atomic.cc (8232:b28d06a175be) atomic.cc (8443:530ff1bc8d70)
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmapped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "config/the_isa.hh"
36#include "cpu/simple/atomic.hh"
37#include "cpu/exetrace.hh"
38#include "debug/ExecFaulting.hh"
39#include "debug/SimpleCPU.hh"
40#include "mem/packet.hh"
41#include "mem/packet_access.hh"
42#include "params/AtomicSimpleCPU.hh"
43#include "sim/faults.hh"
44#include "sim/system.hh"
45
46using namespace std;
47using namespace TheISA;
48
49AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
50 : Event(CPU_Tick_Pri), cpu(c)
51{
52}
53
54
55void
56AtomicSimpleCPU::TickEvent::process()
57{
58 cpu->tick();
59}
60
61const char *
62AtomicSimpleCPU::TickEvent::description() const
63{
64 return "AtomicSimpleCPU tick";
65}
66
67Port *
68AtomicSimpleCPU::getPort(const string &if_name, int idx)
69{
70 if (if_name == "dcache_port")
71 return &dcachePort;
72 else if (if_name == "icache_port")
73 return &icachePort;
74 else if (if_name == "physmem_port") {
75 hasPhysMemPort = true;
76 return &physmemPort;
77 }
78 else
79 panic("No Such Port\n");
80}
81
82void
83AtomicSimpleCPU::init()
84{
85 BaseCPU::init();
86#if FULL_SYSTEM
87 ThreadID size = threadContexts.size();
88 for (ThreadID i = 0; i < size; ++i) {
89 ThreadContext *tc = threadContexts[i];
90
91 // initialize CPU, including PC
92 TheISA::initCPU(tc, tc->contextId());
93 }
94#endif
95 if (hasPhysMemPort) {
96 bool snoop = false;
97 AddrRangeList pmAddrList;
98 physmemPort.getPeerAddressRanges(pmAddrList, snoop);
99 physMemAddr = *pmAddrList.begin();
100 }
101 // Atomic doesn't do MT right now, so contextId == threadId
102 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
103 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
104 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
105}
106
107bool
108AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
109{
110 panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
111 return true;
112}
113
114Tick
115AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
116{
117 //Snooping a coherence request, just return
118 return 0;
119}
120
121void
122AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
123{
124 //No internal storage to update, just return
125 return;
126}
127
128void
129AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
130{
131 if (status == RangeChange) {
132 if (!snoopRangeSent) {
133 snoopRangeSent = true;
134 sendStatusChange(Port::RangeChange);
135 }
136 return;
137 }
138
139 panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
140}
141
142void
143AtomicSimpleCPU::CpuPort::recvRetry()
144{
145 panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
146}
147
148void
149AtomicSimpleCPU::DcachePort::setPeer(Port *port)
150{
151 Port::setPeer(port);
152
153#if FULL_SYSTEM
154 // Update the ThreadContext's memory ports (Functional/Virtual
155 // Ports)
156 cpu->tcBase()->connectMemPorts(cpu->tcBase());
157#endif
158}
159
160AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
161 : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
162 simulate_data_stalls(p->simulate_data_stalls),
163 simulate_inst_stalls(p->simulate_inst_stalls),
164 icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
165 physmemPort(name() + "-iport", this), hasPhysMemPort(false)
166{
167 _status = Idle;
168
169 icachePort.snoopRangeSent = false;
170 dcachePort.snoopRangeSent = false;
171
172}
173
174
175AtomicSimpleCPU::~AtomicSimpleCPU()
176{
177 if (tickEvent.scheduled()) {
178 deschedule(tickEvent);
179 }
180}
181
182void
183AtomicSimpleCPU::serialize(ostream &os)
184{
185 SimObject::State so_state = SimObject::getState();
186 SERIALIZE_ENUM(so_state);
187 SERIALIZE_SCALAR(locked);
188 BaseSimpleCPU::serialize(os);
189 nameOut(os, csprintf("%s.tickEvent", name()));
190 tickEvent.serialize(os);
191}
192
193void
194AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
195{
196 SimObject::State so_state;
197 UNSERIALIZE_ENUM(so_state);
198 UNSERIALIZE_SCALAR(locked);
199 BaseSimpleCPU::unserialize(cp, section);
200 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
201}
202
203void
204AtomicSimpleCPU::resume()
205{
206 if (_status == Idle || _status == SwitchedOut)
207 return;
208
209 DPRINTF(SimpleCPU, "Resume\n");
210 assert(system->getMemoryMode() == Enums::atomic);
211
212 changeState(SimObject::Running);
213 if (thread->status() == ThreadContext::Active) {
214 if (!tickEvent.scheduled())
215 schedule(tickEvent, nextCycle());
216 }
217 system->totalNumInsts = 0;
218}
219
220void
221AtomicSimpleCPU::switchOut()
222{
223 assert(_status == Running || _status == Idle);
224 _status = SwitchedOut;
225
226 tickEvent.squash();
227}
228
229
230void
231AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
232{
233 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
234
235 assert(!tickEvent.scheduled());
236
237 // if any of this CPU's ThreadContexts are active, mark the CPU as
238 // running and schedule its tick event.
