1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/atomic.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/AtomicSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
46 : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
47{
48}
49
50
51void
52AtomicSimpleCPU::TickEvent::process()
53{
54 cpu->tick();
55}
56
57const char *
58AtomicSimpleCPU::TickEvent::description() const
59{
60 return "AtomicSimpleCPU tick";
61}
62
63Port *
64AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
65{
66 if (if_name == "dcache_port")
67 return &dcachePort;
68 else if (if_name == "icache_port")
69 return &icachePort;
70 else if (if_name == "physmem_port") {
71 hasPhysMemPort = true;
72 return &physmemPort;
73 }
74 else
75 panic("No Such Port\n");
76}
77
78void
79AtomicSimpleCPU::init()
80{
81 BaseCPU::init();
82 cpuId = tc->readCpuId();
83#if FULL_SYSTEM
84 for (int i = 0; i < threadContexts.size(); ++i) {
85 ThreadContext *tc = threadContexts[i];
86
87 // initialize CPU, including PC
88 TheISA::initCPU(tc, cpuId);
89 }
90#endif
91 if (hasPhysMemPort) {
92 bool snoop = false;
93 AddrRangeList pmAddrList;
94 physmemPort.getPeerAddressRanges(pmAddrList, snoop);
95 physMemAddr = *pmAddrList.begin();
96 }
97 ifetch_req.setThreadContext(cpuId, 0); // Add thread ID if we add MT
98 data_read_req.setThreadContext(cpuId, 0); // Add thread ID here too
99 data_write_req.setThreadContext(cpuId, 0); // Add thread ID here too
100}
101
102bool
103AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
104{
105 panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
106 return true;
107}
108
109Tick
110AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
111{
112 //Snooping a coherence request, just return
113 return 0;
114}
115
116void
117AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
118{
119 //No internal storage to update, just return
120 return;
121}
122
123void
124AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
125{
126 if (status == RangeChange) {
127 if (!snoopRangeSent) {
128 snoopRangeSent = true;
129 sendStatusChange(Port::RangeChange);
130 }
131 return;
132 }
133
134 panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
135}
136
137void
138AtomicSimpleCPU::CpuPort::recvRetry()
139{
140 panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
141}
142
143void
144AtomicSimpleCPU::DcachePort::setPeer(Port *port)
145{
146 Port::setPeer(port);
147
148#if FULL_SYSTEM
149 // Update the ThreadContext's memory ports (Functional/Virtual
150 // Ports)
151 cpu->tcBase()->connectMemPorts();
152#endif
153}
154
155AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
156 : BaseSimpleCPU(p), tickEvent(this), width(p->width),
157 simulate_data_stalls(p->simulate_data_stalls),
158 simulate_inst_stalls(p->simulate_inst_stalls),
159 icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
160 physmemPort(name() + "-iport", this), hasPhysMemPort(false)
161{
162 _status = Idle;
163
164 icachePort.snoopRangeSent = false;
165 dcachePort.snoopRangeSent = false;
166
167}
168
169
170AtomicSimpleCPU::~AtomicSimpleCPU()
171{
172}
173
174void
175AtomicSimpleCPU::serialize(ostream &os)
176{
177 SimObject::State so_state = SimObject::getState();
178 SERIALIZE_ENUM(so_state);
179 Status _status = status();
180 SERIALIZE_ENUM(_status);
179 BaseSimpleCPU::serialize(os);
180 nameOut(os, csprintf("%s.tickEvent", name()));
181 tickEvent.serialize(os);
182}
183
184void
185AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
186{
187 SimObject::State so_state;
188 UNSERIALIZE_ENUM(so_state);
191 UNSERIALIZE_ENUM(_status);
189 BaseSimpleCPU::unserialize(cp, section);
190 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
191}
192
193void
194AtomicSimpleCPU::resume()
195{
196 if (_status == Idle || _status == SwitchedOut)
197 return;
198
199 DPRINTF(SimpleCPU, "Resume\n");
200 assert(system->getMemoryMode() == Enums::atomic);
201
202 changeState(SimObject::Running);
203 if (thread->status() == ThreadContext::Active) {
204 if (!tickEvent.scheduled()) {
205 tickEvent.schedule(nextCycle());
206 }
207 }
208}
209
210void
211AtomicSimpleCPU::switchOut()
212{
216 assert(status() == Running || status() == Idle);
213 assert(_status == Running || _status == Idle);
214 _status = SwitchedOut;
215
216 tickEvent.squash();
217}
218
219
220void
221AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
222{
223 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
224
225 assert(!tickEvent.scheduled());
226
227 // if any of this CPU's ThreadContexts are active, mark the CPU as
228 // running and schedule its tick event.
