atomic.cc (4762:c94e103c83ad) atomic.cc (4776:8c8407243a2c)
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/atomic.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/AtomicSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
46 : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
47{
48}
49
50
51void
52AtomicSimpleCPU::TickEvent::process()
53{
54 cpu->tick();
55}
56
57const char *
58AtomicSimpleCPU::TickEvent::description()
59{
60 return "AtomicSimpleCPU tick event";
61}
62
63Port *
64AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
65{
66 if (if_name == "dcache_port")
67 return &dcachePort;
68 else if (if_name == "icache_port")
69 return &icachePort;
70 else
71 panic("No Such Port\n");
72}
73
74void
75AtomicSimpleCPU::init()
76{
77 BaseCPU::init();
78#if FULL_SYSTEM
79 for (int i = 0; i < threadContexts.size(); ++i) {
80 ThreadContext *tc = threadContexts[i];
81
82 // initialize CPU, including PC
83 TheISA::initCPU(tc, tc->readCpuId());
84 }
85#endif
86}
87
88bool
89AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
90{
91 panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
92 return true;
93}
94
95Tick
96AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
97{
98 //Snooping a coherence request, just return
99 return 0;
100}
101
102void
103AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
104{
105 //No internal storage to update, just return
106 return;
107}
108
109void
110AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
111{
112 if (status == RangeChange) {
113 if (!snoopRangeSent) {
114 snoopRangeSent = true;
115 sendStatusChange(Port::RangeChange);
116 }
117 return;
118 }
119
120 panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
121}
122
123void
124AtomicSimpleCPU::CpuPort::recvRetry()
125{
126 panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
127}
128
129void
130AtomicSimpleCPU::DcachePort::setPeer(Port *port)
131{
132 Port::setPeer(port);
133
134#if FULL_SYSTEM
135 // Update the ThreadContext's memory ports (Functional/Virtual
136 // Ports)
137 cpu->tcBase()->connectMemPorts();
138#endif
139}
140
141AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
142 : BaseSimpleCPU(p), tickEvent(this),
143 width(p->width), simulate_stalls(p->simulate_stalls),
144 icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this)
145{
146 _status = Idle;
147
148 icachePort.snoopRangeSent = false;
149 dcachePort.snoopRangeSent = false;
150
151 ifetch_req = new Request();
152 ifetch_req->setThreadContext(p->cpu_id, 0); // Add thread ID if we add MT
153 ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
154 ifetch_pkt->dataStatic(&inst);
155
156 data_read_req = new Request();
157 data_read_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too
158 data_read_pkt = new Packet(data_read_req, MemCmd::ReadReq,
159 Packet::Broadcast);
160 data_read_pkt->dataStatic(&dataReg);
161
162 data_write_req = new Request();
163 data_write_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too
164 data_write_pkt = new Packet(data_write_req, MemCmd::WriteReq,
165 Packet::Broadcast);
166 data_swap_pkt = new Packet(data_write_req, MemCmd::SwapReq,
167 Packet::Broadcast);
168}
169
170
171AtomicSimpleCPU::~AtomicSimpleCPU()
172{
173}
174
175void
176AtomicSimpleCPU::serialize(ostream &os)
177{
178 SimObject::State so_state = SimObject::getState();
179 SERIALIZE_ENUM(so_state);
180 Status _status = status();
181 SERIALIZE_ENUM(_status);
182 BaseSimpleCPU::serialize(os);
183 nameOut(os, csprintf("%s.tickEvent", name()));
184 tickEvent.serialize(os);
185}
186
187void
188AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
189{
190 SimObject::State so_state;
191 UNSERIALIZE_ENUM(so_state);
192 UNSERIALIZE_ENUM(_status);
193 BaseSimpleCPU::unserialize(cp, section);
194 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
195}
196
197void
198AtomicSimpleCPU::resume()
199{
200 if (_status != SwitchedOut && _status != Idle) {
201 assert(system->getMemoryMode() == Enums::atomic);
202
203 changeState(SimObject::Running);
204 if (thread->status() == ThreadContext::Active) {
205 if (!tickEvent.scheduled()) {
206 tickEvent.schedule(nextCycle());
207 }
208 }
209 }
210}
211
212void
213AtomicSimpleCPU::switchOut()
214{
215 assert(status() == Running || status() == Idle);
216 _status = SwitchedOut;
217
218 tickEvent.squash();
219}
220
221
222void
223AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
224{
225 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
226
227 assert(!tickEvent.scheduled());
228
229 // if any of this CPU's ThreadContexts are active, mark the CPU as
230 // running and schedule its tick event.
