atomic.cc (7897:d9e8b1fd1a9f) atomic.cc (8105:906864dd0937)
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
32#include "arch/mmapped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "config/the_isa.hh"
36#include "cpu/exetrace.hh"
37#include "cpu/simple/atomic.hh"
38#include "mem/packet.hh"
39#include "mem/packet_access.hh"
40#include "params/AtomicSimpleCPU.hh"
41#include "sim/faults.hh"
42#include "sim/system.hh"
43
44using namespace std;
45using namespace TheISA;
46
47AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
48 : Event(CPU_Tick_Pri), cpu(c)
49{
50}
51
52
53void
54AtomicSimpleCPU::TickEvent::process()
55{
56 cpu->tick();
57}
58
59const char *
60AtomicSimpleCPU::TickEvent::description() const
61{
62 return "AtomicSimpleCPU tick";
63}
64
65Port *
66AtomicSimpleCPU::getPort(const string &if_name, int idx)
67{
68 if (if_name == "dcache_port")
69 return &dcachePort;
70 else if (if_name == "icache_port")
71 return &icachePort;
72 else if (if_name == "physmem_port") {
73 hasPhysMemPort = true;
74 return &physmemPort;
75 }
76 else
77 panic("No Such Port\n");
78}
79
80void
81AtomicSimpleCPU::init()
82{
83 BaseCPU::init();
84#if FULL_SYSTEM
85 ThreadID size = threadContexts.size();
86 for (ThreadID i = 0; i < size; ++i) {
87 ThreadContext *tc = threadContexts[i];
88
89 // initialize CPU, including PC
90 TheISA::initCPU(tc, tc->contextId());
91 }
92#endif
93 if (hasPhysMemPort) {
94 bool snoop = false;
95 AddrRangeList pmAddrList;
96 physmemPort.getPeerAddressRanges(pmAddrList, snoop);
97 physMemAddr = *pmAddrList.begin();
98 }
99 // Atomic doesn't do MT right now, so contextId == threadId
100 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
101 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
102 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
103}
104
105bool
106AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
107{
108 panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
109 return true;
110}
111
112Tick
113AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
114{
115 //Snooping a coherence request, just return
116 return 0;
117}
118
119void
120AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
121{
122 //No internal storage to update, just return
123 return;
124}
125
126void
127AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
128{
129 if (status == RangeChange) {
130 if (!snoopRangeSent) {
131 snoopRangeSent = true;
132 sendStatusChange(Port::RangeChange);
133 }
134 return;
135 }
136
137 panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
138}
139
140void
141AtomicSimpleCPU::CpuPort::recvRetry()
142{
143 panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
144}
145
146void
147AtomicSimpleCPU::DcachePort::setPeer(Port *port)
148{
149 Port::setPeer(port);
150
151#if FULL_SYSTEM
152 // Update the ThreadContext's memory ports (Functional/Virtual
153 // Ports)
154 cpu->tcBase()->connectMemPorts(cpu->tcBase());
155#endif
156}
157
158AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
159 : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
160 simulate_data_stalls(p->simulate_data_stalls),
161 simulate_inst_stalls(p->simulate_inst_stalls),
162 icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
163 physmemPort(name() + "-iport", this), hasPhysMemPort(false)
164{
165 _status = Idle;
166
167 icachePort.snoopRangeSent = false;
168 dcachePort.snoopRangeSent = false;
169
170}
171
172
173AtomicSimpleCPU::~AtomicSimpleCPU()
174{
175 if (tickEvent.scheduled()) {
176 deschedule(tickEvent);
177 }
178}
179
180void
181AtomicSimpleCPU::serialize(ostream &os)
182{
183 SimObject::State so_state = SimObject::getState();
184 SERIALIZE_ENUM(so_state);
185 SERIALIZE_SCALAR(locked);
186 BaseSimpleCPU::serialize(os);
187 nameOut(os, csprintf("%s.tickEvent", name()));
188 tickEvent.serialize(os);
189}
190
191void
192AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
193{
194 SimObject::State so_state;
195 UNSERIALIZE_ENUM(so_state);
196 UNSERIALIZE_SCALAR(locked);
197 BaseSimpleCPU::unserialize(cp, section);
198 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
199}
200
201void
202AtomicSimpleCPU::resume()
203{
204 if (_status == Idle || _status == SwitchedOut)
205 return;
206
207 DPRINTF(SimpleCPU, "Resume\n");
208 assert(system->getMemoryMode() == Enums::atomic);
209
210 changeState(SimObject::Running);
211 if (thread->status() == ThreadContext::Active) {
212 if (!tickEvent.scheduled())
213 schedule(tickEvent, nextCycle());
214 }
215 system->totalNumInsts = 0;
216}
217
218void
219AtomicSimpleCPU::switchOut()
220{
221 assert(_status == Running || _status == Idle);
222 _status = SwitchedOut;
223
224 tickEvent.squash();
225}
226
227
228void
229AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
230{
231 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
232
233 assert(!tickEvent.scheduled());
234
235 // if any of this CPU's ThreadContexts are active, mark the CPU as
236 // running and schedule its tick event.
