base.hh (4172:141705d83494) base.hh (4181:6edaeff44647)
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 * Dave Greene
30 * Nathan Binkert
31 */
32
33#ifndef __CPU_SIMPLE_BASE_HH__
34#define __CPU_SIMPLE_BASE_HH__
35
36#include "base/statistics.hh"
37#include "config/full_system.hh"
38#include "cpu/base.hh"
39#include "cpu/simple_thread.hh"
40#include "cpu/pc_event.hh"
41#include "cpu/static_inst.hh"
42#include "mem/packet.hh"
43#include "mem/port.hh"
44#include "mem/request.hh"
45#include "sim/eventq.hh"
46
47// forward declarations
48#if FULL_SYSTEM
49class Processor;
50namespace TheISA
51{
52 class ITB;
53 class DTB;
54}
55class MemObject;
56
57#else
58
59class Process;
60
61#endif // FULL_SYSTEM
62
63class RemoteGDB;
64class GDBListener;
65
66class ThreadContext;
67class Checkpoint;
68
69namespace Trace {
70 class InstRecord;
71}
72
73
74class BaseSimpleCPU : public BaseCPU
75{
76 protected:
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 * Dave Greene
30 * Nathan Binkert
31 */
32
33#ifndef __CPU_SIMPLE_BASE_HH__
34#define __CPU_SIMPLE_BASE_HH__
35
36#include "base/statistics.hh"
37#include "config/full_system.hh"
38#include "cpu/base.hh"
39#include "cpu/simple_thread.hh"
40#include "cpu/pc_event.hh"
41#include "cpu/static_inst.hh"
42#include "mem/packet.hh"
43#include "mem/port.hh"
44#include "mem/request.hh"
45#include "sim/eventq.hh"
46
47// forward declarations
48#if FULL_SYSTEM
49class Processor;
50namespace TheISA
51{
52 class ITB;
53 class DTB;
54}
55class MemObject;
56
57#else
58
59class Process;
60
61#endif // FULL_SYSTEM
62
63class RemoteGDB;
64class GDBListener;
65
66class ThreadContext;
67class Checkpoint;
68
69namespace Trace {
70 class InstRecord;
71}
72
73
74class BaseSimpleCPU : public BaseCPU
75{
76 protected:
77 typedef TheISA::MachInst MachInst;
78 typedef TheISA::MiscReg MiscReg;
79 typedef TheISA::FloatReg FloatReg;
80 typedef TheISA::FloatRegBits FloatRegBits;
81
82 protected:
83 Trace::InstRecord *traceData;
84
85 public:
86 void post_interrupt(int int_num, int index);
87
88 void zero_fill_64(Addr addr) {
89 static int warned = 0;
90 if (!warned) {
91 warn ("WH64 is not implemented");
92 warned = 1;
93 }
94 };
95
96 public:
97 struct Params : public BaseCPU::Params
98 {
99#if FULL_SYSTEM
100 TheISA::ITB *itb;
101 TheISA::DTB *dtb;
102#else
103 Process *process;
104#endif
105 };
106 BaseSimpleCPU(Params *params);
107 virtual ~BaseSimpleCPU();
108
109 public:
110 /** SimpleThread object, provides all the architectural state. */
111 SimpleThread *thread;
112
113 /** ThreadContext object, provides an interface for external
114 * objects to modify this thread's state.
115 */
116 ThreadContext *tc;
117
118#if FULL_SYSTEM
119 Addr dbg_vtophys(Addr addr);
120
121 bool interval_stats;
122#endif
123
124 // current instruction
77 typedef TheISA::MiscReg MiscReg;
78 typedef TheISA::FloatReg FloatReg;
79 typedef TheISA::FloatRegBits FloatRegBits;
80
81 protected:
82 Trace::InstRecord *traceData;
83
84 public:
85 void post_interrupt(int int_num, int index);
86
87 void zero_fill_64(Addr addr) {
88 static int warned = 0;
89 if (!warned) {
90 warn ("WH64 is not implemented");
91 warned = 1;
92 }
93 };
94
95 public:
96 struct Params : public BaseCPU::Params
97 {
98#if FULL_SYSTEM
99 TheISA::ITB *itb;
100 TheISA::DTB *dtb;
101#else
102 Process *process;
103#endif
104 };
105 BaseSimpleCPU(Params *params);
106 virtual ~BaseSimpleCPU();
107
108 public:
109 /** SimpleThread object, provides all the architectural state. */
110 SimpleThread *thread;
111
112 /** ThreadContext object, provides an interface for external
113 * objects to modify this thread's state.