239 ThreadID size = threadContexts.size();
240 for (ThreadID i = 0; i < size; ++i) {
241 ThreadContext *tc = threadContexts[i];
242 if (tc->status() == ThreadContext::Active && _status != Running) {
243 _status = Running;
244 schedule(tickEvent, nextCycle());
245 break;
246 }
247 }
248 if (_status != Running) {
249 _status = Idle;
250 }
251 assert(threadContexts.size() == 1);
252 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
253 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
254 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
255}
256
257
258void
259AtomicSimpleCPU::activateContext(int thread_num, int delay)
260{
261 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
262
263 assert(thread_num == 0);
264 assert(thread);
265
266 assert(_status == Idle);
267 assert(!tickEvent.scheduled());
268
269 notIdleFraction++;
270 numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
271
272 //Make sure ticks are still on multiples of cycles
273 schedule(tickEvent, nextCycle(curTick() + ticks(delay)));
274 _status = Running;
275}
276
277
278void
279AtomicSimpleCPU::suspendContext(int thread_num)
280{
281 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
282
283 assert(thread_num == 0);
284 assert(thread);
285
286 if (_status == Idle)
287 return;
288
289 assert(_status == Running);
290
291 // tick event may not be scheduled if this gets called from inside
292 // an instruction's execution, e.g. "quiesce"
293 if (tickEvent.scheduled())
294 deschedule(tickEvent);
295
296 notIdleFraction--;
297 _status = Idle;
298}
299
300
301Fault
302AtomicSimpleCPU::readBytes(Addr addr, uint8_t * data,
303 unsigned size, unsigned flags)
304{
305 // use the CPU's statically allocated read request and packet objects
306 Request *req = &data_read_req;
307
308 if (traceData) {
309 traceData->setAddr(addr);
310 }
311
312 //The block size of our peer.
313 unsigned blockSize = dcachePort.peerBlockSize();
314 //The size of the data we're trying to read.
315 int fullSize = size;
316
317 //The address of the second part of this access if it needs to be split
318 //across a cache line boundary.
319 Addr secondAddr = roundDown(addr + size - 1, blockSize);
320
321 if (secondAddr > addr)
322 size = secondAddr - addr;
323
324 dcache_latency = 0;
325
326 while (1) {
327 req->setVirt(0, addr, size, flags, thread->pcState().instAddr());
328
329 // translate to physical address
330 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
331
332 // Now do the access.
333 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
334 Packet pkt = Packet(req,
335 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
336 Packet::Broadcast);
337 pkt.dataStatic(data);
338
339 if (req->isMmappedIpr())
340 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
341 else {
342 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
343 dcache_latency += physmemPort.sendAtomic(&pkt);
344 else
345 dcache_latency += dcachePort.sendAtomic(&pkt);
346 }
347 dcache_access = true;
348
349 assert(!pkt.isError());
350
351 if (req->isLLSC()) {
352 TheISA::handleLockedRead(thread, req);
353 }
354 }
355
356 //If there's a fault, return it
357 if (fault != NoFault) {
358 if (req->isPrefetch()) {
359 return NoFault;
360 } else {
361 return fault;
362 }
363 }
364
365 //If we don't need to access a second cache line, stop now.
