atomic.cc (4986:b7c82ad6b3ef) atomic.cc (4997:e7380529bd2d)
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/atomic.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/AtomicSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
46 : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
47{
48}
49
50
51void
52AtomicSimpleCPU::TickEvent::process()
53{
54 cpu->tick();
55}
56
57const char *
58AtomicSimpleCPU::TickEvent::description()
59{
60 return "AtomicSimpleCPU tick";
61}
62
63Port *
64AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
65{
66 if (if_name == "dcache_port")
67 return &dcachePort;
68 else if (if_name == "icache_port")
69 return &icachePort;
70 else if (if_name == "physmem_port") {
71 hasPhysMemPort = true;
72 return &physmemPort;
73 }
74 else
75 panic("No Such Port\n");
76}
77
78void
79AtomicSimpleCPU::init()
80{
81 BaseCPU::init();
82#if FULL_SYSTEM
83 for (int i = 0; i < threadContexts.size(); ++i) {
84 ThreadContext *tc = threadContexts[i];
85
86 // initialize CPU, including PC
87 TheISA::initCPU(tc, tc->readCpuId());
88 }
89#endif
90 if (hasPhysMemPort) {
91 bool snoop = false;
92 AddrRangeList pmAddrList;
93 physmemPort.getPeerAddressRanges(pmAddrList, snoop);
94 physMemAddr = *pmAddrList.begin();
95 }
96}
97
98bool
99AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
100{
101 panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
102 return true;
103}
104
105Tick
106AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
107{
108 //Snooping a coherence request, just return
109 return 0;
110}
111
112void
113AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
114{
115 //No internal storage to update, just return
116 return;
117}
118
119void
120AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
121{
122 if (status == RangeChange) {
123 if (!snoopRangeSent) {
124 snoopRangeSent = true;
125 sendStatusChange(Port::RangeChange);
126 }
127 return;
128 }
129
130 panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
131}
132
133void
134AtomicSimpleCPU::CpuPort::recvRetry()
135{
136 panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
137}
138
139void
140AtomicSimpleCPU::DcachePort::setPeer(Port *port)
141{
142 Port::setPeer(port);
143
144#if FULL_SYSTEM
145 // Update the ThreadContext's memory ports (Functional/Virtual
146 // Ports)
147 cpu->tcBase()->connectMemPorts();
148#endif
149}
150
151AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
152 : BaseSimpleCPU(p), tickEvent(this),
153 width(p->width), simulate_stalls(p->simulate_stalls),
154 icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
155 physmemPort(name() + "-iport", this), hasPhysMemPort(false)
156{
157 _status = Idle;
158
159 icachePort.snoopRangeSent = false;
160 dcachePort.snoopRangeSent = false;
161
162 ifetch_req.setThreadContext(p->cpu_id, 0); // Add thread ID if we add MT
163 data_read_req.setThreadContext(p->cpu_id, 0); // Add thread ID here too
164 data_write_req.setThreadContext(p->cpu_id, 0); // Add thread ID here too
165}
166
167
168AtomicSimpleCPU::~AtomicSimpleCPU()
169{
170}
171
172void
173AtomicSimpleCPU::serialize(ostream &os)
174{
175 SimObject::State so_state = SimObject::getState();
176 SERIALIZE_ENUM(so_state);
177 Status _status = status();
178 SERIALIZE_ENUM(_status);
179 BaseSimpleCPU::serialize(os);
180 nameOut(os, csprintf("%s.tickEvent", name()));
181 tickEvent.serialize(os);
182}
183
184void
185AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
186{
187 SimObject::State so_state;
188 UNSERIALIZE_ENUM(so_state);
189 UNSERIALIZE_ENUM(_status);
190 BaseSimpleCPU::unserialize(cp, section);
191 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
192}
193
194void
195AtomicSimpleCPU::resume()
196{
197 DPRINTF(SimpleCPU, "Resume\n");
198 if (_status != SwitchedOut && _status != Idle) {
199 assert(system->getMemoryMode() == Enums::atomic);
200
201 changeState(SimObject::Running);
202 if (thread->status() == ThreadContext::Active) {
203 if (!tickEvent.scheduled()) {
204 tickEvent.schedule(nextCycle());
205 }
206 }
207 }
208}
209
210void
211AtomicSimpleCPU::switchOut()
212{
213 assert(status() == Running || status() == Idle);
214 _status = SwitchedOut;
215
216 tickEvent.squash();
217}
218
219
220void
221AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
222{
223 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
224
225 assert(!tickEvent.scheduled());
226
227 // if any of this CPU's ThreadContexts are active, mark the CPU as
228 // running and schedule its tick event.