231 for (int i = 0; i < threadContexts.size(); ++i) {
232 ThreadContext *tc = threadContexts[i];
233 if (tc->status() == ThreadContext::Active && _status != Running) {
234 _status = Running;
235 tickEvent.schedule(nextCycle());
236 break;
237 }
238 }
239 if (_status != Running) {
240 _status = Idle;
241 }
242}
243
244
245void
246AtomicSimpleCPU::activateContext(int thread_num, int delay)
247{
248 assert(thread_num == 0);
249 assert(thread);
250
251 assert(_status == Idle);
252 assert(!tickEvent.scheduled());
253
254 notIdleFraction++;
255
256 //Make sure ticks are still on multiples of cycles
257 tickEvent.schedule(nextCycle(curTick + cycles(delay)));
258 _status = Running;
259}
260
261
262void
263AtomicSimpleCPU::suspendContext(int thread_num)
264{
265 assert(thread_num == 0);
266 assert(thread);
267
268 assert(_status == Running);
269
270 // tick event may not be scheduled if this gets called from inside
271 // an instruction's execution, e.g. "quiesce"
272 if (tickEvent.scheduled())
273 tickEvent.deschedule();
274
275 notIdleFraction--;
276 _status = Idle;
277}
278
279
280template <class T>
281Fault
282AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
283{
284 // use the CPU's statically allocated read request and packet objects
285 Request *req = data_read_req;
286 PacketPtr pkt = data_read_pkt;
287
288 req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
289
290 if (traceData) {
291 traceData->setAddr(addr);
292 }
293
294 // translate to physical address
295 Fault fault = thread->translateDataReadReq(req);
296
297 // Now do the access.
298 if (fault == NoFault) {
299 pkt->reinitFromRequest();
300
301 if (req->isMmapedIpr())
302 dcache_latency = TheISA::handleIprRead(thread->getTC(),pkt);
303 else
304 dcache_latency = dcachePort.sendAtomic(pkt);
305 dcache_access = true;
306#if !defined(NDEBUG)
307 if (pkt->result != Packet::Success)
308 panic("Unable to find responder for address pa = %#X va = %#X\n",
309 pkt->req->getPaddr(), pkt->req->getVaddr());
310#endif
311 data = pkt->get<T>();
312
313 if (req->isLocked()) {
314 TheISA::handleLockedRead(thread, req);
315 }
316 }
317
318 // This will need a new way to tell if it has a dcache attached.
319 if (req->isUncacheable())
320 recordEvent("Uncached Read");
321
322 return fault;
323}
324
325#ifndef DOXYGEN_SHOULD_SKIP_THIS
326
327template
328Fault
329AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
330
331template
332Fault
333AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
334
335template
336Fault
337AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
338
339template
340Fault
341AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
342
343template
344Fault
345AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
346
347template
348Fault
349AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
350
351#endif //DOXYGEN_SHOULD_SKIP_THIS
352
353template<>
354Fault
355AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
356{
357 return read(addr, *(uint64_t*)&data, flags);
358}
359
360template<>
361Fault
362AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
363{
364 return read(addr, *(uint32_t*)&data, flags);
365}
366
367
368template<>
369Fault
370AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
371{
372 return read(addr, (uint32_t&)data, flags);
373}
374
375
376template <class T>
377Fault
378AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
379{
380 // use the CPU's statically allocated write request and packet objects
381 Request *req = data_write_req;
382 PacketPtr pkt;
383
384 req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
385
386 if (req->isSwap())
387 pkt = data_swap_pkt;
388 else
389 pkt = data_write_pkt;
390
391 if (traceData) {
392 traceData->setAddr(addr);
393 }
394
395 // translate to physical address
396 Fault fault = thread->translateDataWriteReq(req);
397
398 // Now do the access.