237 ThreadID size = threadContexts.size();
238 for (ThreadID i = 0; i < size; ++i) {
239 ThreadContext *tc = threadContexts[i];
240 if (tc->status() == ThreadContext::Active && _status != Running) {
241 _status = Running;
242 schedule(tickEvent, nextCycle());
243 break;
244 }
245 }
246 if (_status != Running) {
247 _status = Idle;
248 }
249 assert(threadContexts.size() == 1);
250 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
251 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
252 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
253}
254
255
256void
257AtomicSimpleCPU::activateContext(int thread_num, int delay)
258{
259 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
260
261 assert(thread_num == 0);
262 assert(thread);
263
264 assert(_status == Idle);
265 assert(!tickEvent.scheduled());
266
267 notIdleFraction++;
268 numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
269
270 //Make sure ticks are still on multiples of cycles
271 schedule(tickEvent, nextCycle(curTick() + ticks(delay)));
272 _status = Running;
273}
274
275
276void
277AtomicSimpleCPU::suspendContext(int thread_num)
278{
279 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
280
281 assert(thread_num == 0);
282 assert(thread);
283
284 if (_status == Idle)
285 return;
286
287 assert(_status == Running);
288
289 // tick event may not be scheduled if this gets called from inside
290 // an instruction's execution, e.g. "quiesce"
291 if (tickEvent.scheduled())
292 deschedule(tickEvent);
293
294 notIdleFraction--;
295 _status = Idle;
296}
297
298
299Fault
300AtomicSimpleCPU::readBytes(Addr addr, uint8_t * data,
301 unsigned size, unsigned flags)
302{
303 // use the CPU's statically allocated read request and packet objects
304 Request *req = &data_read_req;
305
306 if (traceData) {
307 traceData->setAddr(addr);
308 }
309
310 //The block size of our peer.
311 unsigned blockSize = dcachePort.peerBlockSize();
312 //The size of the data we're trying to read.
313 int fullSize = size;
314
315 //The address of the second part of this access if it needs to be split
316 //across a cache line boundary.
317 Addr secondAddr = roundDown(addr + size - 1, blockSize);
318
319 if (secondAddr > addr)
320 size = secondAddr - addr;
321
322 dcache_latency = 0;
323
324 while (1) {
325 req->setVirt(0, addr, size, flags, thread->pcState().instAddr());
326
327 // translate to physical address
328 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
329
330 // Now do the access.
331 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
332 Packet pkt = Packet(req,
333 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
334 Packet::Broadcast);
335 pkt.dataStatic(data);
336
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "config/the_isa.hh"
36#include "cpu/exetrace.hh"
37#include "cpu/simple/atomic.hh"
38#include "mem/packet.hh"
39#include "mem/packet_access.hh"
40#include "params/AtomicSimpleCPU.hh"
41#include "sim/faults.hh"
42#include "sim/system.hh"
43
44using namespace std;
45using namespace TheISA;
46
47AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
48 : Event(CPU_Tick_Pri), cpu(c)
49{
50}
51
52
53void
54AtomicSimpleCPU::TickEvent::process()
55{
56 cpu->tick();
57}
58
59const char *
60AtomicSimpleCPU::TickEvent::description() const
61{
62 return "AtomicSimpleCPU tick";
63}
64
65Port *
66AtomicSimpleCPU::getPort(const string &if_name, int idx)
67{
68 if (if_name == "dcache_port")
69 return &dcachePort;
70 else if (if_name == "icache_port")
71 return &icachePort;
72 else if (if_name == "physmem_port") {
73 hasPhysMemPort = true;
74 return &physmemPort;
75 }
76 else
77 panic("No Such Port\n");
78}
79
80void
81AtomicSimpleCPU::init()
82{
83 BaseCPU::init();
84#if FULL_SYSTEM
85 ThreadID size = threadContexts.size();
86 for (ThreadID i = 0; i < size; ++i) {
87 ThreadContext *tc = threadContexts[i];
88
89 // initialize CPU, including PC
90 TheISA::initCPU(tc, tc->contextId());
91 }
92#endif
93 if (hasPhysMemPort) {
94 bool snoop = false;
95 AddrRangeList pmAddrList;
96 physmemPort.getPeerAddressRanges(pmAddrList, snoop);
97 physMemAddr = *pmAddrList.begin();
98 }
99 // Atomic doesn't do MT right now, so contextId == threadId
100 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
101 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
102 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
103}
104
105bool
106AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
107{
108 panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
109 return true;
110}
111
112Tick
113AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
114{
115 //Snooping a coherence request, just return
116 return 0;
117}
118
119void
120AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
121{
122 //No internal storage to update, just return
123 return;
124}
125
126void
127AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
128{
129 if (status == RangeChange) {
130 if (!snoopRangeSent) {
131 snoopRangeSent = true;
132 sendStatusChange(Port::RangeChange);
133 }
134 return;
135 }
136
137 panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
138}
139
140void
141AtomicSimpleCPU::CpuPort::recvRetry()
142{
143 panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
144}
145
146void
147AtomicSimpleCPU::DcachePort::setPeer(Port *port)
148{
149 Port::setPeer(port);
150
151#if FULL_SYSTEM
152 // Update the ThreadContext's memory ports (Functional/Virtual
153 // Ports)
154 cpu->tcBase()->connectMemPorts(cpu->tcBase());
155#endif
156}
157
158AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
159 : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
160 simulate_data_stalls(p->simulate_data_stalls),
161 simulate_inst_stalls(p->simulate_inst_stalls),
162 icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
163 physmemPort(name() + "-iport", this), hasPhysMemPort(false)
164{
165 _status = Idle;
166
167 icachePort.snoopRangeSent = false;
168 dcachePort.snoopRangeSent = false;
169
170}
171
172
173AtomicSimpleCPU::~AtomicSimpleCPU()
174{
175 if (tickEvent.scheduled()) {
176 deschedule(tickEvent);
177 }
178}
179
180void
181AtomicSimpleCPU::serialize(ostream &os)
182{
183 SimObject::State so_state = SimObject::getState();
184 SERIALIZE_ENUM(so_state);
185 SERIALIZE_SCALAR(locked);
186 BaseSimpleCPU::serialize(os);
187 nameOut(os, csprintf("%s.tickEvent", name()));
188 tickEvent.serialize(os);
189}
190
191void
192AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
193{
194 SimObject::State so_state;
195 UNSERIALIZE_ENUM(so_state);
196 UNSERIALIZE_SCALAR(locked);
197 BaseSimpleCPU::unserialize(cp, section);
198 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
199}
200
201void
202AtomicSimpleCPU::resume()
203{
204 if (_status == Idle || _status == SwitchedOut)
205 return;
206
207 DPRINTF(SimpleCPU, "Resume\n");
208 assert(system->getMemoryMode() == Enums::atomic);
209
210 changeState(SimObject::Running);
211 if (thread->status() == ThreadContext::Active) {
212 if (!tickEvent.scheduled())
213 schedule(tickEvent, nextCycle());
214 }
215 system->totalNumInsts = 0;
216}
217
218void
219AtomicSimpleCPU::switchOut()
220{
221 assert(_status == Running || _status == Idle);
222 _status = SwitchedOut;
223
224 tickEvent.squash();
225}
226
227
228void
229AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
230{
231 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
232
233 assert(!tickEvent.scheduled());
234
235 // if any of this CPU's ThreadContexts are active, mark the CPU as
236 // running and schedule its tick event.
237 ThreadID size = threadContexts.size();
238 for (ThreadID i = 0; i < size; ++i) {
239 ThreadContext *tc = threadContexts[i];
240 if (tc->status() == ThreadContext::Active && _status != Running) {
241 _status = Running;
242 schedule(tickEvent, nextCycle());
243 break;
244 }
245 }
246 if (_status != Running) {
247 _status = Idle;
248 }
249 assert(threadContexts.size() == 1);
250 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
251 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
252 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
253}
254
255
256void
257AtomicSimpleCPU::activateContext(int thread_num, int delay)
258{
259 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
260
261 assert(thread_num == 0);
262 assert(thread);
263
264 assert(_status == Idle);
265 assert(!tickEvent.scheduled());
266
267 notIdleFraction++;
268 numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
269
270 //Make sure ticks are still on multiples of cycles
271 schedule(tickEvent, nextCycle(curTick() + ticks(delay)));
272 _status = Running;
273}
274
275
276void
277AtomicSimpleCPU::suspendContext(int thread_num)
278{
279 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
280
281 assert(thread_num == 0);
282 assert(thread);
283
284 if (_status == Idle)
285 return;
286
287 assert(_status == Running);
288
289 // tick event may not be scheduled if this gets called from inside
290 // an instruction's execution, e.g. "quiesce"
291 if (tickEvent.scheduled())
292 deschedule(tickEvent);
293
294 notIdleFraction--;
295 _status = Idle;
296}
297
298
299Fault
300AtomicSimpleCPU::readBytes(Addr addr, uint8_t * data,
301 unsigned size, unsigned flags)
302{
303 // use the CPU's statically allocated read request and packet objects
304 Request *req = &data_read_req;
305
306 if (traceData) {
307 traceData->setAddr(addr);
308 }
309
310 //The block size of our peer.