229 for (int i = 0; i < threadContexts.size(); ++i) {
230 ThreadContext *tc = threadContexts[i];
231 if (tc->status() == ThreadContext::Active && _status != Running) {
232 _status = Running;
233 tickEvent.schedule(nextCycle());
234 break;
235 }
236 }
237 if (_status != Running) {
238 _status = Idle;
239 }
240}
241
242
243void
244AtomicSimpleCPU::activateContext(int thread_num, int delay)
245{
246 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
247
248 assert(thread_num == 0);
249 assert(thread);
250
251 assert(_status == Idle);
252 assert(!tickEvent.scheduled());
253
254 notIdleFraction++;
255
256 //Make sure ticks are still on multiples of cycles
257 tickEvent.schedule(nextCycle(curTick + cycles(delay)));
258 _status = Running;
259}
260
261
262void
263AtomicSimpleCPU::suspendContext(int thread_num)
264{
265 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
266
267 assert(thread_num == 0);
268 assert(thread);
269
270 assert(_status == Running);
271
272 // tick event may not be scheduled if this gets called from inside
273 // an instruction's execution, e.g. "quiesce"
274 if (tickEvent.scheduled())
275 tickEvent.deschedule();
276
277 notIdleFraction--;
278 _status = Idle;
279}
280
281
282template <class T>
283Fault
284AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
285{
286 // use the CPU's statically allocated read request and packet objects
287 Request *req = &data_read_req;
288 req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
289
290 if (traceData) {
291 traceData->setAddr(addr);
292 }
293
294 // translate to physical address
295 Fault fault = thread->translateDataReadReq(req);
296
297 // Now do the access.
298 if (fault == NoFault) {
299 Packet pkt =
300 Packet(req,
301 req->isLocked() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
302 Packet::Broadcast);
303 pkt.dataStatic(&data);
304
305 if (req->isMmapedIpr())
306 dcache_latency = TheISA::handleIprRead(thread->getTC(), &pkt);
307 else {
308 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
309 dcache_latency = physmemPort.sendAtomic(&pkt);
310 else
311 dcache_latency = dcachePort.sendAtomic(&pkt);
312 }
313 dcache_access = true;
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/atomic.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/AtomicSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
46 : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
47{
48}
49
50
51void
52AtomicSimpleCPU::TickEvent::process()
53{
54 cpu->tick();
55}
56
57const char *
58AtomicSimpleCPU::TickEvent::description()
59{
60 return "AtomicSimpleCPU tick";
61}
62
63Port *
64AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
65{
66 if (if_name == "dcache_port")
67 return &dcachePort;
68 else if (if_name == "icache_port")
69 return &icachePort;
70 else if (if_name == "physmem_port") {
71 hasPhysMemPort = true;
72 return &physmemPort;
73 }
74 else
75 panic("No Such Port\n");
76}
77
78void
79AtomicSimpleCPU::init()
80{
81 BaseCPU::init();
82#if FULL_SYSTEM
83 for (int i = 0; i < threadContexts.size(); ++i) {
84 ThreadContext *tc = threadContexts[i];
85
86 // initialize CPU, including PC
87 TheISA::initCPU(tc, tc->readCpuId());
88 }
89#endif
90 if (hasPhysMemPort) {
91 bool snoop = false;
92 AddrRangeList pmAddrList;
93 physmemPort.getPeerAddressRanges(pmAddrList, snoop);
94 physMemAddr = *pmAddrList.begin();
95 }
96}
97
98bool
99AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
100{
101 panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
102 return true;
103}
104
105Tick
106AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
107{
108 //Snooping a coherence request, just return
109 return 0;
110}
111
112void
113AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
114{
115 //No internal storage to update, just return
116 return;
117}
118
119void
120AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
121{
122 if (status == RangeChange) {
123 if (!snoopRangeSent) {
124 snoopRangeSent = true;
125 sendStatusChange(Port::RangeChange);
126 }
127 return;
128 }
129
130 panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
131}
132
133void
134AtomicSimpleCPU::CpuPort::recvRetry()