229 for (int i = 0; i < threadContexts.size(); ++i) {
230 ThreadContext *tc = threadContexts[i];
231 if (tc->status() == ThreadContext::Active && _status != Running) {
232 _status = Running;
233 tickEvent.schedule(nextCycle());
234 break;
235 }
236 }
237 if (_status != Running) {
238 _status = Idle;
239 }
240 assert(threadContexts.size() == 1);
241 cpuId = tc->readCpuId();
242 ifetch_req.setThreadContext(cpuId, 0); // Add thread ID if we add MT
243 data_read_req.setThreadContext(cpuId, 0); // Add thread ID here too
244 data_write_req.setThreadContext(cpuId, 0); // Add thread ID here too
245}
246
247
248void
249AtomicSimpleCPU::activateContext(int thread_num, int delay)
250{
251 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
252
253 assert(thread_num == 0);
254 assert(thread);
255
256 assert(_status == Idle);
257 assert(!tickEvent.scheduled());
258
259 notIdleFraction++;
260 numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
261
262 //Make sure ticks are still on multiples of cycles
263 tickEvent.schedule(nextCycle(curTick + ticks(delay)));
264 _status = Running;
265}
266
267
268void
269AtomicSimpleCPU::suspendContext(int thread_num)
270{
271 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
272
273 assert(thread_num == 0);
274 assert(thread);
275
276 assert(_status == Running);
277
278 // tick event may not be scheduled if this gets called from inside
279 // an instruction's execution, e.g. "quiesce"
280 if (tickEvent.scheduled())
281 tickEvent.deschedule();
282
283 notIdleFraction--;
284 _status = Idle;
285}
286
287
288template <class T>
289Fault
290AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
291{
292 // use the CPU's statically allocated read request and packet objects
293 Request *req = &data_read_req;
294
295 if (traceData) {
296 traceData->setAddr(addr);
297 }
298
299 //The block size of our peer.
300 int blockSize = dcachePort.peerBlockSize();
301 //The size of the data we're trying to read.
302 int dataSize = sizeof(T);
303
304 uint8_t * dataPtr = (uint8_t *)&data;
305
306 //The address of the second part of this access if it needs to be split
307 //across a cache line boundary.
308 Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
309
310 if(secondAddr > addr)
311 dataSize = secondAddr - addr;
312
313 dcache_latency = 0;
314
315 while(1) {
316 req->setVirt(0, addr, dataSize, flags, thread->readPC());
317
318 // translate to physical address
319 Fault fault = thread->translateDataReadReq(req);
320
321 // Now do the access.
322 if (fault == NoFault) {
323 Packet pkt = Packet(req,
324 req->isLocked() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
325 Packet::Broadcast);
326 pkt.dataStatic(dataPtr);
327
328 if (req->isMmapedIpr())
329 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
330 else {
331 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
332 dcache_latency += physmemPort.sendAtomic(&pkt);
333 else
334 dcache_latency += dcachePort.sendAtomic(&pkt);
335 }
336 dcache_access = true;
337
338 assert(!pkt.isError());
339
340 if (req->isLocked()) {
341 TheISA::handleLockedRead(thread, req);
342 }
343 }
344
345 // This will need a new way to tell if it has a dcache attached.
346 if (req->isUncacheable())
347 recordEvent("Uncached Read");
348
349 //If there's a fault, return it
350 if (fault != NoFault)
351 return fault;
352 //If we don't need to access a second cache line, stop now.
353 if (secondAddr <= addr)
354 {
355 data = gtoh(data);
356 if (traceData) {
357 traceData->setData(data);
358 }
359 return fault;
360 }
361
362 /*
363 * Set up for accessing the second cache line.
364 */
365
366 //Move the pointer we're reading into to the correct location.
367 dataPtr += dataSize;
368 //Adjust the size to get the remaining bytes.