366 if (secondAddr <= addr)
367 {
368 if (req->isLocked() && fault == NoFault) {
369 assert(!locked);
370 locked = true;
371 }
372 return fault;
373 }
374
375 /*
376 * Set up for accessing the second cache line.
377 */
378
379 //Move the pointer we're reading into to the correct location.
380 data += size;
381 //Adjust the size to get the remaining bytes.
382 size = addr + fullSize - secondAddr;
383 //And access the right address.
384 addr = secondAddr;
385 }
386}
387
388
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmapped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "config/the_isa.hh"
36#include "cpu/simple/atomic.hh"
37#include "cpu/exetrace.hh"
38#include "debug/ExecFaulting.hh"
39#include "debug/SimpleCPU.hh"
40#include "mem/packet.hh"
41#include "mem/packet_access.hh"
42#include "params/AtomicSimpleCPU.hh"
43#include "sim/faults.hh"
44#include "sim/system.hh"
45
46using namespace std;
47using namespace TheISA;
48
49AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
50 : Event(CPU_Tick_Pri), cpu(c)
51{
52}
53
54
55void
56AtomicSimpleCPU::TickEvent::process()
57{
58 cpu->tick();
59}
60
61const char *
62AtomicSimpleCPU::TickEvent::description() const
63{
64 return "AtomicSimpleCPU tick";
65}
66
67Port *
68AtomicSimpleCPU::getPort(const string &if_name, int idx)
69{
70 if (if_name == "dcache_port")
71 return &dcachePort;
72 else if (if_name == "icache_port")
73 return &icachePort;
74 else if (if_name == "physmem_port") {
75 hasPhysMemPort = true;
76 return &physmemPort;
77 }
78 else
79 panic("No Such Port\n");
80}
81
82void
83AtomicSimpleCPU::init()
84{
85 BaseCPU::init();
86#if FULL_SYSTEM
87 ThreadID size = threadContexts.size();
88 for (ThreadID i = 0; i < size; ++i) {
89 ThreadContext *tc = threadContexts[i];
90
91 // initialize CPU, including PC
92 TheISA::initCPU(tc, tc->contextId());
93 }
94#endif
95 if (hasPhysMemPort) {
96 bool snoop = false;
97 AddrRangeList pmAddrList;
98 physmemPort.getPeerAddressRanges(pmAddrList, snoop);
99 physMemAddr = *pmAddrList.begin();
100 }
101 // Atomic doesn't do MT right now, so contextId == threadId
102 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
103 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
104 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
105}
106
107bool
108AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
109{
110 panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
111 return true;
112}
113
114Tick
115AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
116{
117 //Snooping a coherence request, just return
118 return 0;
119}
120
121void
122AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
123{
124 //No internal storage to update, just return
125 return;
126}
127
128void
129AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
130{
131 if (status == RangeChange) {
132 if (!snoopRangeSent) {
133 snoopRangeSent = true;
134 sendStatusChange(Port::RangeChange);
135 }
136 return;
137 }
138
139 panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
140}
141
142void
143AtomicSimpleCPU::CpuPort::recvRetry()
144{
145 panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
146}
147
148void
149AtomicSimpleCPU::DcachePort::setPeer(Port *port)
150{
151 Port::setPeer(port);
152
153#if FULL_SYSTEM
154 // Update the ThreadContext's memory ports (Functional/Virtual
155 // Ports)
156 cpu->tcBase()->connectMemPorts(cpu->tcBase());
157#endif
158}
159
160AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
161 : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
162 simulate_data_stalls(p->simulate_data_stalls),
163 simulate_inst_stalls(p->simulate_inst_stalls),
164 icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
165 physmemPort(name() + "-iport", this), hasPhysMemPort(false)
166{
167 _status = Idle;
168
169 icachePort.snoopRangeSent = false;
170 dcachePort.snoopRangeSent = false;
171
172}
173
174
175AtomicSimpleCPU::~AtomicSimpleCPU()
176{
177 if (tickEvent.scheduled()) {
178 deschedule(tickEvent);
179 }
180}
181
182void
183AtomicSimpleCPU::serialize(ostream &os)
184{
185 SimObject::State so_state = SimObject::getState();
186 SERIALIZE_ENUM(so_state);
187 SERIALIZE_SCALAR(locked);
188 BaseSimpleCPU::serialize(os);
189 nameOut(os, csprintf("%s.tickEvent", name()));
190 tickEvent.serialize(os);
191}
192
193void
194AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
195{
196 SimObject::State so_state;
197 UNSERIALIZE_ENUM(so_state);
198 UNSERIALIZE_SCALAR(locked);
199 BaseSimpleCPU::unserialize(cp, section);
200 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
201}
202
203void
204AtomicSimpleCPU::resume()
205{
206 if (_status == Idle || _status == SwitchedOut)
207 return;
208
209 DPRINTF(SimpleCPU, "Resume\n");
210 assert(system->getMemoryMode() == Enums::atomic);
211
212 changeState(SimObject::Running);
213 if (thread->status() == ThreadContext::Active) {
214 if (!tickEvent.scheduled())
215 schedule(tickEvent, nextCycle());
216 }
217 system->totalNumInsts = 0;
218}
219
220void
221AtomicSimpleCPU::switchOut()
222{
223 assert(_status == Running || _status == Idle);
224 _status = SwitchedOut;
225
226 tickEvent.squash();
227}
228
229
230void
231AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
232{
233 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
234
235 assert(!tickEvent.scheduled());
236
237 // if any of this CPU's ThreadContexts are active, mark the CPU as
238 // running and schedule its tick event.