135{
136 panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
137}
138
139void
140AtomicSimpleCPU::DcachePort::setPeer(Port *port)
141{
142 Port::setPeer(port);
143
144#if FULL_SYSTEM
145 // Update the ThreadContext's memory ports (Functional/Virtual
146 // Ports)
147 cpu->tcBase()->connectMemPorts();
148#endif
149}
150
151AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
152 : BaseSimpleCPU(p), tickEvent(this),
153 width(p->width), simulate_stalls(p->simulate_stalls),
154 icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
155 physmemPort(name() + "-iport", this), hasPhysMemPort(false)
156{
157 _status = Idle;
158
159 icachePort.snoopRangeSent = false;
160 dcachePort.snoopRangeSent = false;
161
162 ifetch_req.setThreadContext(p->cpu_id, 0); // Add thread ID if we add MT
163 data_read_req.setThreadContext(p->cpu_id, 0); // Add thread ID here too
164 data_write_req.setThreadContext(p->cpu_id, 0); // Add thread ID here too
165}
166
167
168AtomicSimpleCPU::~AtomicSimpleCPU()
169{
170}
171
172void
173AtomicSimpleCPU::serialize(ostream &os)
174{
175 SimObject::State so_state = SimObject::getState();
176 SERIALIZE_ENUM(so_state);
177 Status _status = status();
178 SERIALIZE_ENUM(_status);
179 BaseSimpleCPU::serialize(os);
180 nameOut(os, csprintf("%s.tickEvent", name()));
181 tickEvent.serialize(os);
182}
183
184void
185AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
186{
187 SimObject::State so_state;
188 UNSERIALIZE_ENUM(so_state);
189 UNSERIALIZE_ENUM(_status);
190 BaseSimpleCPU::unserialize(cp, section);
191 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
192}
193
194void
195AtomicSimpleCPU::resume()
196{
197 DPRINTF(SimpleCPU, "Resume\n");
198 if (_status != SwitchedOut && _status != Idle) {
199 assert(system->getMemoryMode() == Enums::atomic);
200
201 changeState(SimObject::Running);
202 if (thread->status() == ThreadContext::Active) {
203 if (!tickEvent.scheduled()) {
204 tickEvent.schedule(nextCycle());
205 }
206 }
207 }
208}
209
210void
211AtomicSimpleCPU::switchOut()
212{
213 assert(status() == Running || status() == Idle);
214 _status = SwitchedOut;
215
216 tickEvent.squash();
217}
218
219
220void
221AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
222{
223 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
224
225 assert(!tickEvent.scheduled());
226
227 // if any of this CPU's ThreadContexts are active, mark the CPU as
228 // running and schedule its tick event.
229 for (int i = 0; i < threadContexts.size(); ++i) {
230 ThreadContext *tc = threadContexts[i];
231 if (tc->status() == ThreadContext::Active && _status != Running) {
232 _status = Running;
233 tickEvent.schedule(nextCycle());
234 break;
235 }
236 }
237 if (_status != Running) {
238 _status = Idle;
239 }
240}
241
242
243void
244AtomicSimpleCPU::activateContext(int thread_num, int delay)
245{
246 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
247
248 assert(thread_num == 0);
249 assert(thread);
250
251 assert(_status == Idle);
252 assert(!tickEvent.scheduled());
253
254 notIdleFraction++;
255
256 //Make sure ticks are still on multiples of cycles
257 tickEvent.schedule(nextCycle(curTick + cycles(delay)));
258 _status = Running;
259}
260
261
262void
263AtomicSimpleCPU::suspendContext(int thread_num)
264{
265 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
266
267 assert(thread_num == 0);
268 assert(thread);
269
270 assert(_status == Running);
271
272 // tick event may not be scheduled if this gets called from inside
273 // an instruction's execution, e.g. "quiesce"
274 if (tickEvent.scheduled())
275 tickEvent.deschedule();
276
277 notIdleFraction--;
278 _status = Idle;
279}
280
281
282template <class T>
283Fault
284AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
285{
286 // use the CPU's statically allocated read request and packet objects
287 Request *req = &data_read_req;
288 req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
289
290 if (traceData) {
291 traceData->setAddr(addr);
292 }
293
294 // translate to physical address
295 Fault fault = thread->translateDataReadReq(req);
296
297 // Now do the access.