369 dataSize = addr + sizeof(T) - secondAddr;
370 //And access the right address.
371 addr = secondAddr;
372 }
373}
374
375Fault
376AtomicSimpleCPU::translateDataReadAddr(Addr vaddr, Addr & paddr,
377 int size, unsigned flags)
378{
379 // use the CPU's statically allocated read request and packet objects
380 Request *req = &data_read_req;
381
382 if (traceData) {
383 traceData->setAddr(vaddr);
384 }
385
386 //The block size of our peer.
387 int blockSize = dcachePort.peerBlockSize();
388 //The size of the data we're trying to read.
389 int dataSize = size;
390
391 bool firstTimeThrough = true;
392
393 //The address of the second part of this access if it needs to be split
394 //across a cache line boundary.
395 Addr secondAddr = roundDown(vaddr + dataSize - 1, blockSize);
396
397 if(secondAddr > vaddr)
398 dataSize = secondAddr - vaddr;
399
400 while(1) {
401 req->setVirt(0, vaddr, dataSize, flags, thread->readPC());
402
403 // translate to physical address
404 Fault fault = thread->translateDataReadReq(req);
405
406 //If there's a fault, return it
407 if (fault != NoFault)
408 return fault;
409
410 if (firstTimeThrough) {
411 paddr = req->getPaddr();
412 firstTimeThrough = false;
413 }
414
415 //If we don't need to access a second cache line, stop now.
416 if (secondAddr <= vaddr)
417 return fault;
418
419 /*
420 * Set up for accessing the second cache line.
421 */
422
423 //Adjust the size to get the remaining bytes.
424 dataSize = vaddr + size - secondAddr;
425 //And access the right address.
426 vaddr = secondAddr;
427 }
428}
429
430#ifndef DOXYGEN_SHOULD_SKIP_THIS
431
432template
433Fault
434AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
435
436template
437Fault
438AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
439
440template
441Fault
442AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
443
444template
445Fault
446AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
447
448template
449Fault
450AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
451
452template
453Fault
454AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
455
456#endif //DOXYGEN_SHOULD_SKIP_THIS
457
458template<>
459Fault
460AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
461{
462 return read(addr, *(uint64_t*)&data, flags);
463}
464
465template<>
466Fault
467AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
468{
469 return read(addr, *(uint32_t*)&data, flags);
470}
471
472
473template<>
474Fault
475AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
476{
477 return read(addr, (uint32_t&)data, flags);
478}
479
480
481template <class T>
482Fault
483AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
484{
485 // use the CPU's statically allocated write request and packet objects
486 Request *req = &data_write_req;
487
488 if (traceData) {
489 traceData->setAddr(addr);
490 }
491
492 //The block size of our peer.
493 int blockSize = dcachePort.peerBlockSize();
494 //The size of the data we're trying to read.
495 int dataSize = sizeof(T);
496
497 uint8_t * dataPtr = (uint8_t *)&data;
498
499 //The address of the second part of this access if it needs to be split
500 //across a cache line boundary.
501 Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
502
503 if(secondAddr > addr)
504 dataSize = secondAddr - addr;
505
506 dcache_latency = 0;
507
508 while(1) {
509 req->setVirt(0, addr, dataSize, flags, thread->readPC());
510
511 // translate to physical address
512 Fault fault = thread->translateDataWriteReq(req);
513
514 // Now do the access.
515 if (fault == NoFault) {
516 MemCmd cmd = MemCmd::WriteReq; // default
517 bool do_access = true; // flag to suppress cache access
518
519 if (req->isLocked()) {
520 cmd = MemCmd::StoreCondReq;
521 do_access = TheISA::handleLockedWrite(thread, req);
522 } else if (req->isSwap()) {
523 cmd = MemCmd::SwapReq;
524 if (req->isCondSwap()) {
525 assert(res);
526 req->setExtraData(*res);
527 }
528 }
529
530 if (do_access) {
531 Packet pkt = Packet(req, cmd, Packet::Broadcast);
532 pkt.dataStatic(dataPtr);
533
534 if (req->isMmapedIpr()) {
535 dcache_latency +=
536 TheISA::handleIprWrite(thread->getTC(), &pkt);
537 } else {
538 //XXX This needs to be outside of the loop in order to
539 //work properly for cache line boundary crossing
540 //accesses in transendian simulations.
