1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2012-2013,2015,2017 ARM Limited
3 * Copyright (c) 2012-2013,2015,2017-2018 ARM Limited
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "cpu/simple/atomic.hh"
45
46#include "arch/locked_mem.hh"
47#include "arch/mmapped_ipr.hh"
48#include "arch/utility.hh"
49#include "base/output.hh"
50#include "config/the_isa.hh"
51#include "cpu/exetrace.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/SimpleCPU.hh"
55#include "mem/packet.hh"
56#include "mem/packet_access.hh"
57#include "mem/physical.hh"
58#include "params/AtomicSimpleCPU.hh"
59#include "sim/faults.hh"
60#include "sim/full_system.hh"
61#include "sim/system.hh"
62
63using namespace std;
64using namespace TheISA;
65
66void
67AtomicSimpleCPU::init()
68{
69 BaseSimpleCPU::init();
70
71 int cid = threadContexts[0]->contextId();
72 ifetch_req->setContext(cid);
73 data_read_req->setContext(cid);
74 data_write_req->setContext(cid);
75}
76
77AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
78 : BaseSimpleCPU(p),
79 tickEvent([this]{ tick(); }, "AtomicSimpleCPU tick",
80 false, Event::CPU_Tick_Pri),
81 width(p->width), locked(false),
82 simulate_data_stalls(p->simulate_data_stalls),
83 simulate_inst_stalls(p->simulate_inst_stalls),
84 icachePort(name() + ".icache_port", this),
85 dcachePort(name() + ".dcache_port", this),
86 fastmem(p->fastmem), dcache_access(false), dcache_latency(0),
86 dcache_access(false), dcache_latency(0),
87 ppCommit(nullptr)
88{
89 _status = Idle;
90 ifetch_req = std::make_shared<Request>();
91 data_read_req = std::make_shared<Request>();
92 data_write_req = std::make_shared<Request>();
93}
94
95
96AtomicSimpleCPU::~AtomicSimpleCPU()
97{
98 if (tickEvent.scheduled()) {
99 deschedule(tickEvent);
100 }
101}
102
103DrainState
104AtomicSimpleCPU::drain()
105{
106 // Deschedule any power gating event (if any)
107 deschedulePowerGatingEvent();
108
109 if (switchedOut())
110 return DrainState::Drained;
111
112 if (!isDrained()) {
113 DPRINTF(Drain, "Requesting drain.\n");
114 return DrainState::Draining;
115 } else {
116 if (tickEvent.scheduled())
117 deschedule(tickEvent);
118
119 activeThreads.clear();
120 DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
121 return DrainState::Drained;
122 }
123}
124
125void
126AtomicSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
127{
128 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
129 pkt->cmdString());
130
131 for (ThreadID tid = 0; tid < numThreads; tid++) {
132 if (tid != sender) {
133 if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
134 wakeup(tid);
135 }
136
137 TheISA::handleLockedSnoop(threadInfo[tid]->thread,
138 pkt, dcachePort.cacheBlockMask);
139 }
140 }
141}
142
143void
144AtomicSimpleCPU::drainResume()
145{
146 assert(!tickEvent.scheduled());
147 if (switchedOut())
148 return;
149
150 DPRINTF(SimpleCPU, "Resume\n");
151 verifyMemoryMode();
152
153 assert(!threadContexts.empty());
154
155 _status = BaseSimpleCPU::Idle;
156
157 for (ThreadID tid = 0; tid < numThreads; tid++) {
158 if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
159 threadInfo[tid]->notIdleFraction = 1;
160 activeThreads.push_back(tid);
161 _status = BaseSimpleCPU::Running;
162
163 // Tick if any threads active
164 if (!tickEvent.scheduled()) {
165 schedule(tickEvent, nextCycle());
166 }
167 } else {
168 threadInfo[tid]->notIdleFraction = 0;
169 }
170 }
171
172 // Reschedule any power gating event (if any)
173 schedulePowerGatingEvent();
174}
175
176bool
177AtomicSimpleCPU::tryCompleteDrain()
178{
179 if (drainState() != DrainState::Draining)
180 return false;
181
182 DPRINTF(Drain, "tryCompleteDrain.\n");
183 if (!isDrained())
184 return false;
185
186 DPRINTF(Drain, "CPU done draining, processing drain event\n");
187 signalDrainDone();
188
189 return true;
190}
191
192
193void
194AtomicSimpleCPU::switchOut()
195{
196 BaseSimpleCPU::switchOut();
197
198 assert(!tickEvent.scheduled());
199 assert(_status == BaseSimpleCPU::Running || _status == Idle);
200 assert(isDrained());
201}
202
203
204void
205AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
206{
207 BaseSimpleCPU::takeOverFrom(oldCPU);
208
209 // The tick event should have been descheduled by drain()
210 assert(!tickEvent.scheduled());
211}
212
213void
214AtomicSimpleCPU::verifyMemoryMode() const
215{
216 if (!system->isAtomicMode()) {
217 fatal("The atomic CPU requires the memory system to be in "
218 "'atomic' mode.\n");
219 }
220}
221
222void
223AtomicSimpleCPU::activateContext(ThreadID thread_num)
224{
225 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
226
227 assert(thread_num < numThreads);
228
229 threadInfo[thread_num]->notIdleFraction = 1;