399 if (fault == NoFault) {
400 bool do_access = true; // flag to suppress cache access
401
402 if (req->isLocked()) {
403 do_access = TheISA::handleLockedWrite(thread, req);
404 }
405 if (req->isCondSwap()) {
406 assert(res);
407 req->setExtraData(*res);
408 }
409
410
411 if (do_access) {
412 pkt->reinitFromRequest();
413 pkt->dataStatic(&data);
414
415 if (req->isMmapedIpr()) {
416 dcache_latency = TheISA::handleIprWrite(thread->getTC(), pkt);
417 } else {
418 data = htog(data);
419 dcache_latency = dcachePort.sendAtomic(pkt);
420 }
421 dcache_access = true;
422
423#if !defined(NDEBUG)
424 if (pkt->result != Packet::Success)
425 panic("Unable to find responder for address pa = %#X va = %#X\n",
426 pkt->req->getPaddr(), pkt->req->getVaddr());
427#endif
428 }
429
430 if (req->isSwap()) {
431 assert(res);
432 *res = pkt->get<T>();
433 } else if (res) {
434 *res = req->getExtraData();
435 }
436 }
437
438 // This will need a new way to tell if it's hooked up to a cache or not.
439 if (req->isUncacheable())
440 recordEvent("Uncached Write");
441
442 // If the write needs to have a fault on the access, consider calling
443 // changeStatus() and changing it to "bad addr write" or something.
444 return fault;
445}
446
447
448#ifndef DOXYGEN_SHOULD_SKIP_THIS
449
450template
451Fault
452AtomicSimpleCPU::write(Twin32_t data, Addr addr,
453 unsigned flags, uint64_t *res);
454
455template
456Fault
457AtomicSimpleCPU::write(Twin64_t data, Addr addr,
458 unsigned flags, uint64_t *res);
459
460template
461Fault
462AtomicSimpleCPU::write(uint64_t data, Addr addr,
463 unsigned flags, uint64_t *res);
464
465template
466Fault
467AtomicSimpleCPU::write(uint32_t data, Addr addr,
468 unsigned flags, uint64_t *res);
469
470template
471Fault
472AtomicSimpleCPU::write(uint16_t data, Addr addr,
473 unsigned flags, uint64_t *res);
474
475template
476Fault
477AtomicSimpleCPU::write(uint8_t data, Addr addr,
478 unsigned flags, uint64_t *res);
479
480#endif //DOXYGEN_SHOULD_SKIP_THIS
481
482template<>
483Fault
484AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
485{
486 return write(*(uint64_t*)&data, addr, flags, res);
487}
488
489template<>
490Fault
491AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
492{
493 return write(*(uint32_t*)&data, addr, flags, res);
494}
495
496
497template<>
498Fault
499AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
500{
501 return write((uint32_t)data, addr, flags, res);
502}
503
504
505void
506AtomicSimpleCPU::tick()
507{
508 Tick latency = cycles(1); // instruction takes one cycle by default
509
510 for (int i = 0; i < width; ++i) {
511 numCycles++;
512
513 if (!curStaticInst || !curStaticInst->isDelayedCommit())
514 checkForInterrupts();
515
516 Fault fault = setupFetchRequest(ifetch_req);
517
518 if (fault == NoFault) {
519 Tick icache_latency = 0;
520 bool icache_access = false;
521 dcache_access = false; // assume no dcache access
522
523 //Fetch more instruction memory if necessary
524 //if(predecoder.needMoreBytes())
525 //{
526 icache_access = true;
527 ifetch_pkt->reinitFromRequest();
528
529 icache_latency = icachePort.sendAtomic(ifetch_pkt);
530 // ifetch_req is initialized to read the instruction directly
531 // into the CPU object's inst field.