298 if (fault == NoFault) {
299 Packet pkt =
300 Packet(req,
301 req->isLocked() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
302 Packet::Broadcast);
303 pkt.dataStatic(&data);
304
305 if (req->isMmapedIpr())
306 dcache_latency = TheISA::handleIprRead(thread->getTC(), &pkt);
307 else {
308 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
309 dcache_latency = physmemPort.sendAtomic(&pkt);
310 else
311 dcache_latency = dcachePort.sendAtomic(&pkt);
312 }
313 dcache_access = true;
314
315 assert(!pkt.isError());
316
317 data = gtoh(data);
318
319 if (req->isLocked()) {
320 TheISA::handleLockedRead(thread, req);
321 }
322 }
323
324 // This will need a new way to tell if it has a dcache attached.
325 if (req->isUncacheable())
326 recordEvent("Uncached Read");
327
328 return fault;
329}
330
331#ifndef DOXYGEN_SHOULD_SKIP_THIS
332
333template
334Fault
335AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
336
337template
338Fault
339AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
340
341template
342Fault
343AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
344
345template
346Fault
347AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
348
349template
350Fault
351AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
352
353template
354Fault
355AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
356
357#endif //DOXYGEN_SHOULD_SKIP_THIS
358
359template<>
360Fault
361AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
362{
363 return read(addr, *(uint64_t*)&data, flags);
364}
365
366template<>
367Fault
368AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
369{
370 return read(addr, *(uint32_t*)&data, flags);
371}
372
373
374template<>
375Fault
376AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
377{
378 return read(addr, (uint32_t&)data, flags);
379}
380
381
382template <class T>
383Fault
384AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
385{
386 // use the CPU's statically allocated write request and packet objects
387 Request *req = &data_write_req;
388 req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
389
390 if (traceData) {
391 traceData->setAddr(addr);
392 }
393
394 // translate to physical address
395 Fault fault = thread->translateDataWriteReq(req);
396
397 // Now do the access.
398 if (fault == NoFault) {
399 MemCmd cmd = MemCmd::WriteReq; // default
400 bool do_access = true; // flag to suppress cache access
401
402 if (req->isLocked()) {
403 cmd = MemCmd::StoreCondReq;
404 do_access = TheISA::handleLockedWrite(thread, req);
405 } else if (req->isSwap()) {
406 cmd = MemCmd::SwapReq;
407 if (req->isCondSwap()) {
408 assert(res);
409 req->setExtraData(*res);
410 }
411 }
412
413 if (do_access) {
414 Packet pkt = Packet(req, cmd, Packet::Broadcast);
415 pkt.dataStatic(&data);
416
417 if (req->isMmapedIpr()) {
418 dcache_latency = TheISA::handleIprWrite(thread->getTC(), &pkt);
419 } else {
420 data = htog(data);
421 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
422 dcache_latency = physmemPort.sendAtomic(&pkt);
423 else
424 dcache_latency = dcachePort.sendAtomic(&pkt);
425 }
426 dcache_access = true;
427 assert(!pkt.isError());
428
429 if (req->isSwap()) {
430 assert(res);
431 *res = pkt.get<T>();
432 }
433 }
434
435 if (res && !req->isSwap()) {
436 *res = req->getExtraData();
437 }
438 }
439
440 // This will need a new way to tell if it's hooked up to a cache or not.
441 if (req->isUncacheable())
442 recordEvent("Uncached Write");
443
444 // If the write needs to have a fault on the access, consider calling
445 // changeStatus() and changing it to "bad addr write" or something.