311 unsigned blockSize = dcachePort.peerBlockSize();
312 //The size of the data we're trying to read.
313 int fullSize = size;
314
315 //The address of the second part of this access if it needs to be split
316 //across a cache line boundary.
317 Addr secondAddr = roundDown(addr + size - 1, blockSize);
318
319 if (secondAddr > addr)
320 size = secondAddr - addr;
321
322 dcache_latency = 0;
323
324 while (1) {
325 req->setVirt(0, addr, size, flags, thread->pcState().instAddr());
326
327 // translate to physical address
328 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
329
330 // Now do the access.
331 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
332 Packet pkt = Packet(req,
333 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
334 Packet::Broadcast);
335 pkt.dataStatic(data);
336
337 if (req->isMmapedIpr())
337 if (req->isMmappedIpr())
338 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
339 else {
340 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
341 dcache_latency += physmemPort.sendAtomic(&pkt);
342 else
343 dcache_latency += dcachePort.sendAtomic(&pkt);
344 }
345 dcache_access = true;
346
347 assert(!pkt.isError());
348
349 if (req->isLLSC()) {
350 TheISA::handleLockedRead(thread, req);
351 }
352 }
353
354 //If there's a fault, return it
355 if (fault != NoFault) {
356 if (req->isPrefetch()) {
357 return NoFault;
358 } else {
359 return fault;
360 }
361 }
362
363 //If we don't need to access a second cache line, stop now.
364 if (secondAddr <= addr)
365 {
366 if (req->isLocked() && fault == NoFault) {
367 assert(!locked);
368 locked = true;
369 }
370 return fault;
371 }
372
373 /*
374 * Set up for accessing the second cache line.
375 */
376
377 //Move the pointer we're reading into to the correct location.
378 data += size;
379 //Adjust the size to get the remaining bytes.
380 size = addr + fullSize - secondAddr;
381 //And access the right address.
382 addr = secondAddr;
383 }
384}
385
386
387template <class T>
388Fault
389AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
390{
391 uint8_t *dataPtr = (uint8_t *)&data;
392 memset(dataPtr, 0, sizeof(data));
393 Fault fault = readBytes(addr, dataPtr, sizeof(data), flags);
394 if (fault == NoFault) {
395 data = gtoh(data);
396 if (traceData)
397 traceData->setData(data);
398 }
399 return fault;
400}
401
402#ifndef DOXYGEN_SHOULD_SKIP_THIS
403
404template
405Fault
406AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
407
408template
409Fault
410AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
411
412template
413Fault
414AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
415
416template
417Fault
418AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
419
420template
421Fault
422AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
423
424template
425Fault
426AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
427
428#endif //DOXYGEN_SHOULD_SKIP_THIS
429
430template<>
431Fault
432AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
433{
434 return read(addr, *(uint64_t*)&data, flags);
435}
436
437template<>
438Fault
439AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
440{
441 return read(addr, *(uint32_t*)&data, flags);
442}
443
444
445template<>
446Fault
447AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
448{
449 return read(addr, (uint32_t&)data, flags);
450}
451
452
453Fault
454AtomicSimpleCPU::writeBytes(uint8_t *data, unsigned size,
455 Addr addr, unsigned flags, uint64_t *res)
456{
457 // use the CPU's statically allocated write request and packet objects
458 Request *req = &data_write_req;
459
460 if (traceData) {
461 traceData->setAddr(addr);
462 }
463
464 //The block size of our peer.
465 unsigned blockSize = dcachePort.peerBlockSize();
466 //The size of the data we're trying to read.
467 int fullSize = size;
468
469 //The address of the second part of this access if it needs to be split
470 //across a cache line boundary.