114 */
115 ThreadContext *tc;
116
117#if FULL_SYSTEM
118 Addr dbg_vtophys(Addr addr);
119
120 bool interval_stats;
121#endif
122
123 // current instruction
125 MachInst inst;
124 TheISA::MachInst inst;
126
125
126 // current extended machine instruction
127 TheISA::ExtMachInst extMachInst;
128
127 // Static data storage
128 TheISA::LargestRead dataReg;
129
130 StaticInstPtr curStaticInst;
131 StaticInstPtr curMacroStaticInst;
132
133 void checkForInterrupts();
134 Fault setupFetchRequest(Request *req);
135 void preExecute();
136 void postExecute();
137 void advancePC(Fault fault);
138
139 virtual void deallocateContext(int thread_num);
140 virtual void haltContext(int thread_num);
141
142 // statistics
143 virtual void regStats();
144 virtual void resetStats();
145
146 // number of simulated instructions
147 Counter numInst;
148 Counter startNumInst;
149 Stats::Scalar<> numInsts;
150
151 virtual Counter totalInstructions() const
152 {
153 return numInst - startNumInst;
154 }
155
156 // number of simulated memory references
157 Stats::Scalar<> numMemRefs;
158
159 // number of simulated loads
160 Counter numLoad;
161 Counter startNumLoad;
162
163 // number of idle cycles
164 Stats::Average<> notIdleFraction;
165 Stats::Formula idleFraction;
166
167 // number of cycles stalled for I-cache responses
168 Stats::Scalar<> icacheStallCycles;
169 Counter lastIcacheStall;
170
171 // number of cycles stalled for I-cache retries
172 Stats::Scalar<> icacheRetryCycles;
173 Counter lastIcacheRetry;
174
175 // number of cycles stalled for D-cache responses
176 Stats::Scalar<> dcacheStallCycles;
177 Counter lastDcacheStall;
178
179 // number of cycles stalled for D-cache retries
180 Stats::Scalar<> dcacheRetryCycles;
181 Counter lastDcacheRetry;
182
183 virtual void serialize(std::ostream &os);
184 virtual void unserialize(Checkpoint *cp, const std::string &section);
185
186 // These functions are only used in CPU models that split
187 // effective address computation from the actual memory access.
188 void setEA(Addr EA) { panic("BaseSimpleCPU::setEA() not implemented\n"); }
189 Addr getEA() { panic("BaseSimpleCPU::getEA() not implemented\n");
190 M5_DUMMY_RETURN}
191
192 void prefetch(Addr addr, unsigned flags)
193 {
194 // need to do this...
195 }
196
197 void writeHint(Addr addr, int size, unsigned flags)
198 {
199 // need to do this...
200 }
201
202 Fault copySrcTranslate(Addr src);
203
204 Fault copy(Addr dest);
205
206 // The register accessor methods provide the index of the
207 // instruction's operand (e.g., 0 or 1), not the architectural
208 // register index, to simplify the implementation of register
209 // renaming. We find the architectural register index by indexing
210 // into the instruction's own operand index table. Note that a
211 // raw pointer to the StaticInst is provided instead of a
212 // ref-counted StaticInstPtr to redice overhead. This is fine as
213 // long as these methods don't copy the pointer into any long-term
214 // storage (which is pretty hard to imagine they would have reason
215 // to do).
216
217 uint64_t readIntRegOperand(const StaticInst *si, int idx)
218 {
219 return thread->readIntReg(si->srcRegIdx(idx));
220 }
221
222 FloatReg readFloatRegOperand(const StaticInst *si, int idx, int width)
223 {
224 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
225 return thread->readFloatReg(reg_idx, width);
226 }
227
228 FloatReg readFloatRegOperand(const StaticInst *si, int idx)
229 {
230 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
231 return thread->readFloatReg(reg_idx);
232 }
233
234 FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx,
235 int width)
236 {
237 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
238 return thread->readFloatRegBits(reg_idx, width);
239 }
240
241 FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
242 {
243 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
244 return thread->readFloatRegBits(reg_idx);
245 }
246
247 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
248 {
249 thread->setIntReg(si->destRegIdx(idx), val);
250 }
251
252 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
253 int width)
254 {
255 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
256 thread->setFloatReg(reg_idx, val, width);
257 }
258
259 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
260 {
261 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
262 thread->setFloatReg(reg_idx, val);
263 }
264
265 void setFloatRegOperandBits(const StaticInst *si, int idx,
266 FloatRegBits val, int width)