239 ThreadID size = threadContexts.size();
240 for (ThreadID i = 0; i < size; ++i) {
241 ThreadContext *tc = threadContexts[i];
242 if (tc->status() == ThreadContext::Active && _status != Running) {
243 _status = Running;
244 schedule(tickEvent, nextCycle());
245 break;
246 }
247 }
248 if (_status != Running) {
249 _status = Idle;
250 }
251 assert(threadContexts.size() == 1);
252 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
253 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
254 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
255}
256
257
258void
259AtomicSimpleCPU::activateContext(int thread_num, int delay)
260{
261 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
262
263 assert(thread_num == 0);
264 assert(thread);
265
266 assert(_status == Idle);
267 assert(!tickEvent.scheduled());
268
269 notIdleFraction++;
270 numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
271
272 //Make sure ticks are still on multiples of cycles
273 schedule(tickEvent, nextCycle(curTick() + ticks(delay)));
274 _status = Running;
275}
276
277
278void
279AtomicSimpleCPU::suspendContext(int thread_num)
280{
281 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
282
283 assert(thread_num == 0);
284 assert(thread);
285
286 if (_status == Idle)
287 return;
288
289 assert(_status == Running);
290
291 // tick event may not be scheduled if this gets called from inside
292 // an instruction's execution, e.g. "quiesce"
293 if (tickEvent.scheduled())
294 deschedule(tickEvent);
295
296 notIdleFraction--;
297 _status = Idle;
298}
299
300
301Fault
302AtomicSimpleCPU::readBytes(Addr addr, uint8_t * data,
303 unsigned size, unsigned flags)
304{
305 // use the CPU's statically allocated read request and packet objects
306 Request *req = &data_read_req;
307
308 if (traceData) {
309 traceData->setAddr(addr);
310 }
311
312 //The block size of our peer.
313 unsigned blockSize = dcachePort.peerBlockSize();
314 //The size of the data we're trying to read.
315 int fullSize = size;
316
317 //The address of the second part of this access if it needs to be split
318 //across a cache line boundary.
319 Addr secondAddr = roundDown(addr + size - 1, blockSize);
320
321 if (secondAddr > addr)
322 size = secondAddr - addr;
323
324 dcache_latency = 0;
325
326 while (1) {
327 req->setVirt(0, addr, size, flags, thread->pcState().instAddr());
328
329 // translate to physical address
330 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
331
332 // Now do the access.
333 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
334 Packet pkt = Packet(req,
335 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
336 Packet::Broadcast);
337 pkt.dataStatic(data);
338
339 if (req->isMmappedIpr())
340 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
341 else {
342 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
343 dcache_latency += physmemPort.sendAtomic(&pkt);
344 else
345 dcache_latency += dcachePort.sendAtomic(&pkt);
346 }
347 dcache_access = true;
348
349 assert(!pkt.isError());
350
351 if (req->isLLSC()) {
352 TheISA::handleLockedRead(thread, req);
353 }
354 }
355
356 //If there's a fault, return it
357 if (fault != NoFault) {
358 if (req->isPrefetch()) {
359 return NoFault;
360 } else {
361 return fault;
362 }
363 }
364
365 //If we don't need to access a second cache line, stop now.
