
170
171 virtual void deallocateContext(int thread_num);
172 virtual void haltContext(int thread_num);
173
174 // statistics
175 virtual void regStats();
176 virtual void resetStats();
177
178 // number of simulated instructions
179 Counter numInst;
180 Counter startNumInst;
181 Stats::Scalar numInsts;
182
183 void countInst()
184 {
185 numInst++;
186 numInsts++;
187
188 thread->funcExeInst++;
189 }
190
191 virtual Counter totalInstructions() const
192 {
193 return numInst - startNumInst;
194 }
195
196 // Mask to align PCs to MachInst sized boundaries
197 static const Addr PCMask = ~((Addr)sizeof(TheISA::MachInst) - 1);
198
199 // number of simulated memory references
200 Stats::Scalar numMemRefs;
201
202 // number of simulated loads
203 Counter numLoad;
204 Counter startNumLoad;
205
206 // number of idle cycles
207 Stats::Average notIdleFraction;
208 Stats::Formula idleFraction;
209
210 // number of cycles stalled for I-cache responses
211 Stats::Scalar icacheStallCycles;
212 Counter lastIcacheStall;
213
214 // number of cycles stalled for I-cache retries
215 Stats::Scalar icacheRetryCycles;
216 Counter lastIcacheRetry;
217
218 // number of cycles stalled for D-cache responses
219 Stats::Scalar dcacheStallCycles;
220 Counter lastDcacheStall;
221
222 // number of cycles stalled for D-cache retries
223 Stats::Scalar dcacheRetryCycles;
224 Counter lastDcacheRetry;
225
226 virtual void serialize(std::ostream &os);
227 virtual void unserialize(Checkpoint *cp, const std::string &section);
228
229 // These functions are only used in CPU models that split
230 // effective address computation from the actual memory access.
231 void setEA(Addr EA) { panic("BaseSimpleCPU::setEA() not implemented\n"); }
232 Addr getEA() { panic("BaseSimpleCPU::getEA() not implemented\n");
233 M5_DUMMY_RETURN}
234
235 void prefetch(Addr addr, unsigned flags)
236 {
237 // need to do this...
238 }
235 void prefetch(Addr addr, unsigned flags);
236 void writeHint(Addr addr, int size, unsigned flags);
239
237
240 void writeHint(Addr addr, int size, unsigned flags)
241 {
242 // need to do this...
243 }
244
245
246 Fault copySrcTranslate(Addr src);
247
248 Fault copy(Addr dest);
249
250 // The register accessor methods provide the index of the
251 // instruction's operand (e.g., 0 or 1), not the architectural
252 // register index, to simplify the implementation of register
253 // renaming. We find the architectural register index by indexing
254 // into the instruction's own operand index table. Note that a
255 // raw pointer to the StaticInst is provided instead of a
256 // ref-counted StaticInstPtr to redice overhead. This is fine as
257 // long as these methods don't copy the pointer into any long-term
258 // storage (which is pretty hard to imagine they would have reason
259 // to do).