230 Cycles delta = ticksToCycles(threadInfo[thread_num]->thread->lastActivate -
231 threadInfo[thread_num]->thread->lastSuspend);
232 numCycles += delta;
233
234 if (!tickEvent.scheduled()) {
235 //Make sure ticks are still on multiples of cycles
236 schedule(tickEvent, clockEdge(Cycles(0)));
237 }
238 _status = BaseSimpleCPU::Running;
239 if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
240 == activeThreads.end()) {
241 activeThreads.push_back(thread_num);
242 }
243
244 BaseCPU::activateContext(thread_num);
245}
246
247
248void
249AtomicSimpleCPU::suspendContext(ThreadID thread_num)
250{
251 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
252
253 assert(thread_num < numThreads);
254 activeThreads.remove(thread_num);
255
256 if (_status == Idle)
257 return;
258
259 assert(_status == BaseSimpleCPU::Running);
260
261 threadInfo[thread_num]->notIdleFraction = 0;
262
263 if (activeThreads.empty()) {
264 _status = Idle;
265
266 if (tickEvent.scheduled()) {
267 deschedule(tickEvent);
268 }
269 }
270
271 BaseCPU::suspendContext(thread_num);
272}
273
274Tick
275AtomicSimpleCPU::sendPacket(MasterPort &port, const PacketPtr &pkt)
276{
277 return port.sendAtomic(pkt);
278}
279
280Tick
281AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt)
282{
283 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
284 pkt->cmdString());
285
286 // X86 ISA: Snooping an invalidation for monitor/mwait
287 AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
288
289 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
290 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
291 cpu->wakeup(tid);
292 }
293 }
294
295 // if snoop invalidates, release any associated locks
296 // When run without caches, Invalidation packets will not be received
297 // hence we must check if the incoming packets are writes and wakeup
298 // the processor accordingly
299 if (pkt->isInvalidate() || pkt->isWrite()) {
300 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
301 pkt->getAddr());
302 for (auto &t_info : cpu->threadInfo) {
303 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
304 }
305 }
306
307 return 0;
308}
309
310void
311AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt)
312{
313 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
314 pkt->cmdString());
315
316 // X86 ISA: Snooping an invalidation for monitor/mwait
317 AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
318 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
319 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
320 cpu->wakeup(tid);
321 }
322 }
323
324 // if snoop invalidates, release any associated locks
325 if (pkt->isInvalidate()) {
326 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
327 pkt->getAddr());
328 for (auto &t_info : cpu->threadInfo) {
329 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
330 }
331 }
332}
333
334Fault
335AtomicSimpleCPU::readMem(Addr addr, uint8_t * data, unsigned size,
336 Request::Flags flags)
337{
338 SimpleExecContext& t_info = *threadInfo[curThread];
339 SimpleThread* thread = t_info.thread;
340
341 // use the CPU's statically allocated read request and packet objects
342 const RequestPtr &req = data_read_req;
343
344 if (traceData)
345 traceData->setMem(addr, size, flags);
346
347 //The size of the data we're trying to read.
348 int fullSize = size;
349
350 //The address of the second part of this access if it needs to be split
351 //across a cache line boundary.
352 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
353
354 if (secondAddr > addr)
355 size = secondAddr - addr;
356
357 dcache_latency = 0;
358
359 req->taskId(taskId());
360 while (1) {
361 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
362
363 // translate to physical address
364 Fault fault = thread->dtb->translateAtomic(req, thread->getTC(),
365 BaseTLB::Read);
366
367 // Now do the access.
368 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
369 Packet pkt(req, Packet::makeReadCmd(req));
370 pkt.dataStatic(data);
371
367 if (req->isMmappedIpr())
372 if (req->isMmappedIpr()) {
373 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
369 else {
370 if (fastmem && system->isMemAddr(pkt.getAddr()))
371 system->getPhysMem().access(&pkt);
372 else
373 dcache_latency += dcachePort.sendAtomic(&pkt);
374 } else {
375 dcache_latency += sendPacket(dcachePort, &pkt);
376 }
377 dcache_access = true;
378
379 assert(!pkt.isError());
380
381 if (req->isLLSC()) {
382 TheISA::handleLockedRead(thread, req);
383 }
384 }
385
386 //If there's a fault, return it
387 if (fault != NoFault) {
388 if (req->isPrefetch()) {
389 return NoFault;
390 } else {
391 return fault;
392 }
393 }
394
395 //If we don't need to access a second cache line, stop now.