532 //}
533
534 preExecute();
535
536 if(curStaticInst)
537 {
538 fault = curStaticInst->execute(this, traceData);
539 postExecute();
540 }
541
542 // @todo remove me after debugging with legion done
543 if (curStaticInst && (!curStaticInst->isMicroop() ||
544 curStaticInst->isFirstMicroop()))
545 instCnt++;
546
547 if (simulate_stalls) {
548 Tick icache_stall =
549 icache_access ? icache_latency - cycles(1) : 0;
550 Tick dcache_stall =
551 dcache_access ? dcache_latency - cycles(1) : 0;
552 Tick stall_cycles = (icache_stall + dcache_stall) / cycles(1);
553 if (cycles(stall_cycles) < (icache_stall + dcache_stall))
554 latency += cycles(stall_cycles+1);
555 else
556 latency += cycles(stall_cycles);
557 }
558
559 }
560 if(fault != NoFault || !stayAtPC)
561 advancePC(fault);
562 }
563
564 if (_status != Idle)
565 tickEvent.schedule(curTick + latency);
566}
567
568
569////////////////////////////////////////////////////////////////////////
570//
571// AtomicSimpleCPU Simulation Object
572//
573AtomicSimpleCPU *
574AtomicSimpleCPUParams::create()
575{
576 AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
577 params->name = name;
578 params->numberOfThreads = 1;
579 params->max_insts_any_thread = max_insts_any_thread;
580 params->max_insts_all_threads = max_insts_all_threads;
581 params->max_loads_any_thread = max_loads_any_thread;
582 params->max_loads_all_threads = max_loads_all_threads;
583 params->progress_interval = progress_interval;
584 params->deferRegistration = defer_registration;
585 params->phase = phase;
586 params->clock = clock;
587 params->functionTrace = function_trace;
588 params->functionTraceStart = function_trace_start;
589 params->width = width;
590 params->simulate_stalls = simulate_stalls;
591 params->system = system;
592 params->cpu_id = cpu_id;
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/atomic.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/AtomicSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
46 : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
47{
48}
49
50
51void
52AtomicSimpleCPU::TickEvent::process()
53{
54 cpu->tick();
55}
56
57const char *
58AtomicSimpleCPU::TickEvent::description()
59{
60 return "AtomicSimpleCPU tick event";
61}
62
63Port *
64AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
65{
66 if (if_name == "dcache_port")
67 return &dcachePort;
68 else if (if_name == "icache_port")
69 return &icachePort;
70 else
71 panic("No Such Port\n");
72}
73
74void
75AtomicSimpleCPU::init()
76{
77 BaseCPU::init();
78#if FULL_SYSTEM
79 for (int i = 0; i < threadContexts.size(); ++i) {
80 ThreadContext *tc = threadContexts[i];
81
82 // initialize CPU, including PC
83 TheISA::initCPU(tc, tc->readCpuId());
84 }
85#endif
86}
87
88bool
89AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
90{
91 panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
92 return true;
93}
94
95Tick
96AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
97{
98 //Snooping a coherence request, just return
99 return 0;
100}
101
102void
103AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
104{
105 //No internal storage to update, just return
106 return;
107}
108
109void
110AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
111{
112 if (status == RangeChange) {
113 if (!snoopRangeSent) {
114 snoopRangeSent = true;
115 sendStatusChange(Port::RangeChange);
116 }
117 return;
118 }
119
120 panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
121}
122
123void
124AtomicSimpleCPU::CpuPort::recvRetry()
125{
126 panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
127}
128
129void
130AtomicSimpleCPU::DcachePort::setPeer(Port *port)
131{
132 Port::setPeer(port);
133
134#if FULL_SYSTEM
135 // Update the ThreadContext's memory ports (Functional/Virtual
136 // Ports)
137 cpu->tcBase()->connectMemPorts();
138#endif
139}
140
141AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
142 : BaseSimpleCPU(p), tickEvent(this),
143 width(p->width), simulate_stalls(p->simulate_stalls),
144 icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this)
145{
146 _status = Idle;
147
148 icachePort.snoopRangeSent = false;
149 dcachePort.snoopRangeSent = false;
150
151 ifetch_req = new Request();
152 ifetch_req->setThreadContext(p->cpu_id, 0); // Add thread ID if we add MT