260
261 uint64_t readIntRegOperand(const StaticInst *si, int idx)
262 {
263 return thread->readIntReg(si->srcRegIdx(idx));
264 }
265
266 FloatReg readFloatRegOperand(const StaticInst *si, int idx)
267 {
268 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
269 return thread->readFloatReg(reg_idx);
270 }
271
272 FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
273 {
274 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
275 return thread->readFloatRegBits(reg_idx);
276 }
277
278 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
279 {
280 thread->setIntReg(si->destRegIdx(idx), val);
281 }
282
283 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
284 {
285 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
286 thread->setFloatReg(reg_idx, val);
287 }
288
289 void setFloatRegOperandBits(const StaticInst *si, int idx,
290 FloatRegBits val)
291 {
292 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
293 thread->setFloatRegBits(reg_idx, val);
294 }
295
296 uint64_t readPC() { return thread->readPC(); }
297 uint64_t readMicroPC() { return thread->readMicroPC(); }
298 uint64_t readNextPC() { return thread->readNextPC(); }
299 uint64_t readNextMicroPC() { return thread->readNextMicroPC(); }
300 uint64_t readNextNPC() { return thread->readNextNPC(); }
301
302 void setPC(uint64_t val) { thread->setPC(val); }
303 void setMicroPC(uint64_t val) { thread->setMicroPC(val); }
304 void setNextPC(uint64_t val) { thread->setNextPC(val); }
305 void setNextMicroPC(uint64_t val) { thread->setNextMicroPC(val); }
306 void setNextNPC(uint64_t val) { thread->setNextNPC(val); }
307
308 MiscReg readMiscRegNoEffect(int misc_reg)
309 {
310 return thread->readMiscRegNoEffect(misc_reg);
311 }
312
313 MiscReg readMiscReg(int misc_reg)
314 {
315 return thread->readMiscReg(misc_reg);
316 }
317
318 void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
319 {
320 return thread->setMiscRegNoEffect(misc_reg, val);
321 }
322
323 void setMiscReg(int misc_reg, const MiscReg &val)
324 {
325 return thread->setMiscReg(misc_reg, val);
326 }
327
328 MiscReg readMiscRegOperandNoEffect(const StaticInst *si, int idx)
329 {
330 int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
331 return thread->readMiscRegNoEffect(reg_idx);
332 }
333
334 MiscReg readMiscRegOperand(const StaticInst *si, int idx)
335 {
336 int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
337 return thread->readMiscReg(reg_idx);
338 }
339
340 void setMiscRegOperandNoEffect(const StaticInst *si, int idx, const MiscReg &val)
341 {
342 int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
343 return thread->setMiscRegNoEffect(reg_idx, val);
344 }
345
346 void setMiscRegOperand(
347 const StaticInst *si, int idx, const MiscReg &val)
348 {
349 int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
350 return thread->setMiscReg(reg_idx, val);
351 }
352
353 void demapPage(Addr vaddr, uint64_t asn)
354 {
355 thread->demapPage(vaddr, asn);
356 }
357
358 void demapInstPage(Addr vaddr, uint64_t asn)
359 {
360 thread->demapInstPage(vaddr, asn);
361 }
362
363 void demapDataPage(Addr vaddr, uint64_t asn)
364 {
365 thread->demapDataPage(vaddr, asn);
366 }
367
368 unsigned readStCondFailures() {
369 return thread->readStCondFailures();
370 }
371
372 void setStCondFailures(unsigned sc_failures) {
373 thread->setStCondFailures(sc_failures);
374 }
375
376 MiscReg readRegOtherThread(int regIdx, ThreadID tid = InvalidThreadID)
377 {
378 panic("Simple CPU models do not support multithreaded "
379 "register access.\n");
380 }
381
382 void setRegOtherThread(int regIdx, const MiscReg &val,
383 ThreadID tid = InvalidThreadID)
384 {
385 panic("Simple CPU models do not support multithreaded "
386 "register access.\n");
387 }
388
389 //Fault CacheOp(uint8_t Op, Addr EA);
390
391#if FULL_SYSTEM
392 Fault hwrei() { return thread->hwrei(); }
393 void ev5_trap(Fault fault) { fault->invoke(tc); }
394 bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); }
395#else
396 void syscall(int64_t callnum) { thread->syscall(callnum); }
397#endif
398
399 bool misspeculating() { return thread->misspeculating(); }
400 ThreadContext *tcBase() { return tc; }
401};
402
403#endif // __CPU_SIMPLE_BASE_HH__
238 Fault copySrcTranslate(Addr src);
239
240 Fault copy(Addr dest);
241
242 // The register accessor methods provide the index of the
243 // instruction's operand (e.g., 0 or 1), not the architectural
244 // register index, to simplify the implementation of register
245 // renaming. We find the architectural register index by indexing
246 // into the instruction's own operand index table. Note that a
247 // raw pointer to the StaticInst is provided instead of a
248 // ref-counted StaticInstPtr to redice overhead. This is fine as
249 // long as these methods don't copy the pointer into any long-term
250 // storage (which is pretty hard to imagine they would have reason
251 // to do).