541 data = htog(data);
542 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
543 dcache_latency += physmemPort.sendAtomic(&pkt);
544 else
545 dcache_latency += dcachePort.sendAtomic(&pkt);
546 }
547 dcache_access = true;
548 assert(!pkt.isError());
549
550 if (req->isSwap()) {
551 assert(res);
552 *res = pkt.get<T>();
553 }
554 }
555
556 if (res && !req->isSwap()) {
557 *res = req->getExtraData();
558 }
559 }
560
561 // This will need a new way to tell if it's hooked up to a cache or not.
562 if (req->isUncacheable())
563 recordEvent("Uncached Write");
564
565 //If there's a fault or we don't need to access a second cache line,
566 //stop now.
567 if (fault != NoFault || secondAddr <= addr)
568 {
569 // If the write needs to have a fault on the access, consider
570 // calling changeStatus() and changing it to "bad addr write"
571 // or something.
572 if (traceData) {
573 traceData->setData(data);
574 }
575 return fault;
576 }
577
578 /*
579 * Set up for accessing the second cache line.
580 */
581
582 //Move the pointer we're reading into to the correct location.
583 dataPtr += dataSize;
584 //Adjust the size to get the remaining bytes.
585 dataSize = addr + sizeof(T) - secondAddr;
586 //And access the right address.
587 addr = secondAddr;
588 }
589}
590
591Fault
592AtomicSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
593 int size, unsigned flags)
594{
595 // use the CPU's statically allocated write request and packet objects
596 Request *req = &data_write_req;
597
598 if (traceData) {
599 traceData->setAddr(vaddr);
600 }
601
602 //The block size of our peer.
603 int blockSize = dcachePort.peerBlockSize();
604
605 //The address of the second part of this access if it needs to be split
606 //across a cache line boundary.
607 Addr secondAddr = roundDown(vaddr + size - 1, blockSize);
608
609 //The size of the data we're trying to read.
610 int dataSize = size;
611
612 bool firstTimeThrough = true;
613
614 if(secondAddr > vaddr)
615 dataSize = secondAddr - vaddr;
616
617 dcache_latency = 0;
618
619 while(1) {
620 req->setVirt(0, vaddr, dataSize, flags, thread->readPC());
621
622 // translate to physical address
623 Fault fault = thread->translateDataWriteReq(req);
624
625 //If there's a fault or we don't need to access a second cache line,
626 //stop now.
627 if (fault != NoFault)
628 return fault;
629
630 if (firstTimeThrough) {
631 paddr = req->getPaddr();
632 firstTimeThrough = false;
633 }
634
635 if (secondAddr <= vaddr)
636 return fault;
637
638 /*
639 * Set up for accessing the second cache line.
640 */
641
642 //Adjust the size to get the remaining bytes.
643 dataSize = vaddr + size - secondAddr;
644 //And access the right address.
645 vaddr = secondAddr;
646 }
647}
648
649
650#ifndef DOXYGEN_SHOULD_SKIP_THIS
651
652template
653Fault
654AtomicSimpleCPU::write(Twin32_t data, Addr addr,
655 unsigned flags, uint64_t *res);
656
657template
658Fault
659AtomicSimpleCPU::write(Twin64_t data, Addr addr,
660 unsigned flags, uint64_t *res);
661
662template
663Fault
664AtomicSimpleCPU::write(uint64_t data, Addr addr,
665 unsigned flags, uint64_t *res);
666
667template
668Fault
669AtomicSimpleCPU::write(uint32_t data, Addr addr,
670 unsigned flags, uint64_t *res);
671
672template
673Fault
674AtomicSimpleCPU::write(uint16_t data, Addr addr,
675 unsigned flags, uint64_t *res);
676
677template
678Fault
679AtomicSimpleCPU::write(uint8_t data, Addr addr,
680 unsigned flags, uint64_t *res);
681
682#endif //DOXYGEN_SHOULD_SKIP_THIS
683
684template<>
685Fault
686AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
687{
688 return write(*(uint64_t*)&data, addr, flags, res);
689}
690
691template<>
692Fault
693AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
694{
695 return write(*(uint32_t*)&data, addr, flags, res);
696}
697
698
699template<>
700Fault
701AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
702{
703 return write((uint32_t)data, addr, flags, res);
704}
705
706
707void
708AtomicSimpleCPU::tick()
709{
710 DPRINTF(SimpleCPU, "Tick\n");
711
712 Tick latency = 0;
713
714 for (int i = 0; i < width; ++i) {
715 numCycles++;
716
717 if (!curStaticInst || !curStaticInst->isDelayedCommit())
718 checkForInterrupts();
719
720 checkPcEventQueue();
721
722 Fault fault = setupFetchRequest(&ifetch_req);
723
724 if (fault == NoFault) {
725 Tick icache_latency = 0;
726 bool icache_access = false;
727 dcache_access = false; // assume no dcache access
728
729 //Fetch more instruction memory if necessary
730 //if(predecoder.needMoreBytes())
731 //{
732 icache_access = true;
733 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
734 Packet::Broadcast);
735 ifetch_pkt.dataStatic(&inst);
736
737 if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
738 icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
739 else
740 icache_latency = icachePort.sendAtomic(&ifetch_pkt);
741
742 assert(!ifetch_pkt.isError());
743
744 // ifetch_req is initialized to read the instruction directly
745 // into the CPU object's inst field.