471 Addr secondAddr = roundDown(addr + size - 1, blockSize);
472
473 if(secondAddr > addr)
474 size = secondAddr - addr;
475
476 dcache_latency = 0;
477
478 while(1) {
479 req->setVirt(0, addr, size, flags, thread->pcState().instAddr());
480
481 // translate to physical address
482 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
483
484 // Now do the access.
485 if (fault == NoFault) {
486 MemCmd cmd = MemCmd::WriteReq; // default
487 bool do_access = true; // flag to suppress cache access
488
489 if (req->isLLSC()) {
490 cmd = MemCmd::StoreCondReq;
491 do_access = TheISA::handleLockedWrite(thread, req);
492 } else if (req->isSwap()) {
493 cmd = MemCmd::SwapReq;
494 if (req->isCondSwap()) {
495 assert(res);
496 req->setExtraData(*res);
497 }
498 }
499
500 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
501 Packet pkt = Packet(req, cmd, Packet::Broadcast);
502 pkt.dataStatic(data);
503
338 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
339 else {
340 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
341 dcache_latency += physmemPort.sendAtomic(&pkt);
342 else
343 dcache_latency += dcachePort.sendAtomic(&pkt);
344 }
345 dcache_access = true;
346
347 assert(!pkt.isError());
348
349 if (req->isLLSC()) {
350 TheISA::handleLockedRead(thread, req);
351 }
352 }
353
354 //If there's a fault, return it
355 if (fault != NoFault) {
356 if (req->isPrefetch()) {
357 return NoFault;
358 } else {
359 return fault;
360 }
361 }
362
363 //If we don't need to access a second cache line, stop now.
364 if (secondAddr <= addr)
365 {
366 if (req->isLocked() && fault == NoFault) {
367 assert(!locked);
368 locked = true;
369 }
370 return fault;
371 }
372
373 /*
374 * Set up for accessing the second cache line.
375 */
376
377 //Move the pointer we're reading into to the correct location.
378 data += size;
379 //Adjust the size to get the remaining bytes.
380 size = addr + fullSize - secondAddr;
381 //And access the right address.
382 addr = secondAddr;
383 }
384}
385
386
387template <class T>
388Fault
389AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
390{
391 uint8_t *dataPtr = (uint8_t *)&data;
392 memset(dataPtr, 0, sizeof(data));
393 Fault fault = readBytes(addr, dataPtr, sizeof(data), flags);
394 if (fault == NoFault) {
395 data = gtoh(data);
396 if (traceData)
397 traceData->setData(data);
398 }
399 return fault;
400}
401
402#ifndef DOXYGEN_SHOULD_SKIP_THIS
403
404template
405Fault
406AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
407
408template
409Fault
410AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
411
412template
413Fault
414AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
415
416template
417Fault
418AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
419
420template
421Fault
422AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
423
424template
425Fault
426AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
427
428#endif //DOXYGEN_SHOULD_SKIP_THIS
429
430template<>
431Fault
432AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
433{
434 return read(addr, *(uint64_t*)&data, flags);
435}
436
437template<>
438Fault
439AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
440{
441 return read(addr, *(uint32_t*)&data, flags);
442}
443
444
445template<>
446Fault
447AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
448{
449 return read(addr, (uint32_t&)data, flags);
450}
451
452
453Fault
454AtomicSimpleCPU::writeBytes(uint8_t *data, unsigned size,
455 Addr addr, unsigned flags, uint64_t *res)
456{
457 // use the CPU's statically allocated write request and packet objects
458 Request *req = &data_write_req;
459
460 if (traceData) {
461 traceData->setAddr(addr);
462 }
463
464 //The block size of our peer.
465 unsigned blockSize = dcachePort.peerBlockSize();
466 //The size of the data we're trying to read.
467 int fullSize = size;
468
469 //The address of the second part of this access if it needs to be split
470 //across a cache line boundary.
471 Addr secondAddr = roundDown(addr + size - 1, blockSize);
472
473 if(secondAddr > addr)
474 size = secondAddr - addr;
475
476 dcache_latency = 0;
477
478 while(1) {
479 req->setVirt(0, addr, size, flags, thread->pcState().instAddr());
480
481 // translate to physical address
482 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
483
484 // Now do the access.