267 {
268 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
269 thread->setFloatRegBits(reg_idx, val, width);
270 }
271
272 void setFloatRegOperandBits(const StaticInst *si, int idx,
273 FloatRegBits val)
274 {
275 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
276 thread->setFloatRegBits(reg_idx, val);
277 }
278
279 uint64_t readPC() { return thread->readPC(); }
280 uint64_t readNextPC() { return thread->readNextPC(); }
281 uint64_t readNextNPC() { return thread->readNextNPC(); }
282
283 void setPC(uint64_t val) { thread->setPC(val); }
284 void setNextPC(uint64_t val) { thread->setNextPC(val); }
285 void setNextNPC(uint64_t val) { thread->setNextNPC(val); }
286
287 MiscReg readMiscRegNoEffect(int misc_reg)
288 {
289 return thread->readMiscRegNoEffect(misc_reg);
290 }
291
292 MiscReg readMiscReg(int misc_reg)
293 {
294 return thread->readMiscReg(misc_reg);
295 }
296
297 void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
298 {
299 return thread->setMiscRegNoEffect(misc_reg, val);
300 }
301
302 void setMiscReg(int misc_reg, const MiscReg &val)
303 {
304 return thread->setMiscReg(misc_reg, val);
305 }
306
307 MiscReg readMiscRegOperand(const StaticInst *si, int idx)
308 {
309 int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
310 return thread->readMiscRegNoEffect(reg_idx);
311 }
312
313 MiscReg readMiscRegOperandWithEffect(const StaticInst *si, int idx)
314 {
315 int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
316 return thread->readMiscReg(reg_idx);
317 }
318
319 void setMiscRegOperand(const StaticInst *si, int idx, const MiscReg &val)
320 {
321 int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
322 return thread->setMiscRegNoEffect(reg_idx, val);
323 }
324
325 void setMiscRegOperandWithEffect(
326 const StaticInst *si, int idx, const MiscReg &val)
327 {
328 int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
329 return thread->setMiscReg(reg_idx, val);
330 }
331
332 unsigned readStCondFailures() {
333 return thread->readStCondFailures();
334 }
335
336 void setStCondFailures(unsigned sc_failures) {
337 thread->setStCondFailures(sc_failures);
338 }
339
340#if FULL_SYSTEM
341 Fault hwrei() { return thread->hwrei(); }
342 void ev5_trap(Fault fault) { fault->invoke(tc); }
343 bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); }
344#else
345 void syscall(int64_t callnum) { thread->syscall(callnum); }
346#endif
347
348 bool misspeculating() { return thread->misspeculating(); }
349 ThreadContext *tcBase() { return tc; }
350};
351
352#endif // __CPU_SIMPLE_BASE_HH__
129 // Static data storage
130 TheISA::LargestRead dataReg;
131
132 StaticInstPtr curStaticInst;
133 StaticInstPtr curMacroStaticInst;
134
135 void checkForInterrupts();
136 Fault setupFetchRequest(Request *req);
137 void preExecute();
138 void postExecute();
139 void advancePC(Fault fault);
140
141 virtual void deallocateContext(int thread_num);
142 virtual void haltContext(int thread_num);
143
144 // statistics
145 virtual void regStats();
146 virtual void resetStats();
147
148 // number of simulated instructions
149 Counter numInst;
150 Counter startNumInst;
151 Stats::Scalar<> numInsts;
152
153 virtual Counter totalInstructions() const
154 {
155 return numInst - startNumInst;
156 }
157
158 // number of simulated memory references
159 Stats::Scalar<> numMemRefs;
160
161 // number of simulated loads
162 Counter numLoad;
163 Counter startNumLoad;
164
165 // number of idle cycles
166 Stats::Average<> notIdleFraction;
167 Stats::Formula idleFraction;
168
169 // number of cycles stalled for I-cache responses
170 Stats::Scalar<> icacheStallCycles;
171 Counter lastIcacheStall;
172
173 // number of cycles stalled for I-cache retries
174 Stats::Scalar<> icacheRetryCycles;
175 Counter lastIcacheRetry;
176
177 // number of cycles stalled for D-cache responses
178 Stats::Scalar<> dcacheStallCycles;
179 Counter lastDcacheStall;
180
181 // number of cycles stalled for D-cache retries
182 Stats::Scalar<> dcacheRetryCycles;
183 Counter lastDcacheRetry;
184
185 virtual void serialize(std::ostream &os);
186 virtual void unserialize(Checkpoint *cp, const std::string &section);
187
188 // These functions are only used in CPU models that split
189 // effective address computation from the actual memory access.
190 void setEA(Addr EA) { panic("BaseSimpleCPU::setEA() not implemented\n"); }
191 Addr getEA() { panic("BaseSimpleCPU::getEA() not implemented\n");
192 M5_DUMMY_RETURN}
193
194 void prefetch(Addr addr, unsigned flags)
195 {
196 // need to do this...