446 return fault;
447}
448
449
450#ifndef DOXYGEN_SHOULD_SKIP_THIS
451
452template
453Fault
454AtomicSimpleCPU::write(Twin32_t data, Addr addr,
455 unsigned flags, uint64_t *res);
456
457template
458Fault
459AtomicSimpleCPU::write(Twin64_t data, Addr addr,
460 unsigned flags, uint64_t *res);
461
462template
463Fault
464AtomicSimpleCPU::write(uint64_t data, Addr addr,
465 unsigned flags, uint64_t *res);
466
467template
468Fault
469AtomicSimpleCPU::write(uint32_t data, Addr addr,
470 unsigned flags, uint64_t *res);
471
472template
473Fault
474AtomicSimpleCPU::write(uint16_t data, Addr addr,
475 unsigned flags, uint64_t *res);
476
477template
478Fault
479AtomicSimpleCPU::write(uint8_t data, Addr addr,
480 unsigned flags, uint64_t *res);
481
482#endif //DOXYGEN_SHOULD_SKIP_THIS
483
484template<>
485Fault
486AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
487{
488 return write(*(uint64_t*)&data, addr, flags, res);
489}
490
491template<>
492Fault
493AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
494{
495 return write(*(uint32_t*)&data, addr, flags, res);
496}
497
498
499template<>
500Fault
501AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
502{
503 return write((uint32_t)data, addr, flags, res);
504}
505
506
507void
508AtomicSimpleCPU::tick()
509{
510 DPRINTF(SimpleCPU, "Tick\n");
511
512 Tick latency = cycles(1); // instruction takes one cycle by default
513
514 for (int i = 0; i < width; ++i) {
515 numCycles++;
516
517 if (!curStaticInst || !curStaticInst->isDelayedCommit())
518 checkForInterrupts();
519
520 Fault fault = setupFetchRequest(&ifetch_req);
521
522 if (fault == NoFault) {
523 Tick icache_latency = 0;
524 bool icache_access = false;
525 dcache_access = false; // assume no dcache access
526
527 //Fetch more instruction memory if necessary
528 //if(predecoder.needMoreBytes())
529 //{
530 icache_access = true;
531 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
532 Packet::Broadcast);
533 ifetch_pkt.dataStatic(&inst);
534
535 if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
536 icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
537 else
538 icache_latency = icachePort.sendAtomic(&ifetch_pkt);
539
314 assert(!pkt.isError());
315
316 data = gtoh(data);
317
318 if (req->isLocked()) {
319 TheISA::handleLockedRead(thread, req);
320 }
321 }
322
323 // This will need a new way to tell if it has a dcache attached.
324 if (req->isUncacheable())
325 recordEvent("Uncached Read");
326
327 return fault;
328}
329
330#ifndef DOXYGEN_SHOULD_SKIP_THIS
331
332template
333Fault
334AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
335
336template
337Fault
338AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
339
340template
341Fault
342AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
343
344template
345Fault
346AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
347
348template
349Fault
350AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
351
352template
353Fault
354AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
355
356#endif //DOXYGEN_SHOULD_SKIP_THIS
357
358template<>
359Fault
360AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
361{
362 return read(addr, *(uint64_t*)&data, flags);
363}
364
365template<>
366Fault
367AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
368{
369 return read(addr, *(uint32_t*)&data, flags);
370}
371
372
373template<>
374Fault
375AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
376{
377 return read(addr, (uint32_t&)data, flags);
378}
379
380
381template <class T>
382Fault
383AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
384{
385 // use the CPU's statically allocated write request and packet objects
386 Request *req = &data_write_req;
387 req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
388
389 if (traceData) {
390 traceData->setAddr(addr);
391 }
392
393 // translate to physical address
394 Fault fault = thread->translateDataWriteReq(req);
395
396 // Now do the access.
397 if (fault == NoFault) {
398 MemCmd cmd = MemCmd::WriteReq; // default
399 bool do_access = true; // flag to suppress cache access
400
401 if (req->isLocked()) {
402 cmd = MemCmd::StoreCondReq;
403 do_access = TheISA::handleLockedWrite(thread, req);
404 } else if (req->isSwap()) {
405 cmd = MemCmd::SwapReq;
406 if (req->isCondSwap()) {
407 assert(res);
408 req->setExtraData(*res);
409 }
410 }
411
412 if (do_access) {
413 Packet pkt = Packet(req, cmd, Packet::Broadcast);
414 pkt.dataStatic(&data);
415
416 if (req->isMmapedIpr()) {
417 dcache_latency = TheISA::handleIprWrite(thread->getTC(), &pkt);
418 } else {
419 data = htog(data);
420 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
421 dcache_latency = physmemPort.sendAtomic(&pkt);
422 else
423 dcache_latency = dcachePort.sendAtomic(&pkt);
424 }
425 dcache_access = true;
426 assert(!pkt.isError());
427
428 if (req->isSwap()) {
429 assert(res);
430 *res = pkt.get<T>();
431 }
432 }
433
434 if (res && !req->isSwap()) {
435 *res = req->getExtraData();
436 }
437 }
438
439 // This will need a new way to tell if it's hooked up to a cache or not.