485 if (fault == NoFault) {
486 MemCmd cmd = MemCmd::WriteReq; // default
487 bool do_access = true; // flag to suppress cache access
488
489 if (req->isLLSC()) {
490 cmd = MemCmd::StoreCondReq;
491 do_access = TheISA::handleLockedWrite(thread, req);
492 } else if (req->isSwap()) {
493 cmd = MemCmd::SwapReq;
494 if (req->isCondSwap()) {
495 assert(res);
496 req->setExtraData(*res);
497 }
498 }
499
500 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
501 Packet pkt = Packet(req, cmd, Packet::Broadcast);
502 pkt.dataStatic(data);
503
504 if (req->isMmapedIpr()) {
504 if (req->isMmappedIpr()) {
505 dcache_latency +=
506 TheISA::handleIprWrite(thread->getTC(), &pkt);
507 } else {
508 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
509 dcache_latency += physmemPort.sendAtomic(&pkt);
510 else
511 dcache_latency += dcachePort.sendAtomic(&pkt);
512 }
513 dcache_access = true;
514 assert(!pkt.isError());
515
516 if (req->isSwap()) {
517 assert(res);
518 memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
519 }
520 }
521
522 if (res && !req->isSwap()) {
523 *res = req->getExtraData();
524 }
525 }
526
527 //If there's a fault or we don't need to access a second cache line,
528 //stop now.
529 if (fault != NoFault || secondAddr <= addr)
530 {
531 if (req->isLocked() && fault == NoFault) {
532 assert(locked);
533 locked = false;
534 }
535 if (fault != NoFault && req->isPrefetch()) {
536 return NoFault;
537 } else {
538 return fault;
539 }
540 }
541
542 /*
543 * Set up for accessing the second cache line.
544 */
545
546 //Move the pointer we're reading into to the correct location.
547 data += size;
548 //Adjust the size to get the remaining bytes.
549 size = addr + fullSize - secondAddr;
550 //And access the right address.
551 addr = secondAddr;
552 }
553}
554
555
556template <class T>
557Fault
558AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
559{
560 uint8_t *dataPtr = (uint8_t *)&data;
561 if (traceData)
562 traceData->setData(data);
563 data = htog(data);
564
565 Fault fault = writeBytes(dataPtr, sizeof(data), addr, flags, res);
566 if (fault == NoFault && data_write_req.isSwap()) {
567 *res = gtoh((T)*res);
568 }
569 return fault;
570}
571
572
573#ifndef DOXYGEN_SHOULD_SKIP_THIS
574
575template
576Fault
577AtomicSimpleCPU::write(Twin32_t data, Addr addr,
578 unsigned flags, uint64_t *res);
579
580template
581Fault
582AtomicSimpleCPU::write(Twin64_t data, Addr addr,
583 unsigned flags, uint64_t *res);
584
585template
586Fault
587AtomicSimpleCPU::write(uint64_t data, Addr addr,
588 unsigned flags, uint64_t *res);
589
590template
591Fault
592AtomicSimpleCPU::write(uint32_t data, Addr addr,
593 unsigned flags, uint64_t *res);
594
595template
596Fault
597AtomicSimpleCPU::write(uint16_t data, Addr addr,
598 unsigned flags, uint64_t *res);
599
600template
601Fault
602AtomicSimpleCPU::write(uint8_t data, Addr addr,
603 unsigned flags, uint64_t *res);
604
605#endif //DOXYGEN_SHOULD_SKIP_THIS
606
607template<>
608Fault
609AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
610{
611 return write(*(uint64_t*)&data, addr, flags, res);
612}
613
614template<>
615Fault
616AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
617{
618 return write(*(uint32_t*)&data, addr, flags, res);
619}
620
621
622template<>
623Fault
624AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
625{
626 return write((uint32_t)data, addr, flags, res);
627}
628
629
630void
631AtomicSimpleCPU::tick()
632{
633 DPRINTF(SimpleCPU, "Tick\n");
634
635 Tick latency = 0;
636
637 for (int i = 0; i < width || locked; ++i) {
638 numCycles++;
639
640 if (!curStaticInst || !curStaticInst->isDelayedCommit())
641 checkForInterrupts();
642
643 checkPcEventQueue();
644
645 Fault fault = NoFault;
646
647 TheISA::PCState pcState = thread->pcState();
648
649 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
650 !curMacroStaticInst;
651 if (needToFetch) {
652 setupFetchRequest(&ifetch_req);
653 fault = thread->itb->translateAtomic(&ifetch_req, tc,
654 BaseTLB::Execute);
655 }
656
657 if (fault == NoFault) {
658 Tick icache_latency = 0;
659 bool icache_access = false;
660 dcache_access = false; // assume no dcache access
661
662 if (needToFetch) {
663 // This is commented out because the predecoder would act like
664 // a tiny cache otherwise. It wouldn't be flushed when needed
665 // like the I cache. It should be flushed, and when that works
666 // this code should be uncommented.