366 if (secondAddr <= addr)
367 {
368 if (req->isLocked() && fault == NoFault) {
369 assert(!locked);
370 locked = true;
371 }
372 return fault;
373 }
374
375 /*
376 * Set up for accessing the second cache line.
377 */
378
379 //Move the pointer we're reading into to the correct location.
380 data += size;
381 //Adjust the size to get the remaining bytes.
382 size = addr + fullSize - secondAddr;
383 //And access the right address.
384 addr = secondAddr;
385 }
386}
387
388
389template <class T>
390Fault
389Fault
391AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
392{
393 uint8_t *dataPtr = (uint8_t *)&data;
394 memset(dataPtr, 0, sizeof(data));
395 Fault fault = readBytes(addr, dataPtr, sizeof(data), flags);
396 if (fault == NoFault) {
397 data = gtoh(data);
398 if (traceData)
399 traceData->setData(data);
400 }
401 return fault;
402}
403
404#ifndef DOXYGEN_SHOULD_SKIP_THIS
405
406template
407Fault
408AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
409
410template
411Fault
412AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
413
414template
415Fault
416AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
417
418template
419Fault
420AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
421
422template
423Fault
424AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
425
426template
427Fault
428AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
429
430#endif //DOXYGEN_SHOULD_SKIP_THIS
431
432template<>
433Fault
434AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
435{
436 return read(addr, *(uint64_t*)&data, flags);
437}
438
439template<>
440Fault
441AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
442{
443 return read(addr, *(uint32_t*)&data, flags);
444}
445
446
447template<>
448Fault
449AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
450{
451 return read(addr, (uint32_t&)data, flags);
452}
453
454
455Fault
456AtomicSimpleCPU::writeBytes(uint8_t *data, unsigned size,
457 Addr addr, unsigned flags, uint64_t *res)
458{
459 // use the CPU's statically allocated write request and packet objects
460 Request *req = &data_write_req;
461
462 if (traceData) {
463 traceData->setAddr(addr);
464 }
465
466 //The block size of our peer.
467 unsigned blockSize = dcachePort.peerBlockSize();
468 //The size of the data we're trying to read.
469 int fullSize = size;
470
471 //The address of the second part of this access if it needs to be split
472 //across a cache line boundary.
473 Addr secondAddr = roundDown(addr + size - 1, blockSize);
474
475 if(secondAddr > addr)
476 size = secondAddr - addr;
477
478 dcache_latency = 0;
479
480 while(1) {
481 req->setVirt(0, addr, size, flags, thread->pcState().instAddr());
482
483 // translate to physical address
484 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
485
486 // Now do the access.
487 if (fault == NoFault) {
488 MemCmd cmd = MemCmd::WriteReq; // default
489 bool do_access = true; // flag to suppress cache access
490
491 if (req->isLLSC()) {
492 cmd = MemCmd::StoreCondReq;
493 do_access = TheISA::handleLockedWrite(thread, req);
494 } else if (req->isSwap()) {
495 cmd = MemCmd::SwapReq;
496 if (req->isCondSwap()) {
497 assert(res);
498 req->setExtraData(*res);
499 }
500 }
501
502 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
503 Packet pkt = Packet(req, cmd, Packet::Broadcast);
504 pkt.dataStatic(data);
505
506 if (req->isMmappedIpr()) {
507 dcache_latency +=
508 TheISA::handleIprWrite(thread->getTC(), &pkt);
509 } else {
510 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
511 dcache_latency += physmemPort.sendAtomic(&pkt);
512 else
513 dcache_latency += dcachePort.sendAtomic(&pkt);
514 }
515 dcache_access = true;
516 assert(!pkt.isError());
517
518 if (req->isSwap()) {
519 assert(res);
520 memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
521 }
522 }
523
524 if (res && !req->isSwap()) {
525 *res = req->getExtraData();
526 }
527 }
528
529 //If there's a fault or we don't need to access a second cache line,
530 //stop now.