440 if (req->isUncacheable())
441 recordEvent("Uncached Write");
442
443 // If the write needs to have a fault on the access, consider calling
444 // changeStatus() and changing it to "bad addr write" or something.
445 return fault;
446}
447
448
449#ifndef DOXYGEN_SHOULD_SKIP_THIS
450
451template
452Fault
453AtomicSimpleCPU::write(Twin32_t data, Addr addr,
454 unsigned flags, uint64_t *res);
455
456template
457Fault
458AtomicSimpleCPU::write(Twin64_t data, Addr addr,
459 unsigned flags, uint64_t *res);
460
461template
462Fault
463AtomicSimpleCPU::write(uint64_t data, Addr addr,
464 unsigned flags, uint64_t *res);
465
466template
467Fault
468AtomicSimpleCPU::write(uint32_t data, Addr addr,
469 unsigned flags, uint64_t *res);
470
471template
472Fault
473AtomicSimpleCPU::write(uint16_t data, Addr addr,
474 unsigned flags, uint64_t *res);
475
476template
477Fault
478AtomicSimpleCPU::write(uint8_t data, Addr addr,
479 unsigned flags, uint64_t *res);
480
481#endif //DOXYGEN_SHOULD_SKIP_THIS
482
483template<>
484Fault
485AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
486{
487 return write(*(uint64_t*)&data, addr, flags, res);
488}
489
490template<>
491Fault
492AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
493{
494 return write(*(uint32_t*)&data, addr, flags, res);
495}
496
497
498template<>
499Fault
500AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
501{
502 return write((uint32_t)data, addr, flags, res);
503}
504
505
506void
507AtomicSimpleCPU::tick()
508{
509 DPRINTF(SimpleCPU, "Tick\n");
510
511 Tick latency = cycles(1); // instruction takes one cycle by default
512
513 for (int i = 0; i < width; ++i) {
514 numCycles++;
515
516 if (!curStaticInst || !curStaticInst->isDelayedCommit())
517 checkForInterrupts();
518
519 Fault fault = setupFetchRequest(&ifetch_req);
520
521 if (fault == NoFault) {
522 Tick icache_latency = 0;
523 bool icache_access = false;
524 dcache_access = false; // assume no dcache access
525
526 //Fetch more instruction memory if necessary
527 //if(predecoder.needMoreBytes())
528 //{
529 icache_access = true;
530 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
531 Packet::Broadcast);
532 ifetch_pkt.dataStatic(&inst);
533
534 if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
535 icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
536 else
537 icache_latency = icachePort.sendAtomic(&ifetch_pkt);
538
540 assert(!ifetch_pkt.isError());
541
542 // ifetch_req is initialized to read the instruction directly
543 // into the CPU object's inst field.