153 ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
154 ifetch_pkt->dataStatic(&inst);
155
156 data_read_req = new Request();
157 data_read_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too
158 data_read_pkt = new Packet(data_read_req, MemCmd::ReadReq,
159 Packet::Broadcast);
160 data_read_pkt->dataStatic(&dataReg);
161
162 data_write_req = new Request();
163 data_write_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too
164 data_write_pkt = new Packet(data_write_req, MemCmd::WriteReq,
165 Packet::Broadcast);
166 data_swap_pkt = new Packet(data_write_req, MemCmd::SwapReq,
167 Packet::Broadcast);
168}
169
170
171AtomicSimpleCPU::~AtomicSimpleCPU()
172{
173}
174
175void
176AtomicSimpleCPU::serialize(ostream &os)
177{
178 SimObject::State so_state = SimObject::getState();
179 SERIALIZE_ENUM(so_state);
180 Status _status = status();
181 SERIALIZE_ENUM(_status);
182 BaseSimpleCPU::serialize(os);
183 nameOut(os, csprintf("%s.tickEvent", name()));
184 tickEvent.serialize(os);
185}
186
187void
188AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
189{
190 SimObject::State so_state;
191 UNSERIALIZE_ENUM(so_state);
192 UNSERIALIZE_ENUM(_status);
193 BaseSimpleCPU::unserialize(cp, section);
194 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
195}
196
197void
198AtomicSimpleCPU::resume()
199{
200 if (_status != SwitchedOut && _status != Idle) {
201 assert(system->getMemoryMode() == Enums::atomic);
202
203 changeState(SimObject::Running);
204 if (thread->status() == ThreadContext::Active) {
205 if (!tickEvent.scheduled()) {
206 tickEvent.schedule(nextCycle());
207 }
208 }
209 }
210}
211
212void
213AtomicSimpleCPU::switchOut()
214{
215 assert(status() == Running || status() == Idle);
216 _status = SwitchedOut;
217
218 tickEvent.squash();
219}
220
221
222void
223AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
224{
225 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
226
227 assert(!tickEvent.scheduled());
228
229 // if any of this CPU's ThreadContexts are active, mark the CPU as
230 // running and schedule its tick event.
231 for (int i = 0; i < threadContexts.size(); ++i) {
232 ThreadContext *tc = threadContexts[i];
233 if (tc->status() == ThreadContext::Active && _status != Running) {
234 _status = Running;
235 tickEvent.schedule(nextCycle());
236 break;
237 }
238 }
239 if (_status != Running) {
240 _status = Idle;
241 }
242}
243
244
245void
246AtomicSimpleCPU::activateContext(int thread_num, int delay)
247{
248 assert(thread_num == 0);
249 assert(thread);
250
251 assert(_status == Idle);
252 assert(!tickEvent.scheduled());
253
254 notIdleFraction++;
255
256 //Make sure ticks are still on multiples of cycles
257 tickEvent.schedule(nextCycle(curTick + cycles(delay)));
258 _status = Running;
259}
260
261
262void
263AtomicSimpleCPU::suspendContext(int thread_num)
264{
265 assert(thread_num == 0);
266 assert(thread);
267
268 assert(_status == Running);
269
270 // tick event may not be scheduled if this gets called from inside
271 // an instruction's execution, e.g. "quiesce"
272 if (tickEvent.scheduled())
273 tickEvent.deschedule();
274
275 notIdleFraction--;
276 _status = Idle;
277}
278
279
280template <class T>
281Fault
282AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
283{
284 // use the CPU's statically allocated read request and packet objects
285 Request *req = data_read_req;
286 PacketPtr pkt = data_read_pkt;
287
288 req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
289
290 if (traceData) {
291 traceData->setAddr(addr);
292 }
293
294 // translate to physical address
295 Fault fault = thread->translateDataReadReq(req);
296
297 // Now do the access.
298 if (fault == NoFault) {
299 pkt->reinitFromRequest();
300
301 if (req->isMmapedIpr())
302 dcache_latency = TheISA::handleIprRead(thread->getTC(),pkt);
303 else
304 dcache_latency = dcachePort.sendAtomic(pkt);
305 dcache_access = true;
306#if !defined(NDEBUG)
307 if (pkt->result != Packet::Success)
308 panic("Unable to find responder for address pa = %#X va = %#X\n",
309 pkt->req->getPaddr(), pkt->req->getVaddr());
310#endif
311 data = pkt->get<T>();
312
313 if (req->isLocked()) {
314 TheISA::handleLockedRead(thread, req);
315 }
316 }
317
318 // This will need a new way to tell if it has a dcache attached.