531 if (fault != NoFault || secondAddr <= addr)
532 {
533 if (req->isLocked() && fault == NoFault) {
534 assert(locked);
535 locked = false;
536 }
537 if (fault != NoFault && req->isPrefetch()) {
538 return NoFault;
539 } else {
540 return fault;
541 }
542 }
543
544 /*
545 * Set up for accessing the second cache line.
546 */
547
548 //Move the pointer we're reading into to the correct location.
549 data += size;
550 //Adjust the size to get the remaining bytes.
551 size = addr + fullSize - secondAddr;
552 //And access the right address.
553 addr = secondAddr;
554 }
555}
556
557
390AtomicSimpleCPU::writeBytes(uint8_t *data, unsigned size,
391 Addr addr, unsigned flags, uint64_t *res)
392{
393 // use the CPU's statically allocated write request and packet objects
394 Request *req = &data_write_req;
395
396 if (traceData) {
397 traceData->setAddr(addr);
398 }
399
400 //The block size of our peer.
401 unsigned blockSize = dcachePort.peerBlockSize();
402 //The size of the data we're trying to read.
403 int fullSize = size;
404
405 //The address of the second part of this access if it needs to be split
406 //across a cache line boundary.
407 Addr secondAddr = roundDown(addr + size - 1, blockSize);
408
409 if(secondAddr > addr)
410 size = secondAddr - addr;
411
412 dcache_latency = 0;
413
414 while(1) {
415 req->setVirt(0, addr, size, flags, thread->pcState().instAddr());
416
417 // translate to physical address
418 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
419
420 // Now do the access.
421 if (fault == NoFault) {
422 MemCmd cmd = MemCmd::WriteReq; // default
423 bool do_access = true; // flag to suppress cache access
424
425 if (req->isLLSC()) {
426 cmd = MemCmd::StoreCondReq;
427 do_access = TheISA::handleLockedWrite(thread, req);
428 } else if (req->isSwap()) {
429 cmd = MemCmd::SwapReq;
430 if (req->isCondSwap()) {
431 assert(res);
432 req->setExtraData(*res);
433 }
434 }
435
436 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
437 Packet pkt = Packet(req, cmd, Packet::Broadcast);
438 pkt.dataStatic(data);
439
440 if (req->isMmappedIpr()) {
441 dcache_latency +=
442 TheISA::handleIprWrite(thread->getTC(), &pkt);
443 } else {
444 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
445 dcache_latency += physmemPort.sendAtomic(&pkt);
446 else
447 dcache_latency += dcachePort.sendAtomic(&pkt);
448 }
449 dcache_access = true;
450 assert(!pkt.isError());
451
452 if (req->isSwap()) {
453 assert(res);
454 memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
455 }
456 }
457
458 if (res && !req->isSwap()) {
459 *res = req->getExtraData();
460 }
461 }
462
463 //If there's a fault or we don't need to access a second cache line,
464 //stop now.
465 if (fault != NoFault || secondAddr <= addr)
466 {
467 if (req->isLocked() && fault == NoFault) {
468 assert(locked);
469 locked = false;
470 }
471 if (fault != NoFault && req->isPrefetch()) {
472 return NoFault;
473 } else {
474 return fault;
475 }
476 }
477
478 /*
479 * Set up for accessing the second cache line.
480 */
481
482 //Move the pointer we're reading into to the correct location.
483 data += size;
484 //Adjust the size to get the remaining bytes.
485 size = addr + fullSize - secondAddr;
486 //And access the right address.