544 //}
545
546 preExecute();
547
548 if(curStaticInst)
549 {
550 fault = curStaticInst->execute(this, traceData);
551 postExecute();
552 }
553
554 // @todo remove me after debugging with legion done
555 if (curStaticInst && (!curStaticInst->isMicroop() ||
556 curStaticInst->isFirstMicroop()))
557 instCnt++;
558
559 if (simulate_stalls) {
560 Tick icache_stall =
561 icache_access ? icache_latency - cycles(1) : 0;
562 Tick dcache_stall =
563 dcache_access ? dcache_latency - cycles(1) : 0;
564 Tick stall_cycles = (icache_stall + dcache_stall) / cycles(1);
565 if (cycles(stall_cycles) < (icache_stall + dcache_stall))
566 latency += cycles(stall_cycles+1);
567 else
568 latency += cycles(stall_cycles);
569 }
570
571 }
572 if(fault != NoFault || !stayAtPC)
573 advancePC(fault);
574 }
575
576 if (_status != Idle)
577 tickEvent.schedule(curTick + latency);
578}
579
580
581////////////////////////////////////////////////////////////////////////
582//
583// AtomicSimpleCPU Simulation Object
584//
585AtomicSimpleCPU *
586AtomicSimpleCPUParams::create()
587{
588 AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
589 params->name = name;
590 params->numberOfThreads = 1;
591 params->max_insts_any_thread = max_insts_any_thread;
592 params->max_insts_all_threads = max_insts_all_threads;
593 params->max_loads_any_thread = max_loads_any_thread;
594 params->max_loads_all_threads = max_loads_all_threads;
595 params->progress_interval = progress_interval;
596 params->deferRegistration = defer_registration;
597 params->phase = phase;
598 params->clock = clock;
599 params->functionTrace = function_trace;
600 params->functionTraceStart = function_trace_start;
601 params->width = width;
602 params->simulate_stalls = simulate_stalls;
603 params->system = system;
604 params->cpu_id = cpu_id;
605 params->tracer = tracer;
606
539
540 // ifetch_req is initialized to read the instruction directly
541 // into the CPU object's inst field.
542 //}
543
544 preExecute();
545
546 if(curStaticInst)
547 {
548 fault = curStaticInst->execute(this, traceData);
549 postExecute();
550 }
551
552 // @todo remove me after debugging with legion done
553 if (curStaticInst && (!curStaticInst->isMicroop() ||
554 curStaticInst->isFirstMicroop()))
555 instCnt++;
556
557 if (simulate_stalls) {
558 Tick icache_stall =
559 icache_access ? icache_latency - cycles(1) : 0;
560 Tick dcache_stall =
561 dcache_access ? dcache_latency - cycles(1) : 0;
562 Tick stall_cycles = (icache_stall + dcache_stall) / cycles(1);
563 if (cycles(stall_cycles) < (icache_stall + dcache_stall))
564 latency += cycles(stall_cycles+1);
565 else
566 latency += cycles(stall_cycles);
567 }
568
569 }
570 if(fault != NoFault || !stayAtPC)
571 advancePC(fault);
572 }
573
574 if (_status != Idle)
575 tickEvent.schedule(curTick + latency);
576}
577
578
579////////////////////////////////////////////////////////////////////////
580//
581// AtomicSimpleCPU Simulation Object
582//
583AtomicSimpleCPU *
584AtomicSimpleCPUParams::create()
585{
586 AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
587 params->name = name;
588 params->numberOfThreads = 1;
589 params->max_insts_any_thread = max_insts_any_thread;
590 params->max_insts_all_threads = max_insts_all_threads;
591 params->max_loads_any_thread = max_loads_any_thread;
592 params->max_loads_all_threads = max_loads_all_threads;
593 params->progress_interval = progress_interval;
594 params->deferRegistration = defer_registration;
595 params->phase = phase;
596 params->clock = clock;
597 params->functionTrace = function_trace;
598 params->functionTraceStart = function_trace_start;
599 params->width = width;
600 params->simulate_stalls = simulate_stalls;
601 params->system = system;
602 params->cpu_id = cpu_id;
603 params->tracer = tracer;
604
607#if FULL_SYSTEM
608 params->itb = itb;
609 params->dtb = dtb;
605 params->itb = itb;
606 params->dtb = dtb;
607#if FULL_SYSTEM
610 params->profile = profile;
611 params->do_quiesce = do_quiesce;
612 params->do_checkpoint_insts = do_checkpoint_insts;
613 params->do_statistics_insts = do_statistics_insts;
614#else
615 if (workload.size() != 1)
616 panic("only one workload allowed");
617 params->process = workload[0];
618#endif
619
620 AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
621 return cpu;
622}
608 params->profile = profile;
609 params->do_quiesce = do_quiesce;
610 params->do_checkpoint_insts = do_checkpoint_insts;
611 params->do_statistics_insts = do_statistics_insts;
612#else
613 if (workload.size() != 1)
614 panic("only one workload allowed");
615 params->process = workload[0];
616#endif
617
618 AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
619 return cpu;
620}