319 if (req->isUncacheable())
320 recordEvent("Uncached Read");
321
322 return fault;
323}
324
325#ifndef DOXYGEN_SHOULD_SKIP_THIS
326
327template
328Fault
329AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
330
331template
332Fault
333AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
334
335template
336Fault
337AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
338
339template
340Fault
341AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
342
343template
344Fault
345AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
346
347template
348Fault
349AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
350
351#endif //DOXYGEN_SHOULD_SKIP_THIS
352
353template<>
354Fault
355AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
356{
357 return read(addr, *(uint64_t*)&data, flags);
358}
359
360template<>
361Fault
362AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
363{
364 return read(addr, *(uint32_t*)&data, flags);
365}
366
367
368template<>
369Fault
370AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
371{
372 return read(addr, (uint32_t&)data, flags);
373}
374
375
376template <class T>
377Fault
378AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
379{
380 // use the CPU's statically allocated write request and packet objects
381 Request *req = data_write_req;
382 PacketPtr pkt;
383
384 req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
385
386 if (req->isSwap())
387 pkt = data_swap_pkt;
388 else
389 pkt = data_write_pkt;
390
391 if (traceData) {
392 traceData->setAddr(addr);
393 }
394
395 // translate to physical address
396 Fault fault = thread->translateDataWriteReq(req);
397
398 // Now do the access.
399 if (fault == NoFault) {
400 bool do_access = true; // flag to suppress cache access
401
402 if (req->isLocked()) {
403 do_access = TheISA::handleLockedWrite(thread, req);
404 }
405 if (req->isCondSwap()) {
406 assert(res);
407 req->setExtraData(*res);
408 }
409
410
411 if (do_access) {
412 pkt->reinitFromRequest();
413 pkt->dataStatic(&data);
414
415 if (req->isMmapedIpr()) {
416 dcache_latency = TheISA::handleIprWrite(thread->getTC(), pkt);
417 } else {
418 data = htog(data);
419 dcache_latency = dcachePort.sendAtomic(pkt);
420 }
421 dcache_access = true;
422
423#if !defined(NDEBUG)
424 if (pkt->result != Packet::Success)
425 panic("Unable to find responder for address pa = %#X va = %#X\n",
426 pkt->req->getPaddr(), pkt->req->getVaddr());
427#endif
428 }
429
430 if (req->isSwap()) {
431 assert(res);
432 *res = pkt->get<T>();
433 } else if (res) {
434 *res = req->getExtraData();
435 }
436 }
437
438 // This will need a new way to tell if it's hooked up to a cache or not.
439 if (req->isUncacheable())
440 recordEvent("Uncached Write");
441
442 // If the write needs to have a fault on the access, consider calling
443 // changeStatus() and changing it to "bad addr write" or something.