746 //}
747
748 preExecute();
749
750 if (curStaticInst) {
751 fault = curStaticInst->execute(this, traceData);
752
753 // keep an instruction count
754 if (fault == NoFault)
755 countInst();
756 else if (traceData) {
757 // If there was a fault, we should trace this instruction.
758 delete traceData;
759 traceData = NULL;
760 }
761
762 postExecute();
763 }
764
765 // @todo remove me after debugging with legion done
766 if (curStaticInst && (!curStaticInst->isMicroop() ||
767 curStaticInst->isFirstMicroop()))
768 instCnt++;
769
770 Tick stall_ticks = 0;
771 if (simulate_inst_stalls && icache_access)
772 stall_ticks += icache_latency;
773
774 if (simulate_data_stalls && dcache_access)
775 stall_ticks += dcache_latency;
776
777 if (stall_ticks) {
778 Tick stall_cycles = stall_ticks / ticks(1);
779 Tick aligned_stall_ticks = ticks(stall_cycles);
780
781 if (aligned_stall_ticks < stall_ticks)
782 aligned_stall_ticks += 1;
783
784 latency += aligned_stall_ticks;
785 }
786
787 }
788 if(fault != NoFault || !stayAtPC)
789 advancePC(fault);
790 }
791
792 // instruction takes at least one cycle
793 if (latency < ticks(1))
794 latency = ticks(1);
795
796 if (_status != Idle)
797 tickEvent.schedule(curTick + latency);
798}
799
800
801void
802AtomicSimpleCPU::printAddr(Addr a)
803{
804 dcachePort.printAddr(a);
805}
806
807
808////////////////////////////////////////////////////////////////////////
809//
810// AtomicSimpleCPU Simulation Object
811//
812AtomicSimpleCPU *
813AtomicSimpleCPUParams::create()
814{
815 AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
816 params->name = name;
817 params->numberOfThreads = 1;
818 params->max_insts_any_thread = max_insts_any_thread;
819 params->max_insts_all_threads = max_insts_all_threads;
820 params->max_loads_any_thread = max_loads_any_thread;
821 params->max_loads_all_threads = max_loads_all_threads;
822 params->progress_interval = progress_interval;
823 params->deferRegistration = defer_registration;
824 params->phase = phase;
825 params->clock = clock;
826 params->functionTrace = function_trace;
827 params->functionTraceStart = function_trace_start;
828 params->width = width;
829 params->simulate_data_stalls = simulate_data_stalls;
830 params->simulate_inst_stalls = simulate_inst_stalls;
831 params->system = system;
832 params->cpu_id = cpu_id;
833 params->tracer = tracer;
834
835 params->itb = itb;
836 params->dtb = dtb;
837#if FULL_SYSTEM
838 params->profile = profile;
839 params->do_quiesce = do_quiesce;
840 params->do_checkpoint_insts = do_checkpoint_insts;
841 params->do_statistics_insts = do_statistics_insts;
842#else
843 if (workload.size() != 1)
844 panic("only one workload allowed");
845 params->process = workload[0];
846#endif
847
848 AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
849 return cpu;
850}