252
253 uint64_t readIntRegOperand(const StaticInst *si, int idx)
254 {
255 return thread->readIntReg(si->srcRegIdx(idx));
256 }
257
258 FloatReg readFloatRegOperand(const StaticInst *si, int idx)
259 {
260 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
261 return thread->readFloatReg(reg_idx);
262 }
263
264 FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
265 {
266 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
267 return thread->readFloatRegBits(reg_idx);
268 }
269
270 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
271 {
272 thread->setIntReg(si->destRegIdx(idx), val);
273 }
274
275 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
276 {
277 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
278 thread->setFloatReg(reg_idx, val);
279 }
280
281 void setFloatRegOperandBits(const StaticInst *si, int idx,
282 FloatRegBits val)
283 {
284 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
285 thread->setFloatRegBits(reg_idx, val);
286 }
287
288 uint64_t readPC() { return thread->readPC(); }
289 uint64_t readMicroPC() { return thread->readMicroPC(); }
290 uint64_t readNextPC() { return thread->readNextPC(); }
291 uint64_t readNextMicroPC() { return thread->readNextMicroPC(); }
292 uint64_t readNextNPC() { return thread->readNextNPC(); }
293
294 void setPC(uint64_t val) { thread->setPC(val); }
295 void setMicroPC(uint64_t val) { thread->setMicroPC(val); }
296 void setNextPC(uint64_t val) { thread->setNextPC(val); }
297 void setNextMicroPC(uint64_t val) { thread->setNextMicroPC(val); }
298 void setNextNPC(uint64_t val) { thread->setNextNPC(val); }
299
300 MiscReg readMiscRegNoEffect(int misc_reg)
301 {
302 return thread->readMiscRegNoEffect(misc_reg);
303 }
304
305 MiscReg readMiscReg(int misc_reg)
306 {
307 return thread->readMiscReg(misc_reg);
308 }
309
310 void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
311 {
312 return thread->setMiscRegNoEffect(misc_reg, val);
313 }
314
315 void setMiscReg(int misc_reg, const MiscReg &val)
316 {
317 return thread->setMiscReg(misc_reg, val);
318 }
319
320 MiscReg readMiscRegOperandNoEffect(const StaticInst *si, int idx)
321 {
322 int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
323 return thread->readMiscRegNoEffect(reg_idx);
324 }
325
326 MiscReg readMiscRegOperand(const StaticInst *si, int idx)
327 {
328 int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
329 return thread->readMiscReg(reg_idx);
330 }
331
332 void setMiscRegOperandNoEffect(const StaticInst *si, int idx, const MiscReg &val)
333 {
334 int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
335 return thread->setMiscRegNoEffect(reg_idx, val);
336 }
337
338 void setMiscRegOperand(
339 const StaticInst *si, int idx, const MiscReg &val)
340 {
341 int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
342 return thread->setMiscReg(reg_idx, val);
343 }
344
345 void demapPage(Addr vaddr, uint64_t asn)
346 {
347 thread->demapPage(vaddr, asn);
348 }
349
350 void demapInstPage(Addr vaddr, uint64_t asn)
351 {
352 thread->demapInstPage(vaddr, asn);
353 }
354
355 void demapDataPage(Addr vaddr, uint64_t asn)
356 {
357 thread->demapDataPage(vaddr, asn);
358 }
359
360 unsigned readStCondFailures() {
361 return thread->readStCondFailures();
362 }
363
364 void setStCondFailures(unsigned sc_failures) {
365 thread->setStCondFailures(sc_failures);
366 }
367
368 MiscReg readRegOtherThread(int regIdx, ThreadID tid = InvalidThreadID)
369 {
370 panic("Simple CPU models do not support multithreaded "
371 "register access.\n");
372 }
373
374 void setRegOtherThread(int regIdx, const MiscReg &val,
375 ThreadID tid = InvalidThreadID)
376 {
377 panic("Simple CPU models do not support multithreaded "
378 "register access.\n");
379 }
380
381 //Fault CacheOp(uint8_t Op, Addr EA);
382
383#if FULL_SYSTEM
384 Fault hwrei() { return thread->hwrei(); }
385 void ev5_trap(Fault fault) { fault->invoke(tc); }
386 bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); }
387#else
388 void syscall(int64_t callnum) { thread->syscall(callnum); }
389#endif
390
391 bool misspeculating() { return thread->misspeculating(); }
392 ThreadContext *tcBase() { return tc; }
393};
394
395#endif // __CPU_SIMPLE_BASE_HH__