667 //Fetch more instruction memory if necessary
668 //if(predecoder.needMoreBytes())
669 //{
670 icache_access = true;
671 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
672 Packet::Broadcast);
673 ifetch_pkt.dataStatic(&inst);
674
675 if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
676 icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
677 else
678 icache_latency = icachePort.sendAtomic(&ifetch_pkt);
679
680 assert(!ifetch_pkt.isError());
681
682 // ifetch_req is initialized to read the instruction directly
683 // into the CPU object's inst field.
684 //}
685 }
686
687 preExecute();
688
689 if (curStaticInst) {
690 fault = curStaticInst->execute(this, traceData);
691
692 // keep an instruction count
693 if (fault == NoFault)
694 countInst();
695 else if (traceData && !DTRACE(ExecFaulting)) {
696 delete traceData;
697 traceData = NULL;
698 }
699
700 postExecute();
701 }
702
703 // @todo remove me after debugging with legion done
704 if (curStaticInst && (!curStaticInst->isMicroop() ||
705 curStaticInst->isFirstMicroop()))
706 instCnt++;
707
708 Tick stall_ticks = 0;
709 if (simulate_inst_stalls && icache_access)
710 stall_ticks += icache_latency;
711
712 if (simulate_data_stalls && dcache_access)
713 stall_ticks += dcache_latency;
714
715 if (stall_ticks) {
716 Tick stall_cycles = stall_ticks / ticks(1);
717 Tick aligned_stall_ticks = ticks(stall_cycles);
718
719 if (aligned_stall_ticks < stall_ticks)
720 aligned_stall_ticks += 1;
721
722 latency += aligned_stall_ticks;
723 }
724
725 }
726 if(fault != NoFault || !stayAtPC)
727 advancePC(fault);
728 }
729
730 // instruction takes at least one cycle
731 if (latency < ticks(1))
732 latency = ticks(1);
733
734 if (_status != Idle)
735 schedule(tickEvent, curTick() + latency);
736}
737
738
739void
740AtomicSimpleCPU::printAddr(Addr a)
741{
742 dcachePort.printAddr(a);
743}
744
745
746////////////////////////////////////////////////////////////////////////
747//
748// AtomicSimpleCPU Simulation Object
749//
750AtomicSimpleCPU *
751AtomicSimpleCPUParams::create()
752{
753 numThreads = 1;
754#if !FULL_SYSTEM
755 if (workload.size() != 1)
756 panic("only one workload allowed");
757#endif
758 return new AtomicSimpleCPU(this);
759}
505 dcache_latency +=
506 TheISA::handleIprWrite(thread->getTC(), &pkt);
507 } else {
508 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
509 dcache_latency += physmemPort.sendAtomic(&pkt);
510 else
511 dcache_latency += dcachePort.sendAtomic(&pkt);
512 }
513 dcache_access = true;
514 assert(!pkt.isError());
515
516 if (req->isSwap()) {
517 assert(res);
518 memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
519 }
520 }
521
522 if (res && !req->isSwap()) {
523 *res = req->getExtraData();
524 }
525 }
526
527 //If there's a fault or we don't need to access a second cache line,
528 //stop now.
529 if (fault != NoFault || secondAddr <= addr)
530 {
531 if (req->isLocked() && fault == NoFault) {
532 assert(locked);
533 locked = false;
534 }
535 if (fault != NoFault && req->isPrefetch()) {
536 return NoFault;
537 } else {
538 return fault;
539 }
540 }
541
542 /*
543 * Set up for accessing the second cache line.
544 */
545
546 //Move the pointer we're reading into to the correct location.
547 data += size;
548 //Adjust the size to get the remaining bytes.
549 size = addr + fullSize - secondAddr;
550 //And access the right address.