444 return fault;
445}
446
447
448#ifndef DOXYGEN_SHOULD_SKIP_THIS
449
450template
451Fault
452AtomicSimpleCPU::write(Twin32_t data, Addr addr,
453 unsigned flags, uint64_t *res);
454
455template
456Fault
457AtomicSimpleCPU::write(Twin64_t data, Addr addr,
458 unsigned flags, uint64_t *res);
459
460template
461Fault
462AtomicSimpleCPU::write(uint64_t data, Addr addr,
463 unsigned flags, uint64_t *res);
464
465template
466Fault
467AtomicSimpleCPU::write(uint32_t data, Addr addr,
468 unsigned flags, uint64_t *res);
469
470template
471Fault
472AtomicSimpleCPU::write(uint16_t data, Addr addr,
473 unsigned flags, uint64_t *res);
474
475template
476Fault
477AtomicSimpleCPU::write(uint8_t data, Addr addr,
478 unsigned flags, uint64_t *res);
479
480#endif //DOXYGEN_SHOULD_SKIP_THIS
481
482template<>
483Fault
484AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
485{
486 return write(*(uint64_t*)&data, addr, flags, res);
487}
488
489template<>
490Fault
491AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
492{
493 return write(*(uint32_t*)&data, addr, flags, res);
494}
495
496
497template<>
498Fault
499AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
500{
501 return write((uint32_t)data, addr, flags, res);
502}
503
504
505void
506AtomicSimpleCPU::tick()
507{
508 Tick latency = cycles(1); // instruction takes one cycle by default
509
510 for (int i = 0; i < width; ++i) {
511 numCycles++;
512
513 if (!curStaticInst || !curStaticInst->isDelayedCommit())
514 checkForInterrupts();
515
516 Fault fault = setupFetchRequest(ifetch_req);
517
518 if (fault == NoFault) {
519 Tick icache_latency = 0;
520 bool icache_access = false;
521 dcache_access = false; // assume no dcache access
522
523 //Fetch more instruction memory if necessary
524 //if(predecoder.needMoreBytes())
525 //{
526 icache_access = true;
527 ifetch_pkt->reinitFromRequest();
528
529 icache_latency = icachePort.sendAtomic(ifetch_pkt);
530 // ifetch_req is initialized to read the instruction directly
531 // into the CPU object's inst field.
532 //}
533
534 preExecute();
535
536 if(curStaticInst)
537 {
538 fault = curStaticInst->execute(this, traceData);
539 postExecute();
540 }
541
542 // @todo remove me after debugging with legion done
543 if (curStaticInst && (!curStaticInst->isMicroop() ||
544 curStaticInst->isFirstMicroop()))
545 instCnt++;
546
547 if (simulate_stalls) {
548 Tick icache_stall =
549 icache_access ? icache_latency - cycles(1) : 0;
550 Tick dcache_stall =
551 dcache_access ? dcache_latency - cycles(1) : 0;
552 Tick stall_cycles = (icache_stall + dcache_stall) / cycles(1);
553 if (cycles(stall_cycles) < (icache_stall + dcache_stall))
554 latency += cycles(stall_cycles+1);
555 else
556 latency += cycles(stall_cycles);
557 }
558
559 }
560 if(fault != NoFault || !stayAtPC)
561 advancePC(fault);
562 }
563
564 if (_status != Idle)
565 tickEvent.schedule(curTick + latency);
566}
567
568
569////////////////////////////////////////////////////////////////////////
570//
571// AtomicSimpleCPU Simulation Object
572//
573AtomicSimpleCPU *
574AtomicSimpleCPUParams::create()
575{
576 AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
577 params->name = name;
578 params->numberOfThreads = 1;
579 params->max_insts_any_thread = max_insts_any_thread;
580 params->max_insts_all_threads = max_insts_all_threads;
581 params->max_loads_any_thread = max_loads_any_thread;
582 params->max_loads_all_threads = max_loads_all_threads;
583 params->progress_interval = progress_interval;
584 params->deferRegistration = defer_registration;
585 params->phase = phase;
586 params->clock = clock;
587 params->functionTrace = function_trace;
588 params->functionTraceStart = function_trace_start;
589 params->width = width;
590 params->simulate_stalls = simulate_stalls;
591 params->system = system;
592 params->cpu_id = cpu_id;
593 params->tracer = tracer;
593
594#if FULL_SYSTEM
595 params->itb = itb;
596 params->dtb = dtb;
597 params->profile = profile;
598 params->do_quiesce = do_quiesce;
599 params->do_checkpoint_insts = do_checkpoint_insts;
600 params->do_statistics_insts = do_statistics_insts;
601#else
602 if (workload.size() != 1)
603 panic("only one workload allowed");
604 params->process = workload[0];
605#endif
606
607 AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
608 return cpu;
609}
594
595#if FULL_SYSTEM
596 params->itb = itb;
597 params->dtb = dtb;
598 params->profile = profile;
599 params->do_quiesce = do_quiesce;
600 params->do_checkpoint_insts = do_checkpoint_insts;
601 params->do_statistics_insts = do_statistics_insts;
602#else
603 if (workload.size() != 1)
604 panic("only one workload allowed");
605 params->process = workload[0];
606#endif
607
608 AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
609 return cpu;
610}