396 if (secondAddr <= addr)
397 {
398 if (req->isLockedRMW() && fault == NoFault) {
399 assert(!locked);
400 locked = true;
401 }
402
403 return fault;
404 }
405
406 /*
407 * Set up for accessing the second cache line.
408 */
409
410 //Move the pointer we're reading into to the correct location.
411 data += size;
412 //Adjust the size to get the remaining bytes.
413 size = addr + fullSize - secondAddr;
414 //And access the right address.
415 addr = secondAddr;
416 }
417}
418
419Fault
420AtomicSimpleCPU::initiateMemRead(Addr addr, unsigned size,
421 Request::Flags flags)
422{
423 panic("initiateMemRead() is for timing accesses, and should "
424 "never be called on AtomicSimpleCPU.\n");
425}
426
427Fault
428AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size, Addr addr,
429 Request::Flags flags, uint64_t *res)
430{
431 SimpleExecContext& t_info = *threadInfo[curThread];
432 SimpleThread* thread = t_info.thread;
433 static uint8_t zero_array[64] = {};
434
435 if (data == NULL) {
436 assert(size <= 64);
437 assert(flags & Request::STORE_NO_DATA);
438 // This must be a cache block cleaning request
439 data = zero_array;
440 }
441
442 // use the CPU's statically allocated write request and packet objects
443 const RequestPtr &req = data_write_req;
444
445 if (traceData)
446 traceData->setMem(addr, size, flags);
447
448 //The size of the data we're trying to read.
449 int fullSize = size;
450
451 //The address of the second part of this access if it needs to be split
452 //across a cache line boundary.
453 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
454
455 if (secondAddr > addr)
456 size = secondAddr - addr;
457
458 dcache_latency = 0;
459
460 req->taskId(taskId());
461 while (1) {
462 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
463
464 // translate to physical address
465 Fault fault = thread->dtb->translateAtomic(req, thread->getTC(), BaseTLB::Write);
466
467 // Now do the access.
468 if (fault == NoFault) {
469 bool do_access = true; // flag to suppress cache access
470
471 if (req->isLLSC()) {
472 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
473 } else if (req->isSwap()) {
474 if (req->isCondSwap()) {
475 assert(res);
476 req->setExtraData(*res);
477 }
478 }
479
480 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
481 Packet pkt(req, Packet::makeWriteCmd(req));
482 pkt.dataStatic(data);
483
484 if (req->isMmappedIpr()) {
485 dcache_latency +=
486 TheISA::handleIprWrite(thread->getTC(), &pkt);
487 } else {
486 if (fastmem && system->isMemAddr(pkt.getAddr()))
487 system->getPhysMem().access(&pkt);
488 else
489 dcache_latency += dcachePort.sendAtomic(&pkt);
488 dcache_latency += sendPacket(dcachePort, &pkt);
489
490 // Notify other threads on this CPU of write
491 threadSnoop(&pkt, curThread);
492 }
493 dcache_access = true;
494 assert(!pkt.isError());
495
496 if (req->isSwap()) {
497 assert(res);
498 memcpy(res, pkt.getConstPtr<uint8_t>(), fullSize);
499 }
500 }
501
502 if (res && !req->isSwap()) {
503 *res = req->getExtraData();
504 }
505 }
506
507 //If there's a fault or we don't need to access a second cache line,
508 //stop now.
509 if (fault != NoFault || secondAddr <= addr)
510 {
511 if (req->isLockedRMW() && fault == NoFault) {
512 assert(locked);
513 locked = false;
514 }
515
516
517 if (fault != NoFault && req->isPrefetch()) {
518 return NoFault;
519 } else {
520 return fault;
521 }
522 }
523
524 /*
525 * Set up for accessing the second cache line.
526 */
527
528 //Move the pointer we're reading into to the correct location.
529 data += size;
530 //Adjust the size to get the remaining bytes.
531 size = addr + fullSize - secondAddr;
532 //And access the right address.