197 }
198
199 void writeHint(Addr addr, int size, unsigned flags)
200 {
201 // need to do this...
202 }
203
204 Fault copySrcTranslate(Addr src);
205
206 Fault copy(Addr dest);
207
208 // The register accessor methods provide the index of the
209 // instruction's operand (e.g., 0 or 1), not the architectural
210 // register index, to simplify the implementation of register
211 // renaming. We find the architectural register index by indexing
212 // into the instruction's own operand index table. Note that a
213 // raw pointer to the StaticInst is provided instead of a
214 // ref-counted StaticInstPtr to redice overhead. This is fine as
215 // long as these methods don't copy the pointer into any long-term
216 // storage (which is pretty hard to imagine they would have reason
217 // to do).
218
219 uint64_t readIntRegOperand(const StaticInst *si, int idx)
220 {
221 return thread->readIntReg(si->srcRegIdx(idx));
222 }
223
224 FloatReg readFloatRegOperand(const StaticInst *si, int idx, int width)
225 {
226 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
227 return thread->readFloatReg(reg_idx, width);
228 }
229
230 FloatReg readFloatRegOperand(const StaticInst *si, int idx)
231 {
232 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
233 return thread->readFloatReg(reg_idx);
234 }
235
236 FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx,
237 int width)
238 {
239 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
240 return thread->readFloatRegBits(reg_idx, width);
241 }
242
243 FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
244 {
245 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
246 return thread->readFloatRegBits(reg_idx);
247 }
248
249 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
250 {
251 thread->setIntReg(si->destRegIdx(idx), val);
252 }
253
254 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
255 int width)
256 {
257 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
258 thread->setFloatReg(reg_idx, val, width);
259 }
260
261 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
262 {
263 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
264 thread->setFloatReg(reg_idx, val);
265 }
266
267 void setFloatRegOperandBits(const StaticInst *si, int idx,
268 FloatRegBits val, int width)
269 {
270 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
271 thread->setFloatRegBits(reg_idx, val, width);
272 }
273
274 void setFloatRegOperandBits(const StaticInst *si, int idx,
275 FloatRegBits val)
276 {
277 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
278 thread->setFloatRegBits(reg_idx, val);
279 }
280
281 uint64_t readPC() { return thread->readPC(); }
282 uint64_t readNextPC() { return thread->readNextPC(); }
283 uint64_t readNextNPC() { return thread->readNextNPC(); }
284
285 void setPC(uint64_t val) { thread->setPC(val); }
286 void setNextPC(uint64_t val) { thread->setNextPC(val); }
287 void setNextNPC(uint64_t val) { thread->setNextNPC(val); }
288
289 MiscReg readMiscRegNoEffect(int misc_reg)
290 {
291 return thread->readMiscRegNoEffect(misc_reg);
292 }
293
294 MiscReg readMiscReg(int misc_reg)
295 {
296 return thread->readMiscReg(misc_reg);
297 }
298
299 void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
300 {
301 return thread->setMiscRegNoEffect(misc_reg, val);
302 }
303
304 void setMiscReg(int misc_reg, const MiscReg &val)
305 {
306 return thread->setMiscReg(misc_reg, val);
307 }
308
309 MiscReg readMiscRegOperand(const StaticInst *si, int idx)
310 {
311 int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
312 return thread->readMiscRegNoEffect(reg_idx);
313 }
314
315 MiscReg readMiscRegOperandWithEffect(const StaticInst *si, int idx)
316 {
317 int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
318 return thread->readMiscReg(reg_idx);
319 }
320
321 void setMiscRegOperand(const StaticInst *si, int idx, const MiscReg &val)
322 {
323 int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
324 return thread->setMiscRegNoEffect(reg_idx, val);
325 }
326
327 void setMiscRegOperandWithEffect(
328 const StaticInst *si, int idx, const MiscReg &val)
329 {
330 int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
331 return thread->setMiscReg(reg_idx, val);
332 }
333
334 unsigned readStCondFailures() {
335 return thread->readStCondFailures();
336 }
337
338 void setStCondFailures(unsigned sc_failures) {
339 thread->setStCondFailures(sc_failures);
340 }
341
342#if FULL_SYSTEM
343 Fault hwrei() { return thread->hwrei(); }
344 void ev5_trap(Fault fault) { fault->invoke(tc); }
345 bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); }
346#else
347 void syscall(int64_t callnum) { thread->syscall(callnum); }
348#endif
349
350 bool misspeculating() { return thread->misspeculating(); }
351 ThreadContext *tcBase() { return tc; }
352};
353
354#endif // __CPU_SIMPLE_BASE_HH__