487 addr = secondAddr;
488 }
489}
490
491
558template <class T>
559Fault
560AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
561{
562 uint8_t *dataPtr = (uint8_t *)&data;
563 if (traceData)
564 traceData->setData(data);
565 data = htog(data);
566
567 Fault fault = writeBytes(dataPtr, sizeof(data), addr, flags, res);
568 if (fault == NoFault && data_write_req.isSwap()) {
569 *res = gtoh((T)*res);
570 }
571 return fault;
572}
573
574
575#ifndef DOXYGEN_SHOULD_SKIP_THIS
576
577template
578Fault
579AtomicSimpleCPU::write(Twin32_t data, Addr addr,
580 unsigned flags, uint64_t *res);
581
582template
583Fault
584AtomicSimpleCPU::write(Twin64_t data, Addr addr,
585 unsigned flags, uint64_t *res);
586
587template
588Fault
589AtomicSimpleCPU::write(uint64_t data, Addr addr,
590 unsigned flags, uint64_t *res);
591
592template
593Fault
594AtomicSimpleCPU::write(uint32_t data, Addr addr,
595 unsigned flags, uint64_t *res);
596
597template
598Fault
599AtomicSimpleCPU::write(uint16_t data, Addr addr,
600 unsigned flags, uint64_t *res);
601
602template
603Fault
604AtomicSimpleCPU::write(uint8_t data, Addr addr,
605 unsigned flags, uint64_t *res);
606
607#endif //DOXYGEN_SHOULD_SKIP_THIS
608
609template<>
610Fault
611AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
612{
613 return write(*(uint64_t*)&data, addr, flags, res);
614}
615
616template<>
617Fault
618AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
619{
620 return write(*(uint32_t*)&data, addr, flags, res);
621}
622
623
624template<>
625Fault
626AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
627{
628 return write((uint32_t)data, addr, flags, res);
629}
630
631
632void
633AtomicSimpleCPU::tick()
634{
635 DPRINTF(SimpleCPU, "Tick\n");
636
637 Tick latency = 0;
638
639 for (int i = 0; i < width || locked; ++i) {
640 numCycles++;
641
642 if (!curStaticInst || !curStaticInst->isDelayedCommit())
643 checkForInterrupts();
644
645 checkPcEventQueue();
646 // We must have just got suspended by a PC event
647 if (_status == Idle)
648 return;
649
650 Fault fault = NoFault;
651
652 TheISA::PCState pcState = thread->pcState();
653
654 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
655 !curMacroStaticInst;
656 if (needToFetch) {
657 setupFetchRequest(&ifetch_req);
658 fault = thread->itb->translateAtomic(&ifetch_req, tc,
659 BaseTLB::Execute);
660 }
661
662 if (fault == NoFault) {
663 Tick icache_latency = 0;
664 bool icache_access = false;
665 dcache_access = false; // assume no dcache access
666
667 if (needToFetch) {
668 // This is commented out because the predecoder would act like
669 // a tiny cache otherwise. It wouldn't be flushed when needed
670 // like the I cache. It should be flushed, and when that works
671 // this code should be uncommented.
672 //Fetch more instruction memory if necessary
673 //if(predecoder.needMoreBytes())
674 //{
675 icache_access = true;
676 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
677 Packet::Broadcast);
678 ifetch_pkt.dataStatic(&inst);
679
680 if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
681 icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
682 else
683 icache_latency = icachePort.sendAtomic(&ifetch_pkt);
684
685 assert(!ifetch_pkt.isError());
686
687 // ifetch_req is initialized to read the instruction directly
688 // into the CPU object's inst field.
689 //}
690 }
691
692 preExecute();
693
694 if (curStaticInst) {
695 fault = curStaticInst->execute(this, traceData);
696
697 // keep an instruction count
698 if (fault == NoFault)
699 countInst();
700 else if (traceData && !DTRACE(ExecFaulting)) {
701 delete traceData;
702 traceData = NULL;
703 }
704
705 postExecute();
706 }
707
708 // @todo remove me after debugging with legion done
709 if (curStaticInst && (!curStaticInst->isMicroop() ||
710 curStaticInst->isFirstMicroop()))
711 instCnt++;
712
713 Tick stall_ticks = 0;
714 if (simulate_inst_stalls && icache_access)
715 stall_ticks += icache_latency;
716
717 if (simulate_data_stalls && dcache_access)
718 stall_ticks += dcache_latency;
719
720 if (stall_ticks) {
721 Tick stall_cycles = stall_ticks / ticks(1);
722 Tick aligned_stall_ticks = ticks(stall_cycles);
723