533 addr = secondAddr;
534 }
535}
536
537
538void
539AtomicSimpleCPU::tick()
540{
541 DPRINTF(SimpleCPU, "Tick\n");
542
543 // Change thread if multi-threaded
544 swapActiveThread();
545
546 // Set memroy request ids to current thread
547 if (numThreads > 1) {
548 ContextID cid = threadContexts[curThread]->contextId();
549
550 ifetch_req->setContext(cid);
551 data_read_req->setContext(cid);
552 data_write_req->setContext(cid);
553 }
554
555 SimpleExecContext& t_info = *threadInfo[curThread];
556 SimpleThread* thread = t_info.thread;
557
558 Tick latency = 0;
559
560 for (int i = 0; i < width || locked; ++i) {
561 numCycles++;
562 updateCycleCounters(BaseCPU::CPU_STATE_ON);
563
564 if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
565 checkForInterrupts();
566 checkPcEventQueue();
567 }
568
569 // We must have just got suspended by a PC event
570 if (_status == Idle) {
571 tryCompleteDrain();
572 return;
573 }
574
575 Fault fault = NoFault;
576
577 TheISA::PCState pcState = thread->pcState();
578
579 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
580 !curMacroStaticInst;
581 if (needToFetch) {
582 ifetch_req->taskId(taskId());
583 setupFetchRequest(ifetch_req);
584 fault = thread->itb->translateAtomic(ifetch_req, thread->getTC(),
585 BaseTLB::Execute);
586 }
587
588 if (fault == NoFault) {
589 Tick icache_latency = 0;
590 bool icache_access = false;
591 dcache_access = false; // assume no dcache access
592
593 if (needToFetch) {
594 // This is commented out because the decoder would act like
595 // a tiny cache otherwise. It wouldn't be flushed when needed
596 // like the I cache. It should be flushed, and when that works
597 // this code should be uncommented.
598 //Fetch more instruction memory if necessary
599 //if (decoder.needMoreBytes())
600 //{
601 icache_access = true;
602 Packet ifetch_pkt = Packet(ifetch_req, MemCmd::ReadReq);
603 ifetch_pkt.dataStatic(&inst);
604
606 if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
607 system->getPhysMem().access(&ifetch_pkt);
608 else
609 icache_latency = icachePort.sendAtomic(&ifetch_pkt);
605 icache_latency = sendPacket(icachePort, &ifetch_pkt);
606
607 assert(!ifetch_pkt.isError());
608
609 // ifetch_req is initialized to read the instruction directly
610 // into the CPU object's inst field.
611 //}
612 }
613
614 preExecute();
615
616 Tick stall_ticks = 0;
617 if (curStaticInst) {
618 fault = curStaticInst->execute(&t_info, traceData);
619
620 // keep an instruction count
621 if (fault == NoFault) {
622 countInst();
623 ppCommit->notify(std::make_pair(thread, curStaticInst));
624 }
625 else if (traceData && !DTRACE(ExecFaulting)) {
626 delete traceData;
627 traceData = NULL;
628 }
629
630 if (fault != NoFault &&
631 dynamic_pointer_cast<SyscallRetryFault>(fault)) {
632 // Retry execution of system calls after a delay.
633 // Prevents immediate re-execution since conditions which
634 // caused the retry are unlikely to change every tick.
635 stall_ticks += clockEdge(syscallRetryLatency) - curTick();
636 }
637
638 postExecute();
639 }
640
641 // @todo remove me after debugging with legion done
642 if (curStaticInst && (!curStaticInst->isMicroop() ||
643 curStaticInst->isFirstMicroop()))
644 instCnt++;
645
646 if (simulate_inst_stalls && icache_access)
647 stall_ticks += icache_latency;
648
649 if (simulate_data_stalls && dcache_access)
650 stall_ticks += dcache_latency;
651
652 if (stall_ticks) {
653 // the atomic cpu does its accounting in ticks, so
654 // keep counting in ticks but round to the clock
655 // period
656 latency += divCeil(stall_ticks, clockPeriod()) *
657 clockPeriod();
658 }
659
660 }
661 if (fault != NoFault || !t_info.stayAtPC)
662 advancePC(fault);
663 }
664
665 if (tryCompleteDrain())
666 return;
667
668 // instruction takes at least one cycle
669 if (latency < clockPeriod())
670 latency = clockPeriod();
671
672 if (_status != Idle)
673 reschedule(tickEvent, curTick() + latency, true);
674}
675
676void
677AtomicSimpleCPU::regProbePoints()
678{
679 BaseCPU::regProbePoints();
680
681 ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>>
682 (getProbeManager(), "Commit");
683}
684
685void
686AtomicSimpleCPU::printAddr(Addr a)
687{
688 dcachePort.printAddr(a);
689}
690
691////////////////////////////////////////////////////////////////////////
692//
693// AtomicSimpleCPU Simulation Object
694//
695AtomicSimpleCPU *
696AtomicSimpleCPUParams::create()
697{
698 return new AtomicSimpleCPU(this);
699}