551 addr = secondAddr;
552 }
553}
554
555
556template <class T>
557Fault
558AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
559{
560 uint8_t *dataPtr = (uint8_t *)&data;
561 if (traceData)
562 traceData->setData(data);
563 data = htog(data);
564
565 Fault fault = writeBytes(dataPtr, sizeof(data), addr, flags, res);
566 if (fault == NoFault && data_write_req.isSwap()) {
567 *res = gtoh((T)*res);
568 }
569 return fault;
570}
571
572
573#ifndef DOXYGEN_SHOULD_SKIP_THIS
574
575template
576Fault
577AtomicSimpleCPU::write(Twin32_t data, Addr addr,
578 unsigned flags, uint64_t *res);
579
580template
581Fault
582AtomicSimpleCPU::write(Twin64_t data, Addr addr,
583 unsigned flags, uint64_t *res);
584
585template
586Fault
587AtomicSimpleCPU::write(uint64_t data, Addr addr,
588 unsigned flags, uint64_t *res);
589
590template
591Fault
592AtomicSimpleCPU::write(uint32_t data, Addr addr,
593 unsigned flags, uint64_t *res);
594
595template
596Fault
597AtomicSimpleCPU::write(uint16_t data, Addr addr,
598 unsigned flags, uint64_t *res);
599
600template
601Fault
602AtomicSimpleCPU::write(uint8_t data, Addr addr,
603 unsigned flags, uint64_t *res);
604
605#endif //DOXYGEN_SHOULD_SKIP_THIS
606
607template<>
608Fault
609AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
610{
611 return write(*(uint64_t*)&data, addr, flags, res);
612}
613
614template<>
615Fault
616AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
617{
618 return write(*(uint32_t*)&data, addr, flags, res);
619}
620
621
622template<>
623Fault
624AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
625{
626 return write((uint32_t)data, addr, flags, res);
627}
628
629
630void
631AtomicSimpleCPU::tick()
632{
633 DPRINTF(SimpleCPU, "Tick\n");
634
635 Tick latency = 0;
636
637 for (int i = 0; i < width || locked; ++i) {
638 numCycles++;
639
640 if (!curStaticInst || !curStaticInst->isDelayedCommit())
641 checkForInterrupts();
642
643 checkPcEventQueue();
644
645 Fault fault = NoFault;
646
647 TheISA::PCState pcState = thread->pcState();
648
649 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
650 !curMacroStaticInst;
651 if (needToFetch) {
652 setupFetchRequest(&ifetch_req);
653 fault = thread->itb->translateAtomic(&ifetch_req, tc,
654 BaseTLB::Execute);
655 }
656
657 if (fault == NoFault) {
658 Tick icache_latency = 0;
659 bool icache_access = false;
660 dcache_access = false; // assume no dcache access
661
662 if (needToFetch) {
663 // This is commented out because the predecoder would act like
664 // a tiny cache otherwise. It wouldn't be flushed when needed
665 // like the I cache. It should be flushed, and when that works
666 // this code should be uncommented.
667 //Fetch more instruction memory if necessary
668 //if(predecoder.needMoreBytes())
669 //{
670 icache_access = true;
671 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
672 Packet::Broadcast);
673 ifetch_pkt.dataStatic(&inst);
674
675 if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
676 icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
677 else
678 icache_latency = icachePort.sendAtomic(&ifetch_pkt);
679
680 assert(!ifetch_pkt.isError());
681
682 // ifetch_req is initialized to read the instruction directly
683 // into the CPU object's inst field.
684 //}
685 }
686
687 preExecute();
688
689 if (curStaticInst) {
690 fault = curStaticInst->execute(this, traceData);
691
692 // keep an instruction count
693 if (fault == NoFault)
694 countInst();
695 else if (traceData && !DTRACE(ExecFaulting)) {
696 delete traceData;
697 traceData = NULL;
698 }
699
700 postExecute();
701 }
702
703 // @todo remove me after debugging with legion done
704 if (curStaticInst && (!curStaticInst->isMicroop() ||
705 curStaticInst->isFirstMicroop()))
706 instCnt++;
707
708 Tick stall_ticks = 0;
709 if (simulate_inst_stalls && icache_access)
710 stall_ticks += icache_latency;
711
712 if (simulate_data_stalls && dcache_access)
713 stall_ticks += dcache_latency;
714
715 if (stall_ticks) {
716 Tick stall_cycles = stall_ticks / ticks(1);
717 Tick aligned_stall_ticks = ticks(stall_cycles);
718
719 if (aligned_stall_ticks < stall_ticks)
720 aligned_stall_ticks += 1;
721
722 latency += aligned_stall_ticks;
723 }
724
725 }
726 if(fault != NoFault || !stayAtPC)
727 advancePC(fault);
728 }
729
730 // instruction takes at least one cycle
731 if (latency < ticks(1))
732 latency = ticks(1);
733
734 if (_status != Idle)
735 schedule(tickEvent, curTick() + latency);
736}
737
738
739void
740AtomicSimpleCPU::printAddr(Addr a)
741{
742 dcachePort.printAddr(a);
743}
744
745
746////////////////////////////////////////////////////////////////////////
747//
748// AtomicSimpleCPU Simulation Object
749//
750AtomicSimpleCPU *
751AtomicSimpleCPUParams::create()
752{
753 numThreads = 1;
754#if !FULL_SYSTEM
755 if (workload.size() != 1)
756 panic("only one workload allowed");
757#endif
758 return new AtomicSimpleCPU(this);
759}