724 if (aligned_stall_ticks < stall_ticks)
725 aligned_stall_ticks += 1;
726
727 latency += aligned_stall_ticks;
728 }
729
730 }
731 if(fault != NoFault || !stayAtPC)
732 advancePC(fault);
733 }
734
735 // instruction takes at least one cycle
736 if (latency < ticks(1))
737 latency = ticks(1);
738
739 if (_status != Idle)
740 schedule(tickEvent, curTick() + latency);
741}
742
743
744void
745AtomicSimpleCPU::printAddr(Addr a)
746{
747 dcachePort.printAddr(a);
748}
749
750
751////////////////////////////////////////////////////////////////////////
752//
753// AtomicSimpleCPU Simulation Object
754//
755AtomicSimpleCPU *
756AtomicSimpleCPUParams::create()
757{
758 numThreads = 1;
759#if !FULL_SYSTEM
760 if (workload.size() != 1)
761 panic("only one workload allowed");
762#endif
763 return new AtomicSimpleCPU(this);
764}
492void
493AtomicSimpleCPU::tick()
494{
495 DPRINTF(SimpleCPU, "Tick\n");
496
497 Tick latency = 0;
498
499 for (int i = 0; i < width || locked; ++i) {
500 numCycles++;
501
502 if (!curStaticInst || !curStaticInst->isDelayedCommit())
503 checkForInterrupts();
504
505 checkPcEventQueue();
506 // We must have just got suspended by a PC event
507 if (_status == Idle)
508 return;
509
510 Fault fault = NoFault;
511
512 TheISA::PCState pcState = thread->pcState();
513
514 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
515 !curMacroStaticInst;
516 if (needToFetch) {
517 setupFetchRequest(&ifetch_req);
518 fault = thread->itb->translateAtomic(&ifetch_req, tc,
519 BaseTLB::Execute);
520 }
521
522 if (fault == NoFault) {
523 Tick icache_latency = 0;
524 bool icache_access = false;
525 dcache_access = false; // assume no dcache access
526
527 if (needToFetch) {
528 // This is commented out because the predecoder would act like
529 // a tiny cache otherwise. It wouldn't be flushed when needed
530 // like the I cache. It should be flushed, and when that works
531 // this code should be uncommented.
532 //Fetch more instruction memory if necessary
533 //if(predecoder.needMoreBytes())
534 //{
535 icache_access = true;
536 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
537 Packet::Broadcast);
538 ifetch_pkt.dataStatic(&inst);
539
540 if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
541 icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
542 else
543 icache_latency = icachePort.sendAtomic(&ifetch_pkt);
544
545 assert(!ifetch_pkt.isError());
546
547 // ifetch_req is initialized to read the instruction directly
548 // into the CPU object's inst field.
549 //}
550 }
551
552 preExecute();
553
554 if (curStaticInst) {
555 fault = curStaticInst->execute(this, traceData);
556
557 // keep an instruction count
558 if (fault == NoFault)
559 countInst();
560 else if (traceData && !DTRACE(ExecFaulting)) {
561 delete traceData;
562 traceData = NULL;
563 }
564
565 postExecute();
566 }
567
568 // @todo remove me after debugging with legion done
569 if (curStaticInst && (!curStaticInst->isMicroop() ||
570 curStaticInst->isFirstMicroop()))
571 instCnt++;
572
573 Tick stall_ticks = 0;
574 if (simulate_inst_stalls && icache_access)
575 stall_ticks += icache_latency;
576
577 if (simulate_data_stalls && dcache_access)
578 stall_ticks += dcache_latency;
579
580 if (stall_ticks) {
581 Tick stall_cycles = stall_ticks / ticks(1);
582 Tick aligned_stall_ticks = ticks(stall_cycles);
583
584 if (aligned_stall_ticks < stall_ticks)
585 aligned_stall_ticks += 1;
586
587 latency += aligned_stall_ticks;
588 }
589
590 }
591 if(fault != NoFault || !stayAtPC)
592 advancePC(fault);
593 }
594
595 // instruction takes at least one cycle
596 if (latency < ticks(1))
597 latency = ticks(1);
598
599 if (_status != Idle)
600 schedule(tickEvent, curTick() + latency);
601}
602
603
604void
605AtomicSimpleCPU::printAddr(Addr a)
606{
607 dcachePort.printAddr(a);
608}
609
610
611////////////////////////////////////////////////////////////////////////
612//
613// AtomicSimpleCPU Simulation Object
614//
615AtomicSimpleCPU *
616AtomicSimpleCPUParams::create()
617{
618 numThreads = 1;
619#if !FULL_SYSTEM
620 if (workload.size() != 1)
621 panic("only one workload allowed");
622#endif
623 return new AtomicSimpleCPU(this);
624}