atomic.cc (3512:cefe7f965104) atomic.cc (3617:384e3b1eae06)
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/utility.hh"
33#include "cpu/exetrace.hh"
34#include "cpu/simple/atomic.hh"
35#include "mem/packet.hh"
36#include "mem/packet_access.hh"
37#include "sim/builder.hh"
38#include "sim/system.hh"
39
40using namespace std;
41using namespace TheISA;
42
43AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
44 : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
45{
46}
47
48
49void
50AtomicSimpleCPU::TickEvent::process()
51{
52 cpu->tick();
53}
54
55const char *
56AtomicSimpleCPU::TickEvent::description()
57{
58 return "AtomicSimpleCPU tick event";
59}
60
61Port *
62AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
63{
64 if (if_name == "dcache_port")
65 return &dcachePort;
66 else if (if_name == "icache_port")
67 return &icachePort;
68 else
69 panic("No Such Port\n");
70}
71
72void
73AtomicSimpleCPU::init()
74{
75 BaseCPU::init();
76#if FULL_SYSTEM
77 for (int i = 0; i < threadContexts.size(); ++i) {
78 ThreadContext *tc = threadContexts[i];
79
80 // initialize CPU, including PC
81 TheISA::initCPU(tc, tc->readCpuId());
82 }
83#endif
84}
85
86bool
87AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
88{
89 panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
90 return true;
91}
92
93Tick
94AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
95{
96 //Snooping a coherence request, just return
97 return curTick;
98}
99
100void
101AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
102{
103 //No internal storage to update, just return
104 return;
105}
106
107void
108AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
109{
110 if (status == RangeChange)
111 return;
112
113 panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
114}
115
116void
117AtomicSimpleCPU::CpuPort::recvRetry()
118{
119 panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
120}
121
122
123AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
124 : BaseSimpleCPU(p), tickEvent(this),
125 width(p->width), simulate_stalls(p->simulate_stalls),
126 icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this)
127{
128 _status = Idle;
129
130 ifetch_req = new Request();
131 ifetch_req->setThreadContext(p->cpu_id, 0); // Add thread ID if we add MT
132 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
133 ifetch_pkt->dataStatic(&inst);
134
135 data_read_req = new Request();
136 data_read_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too
137 data_read_pkt = new Packet(data_read_req, Packet::ReadReq,
138 Packet::Broadcast);
139 data_read_pkt->dataStatic(&dataReg);
140
141 data_write_req = new Request();
142 data_write_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too
143 data_write_pkt = new Packet(data_write_req, Packet::WriteReq,
144 Packet::Broadcast);
145}
146
147
148AtomicSimpleCPU::~AtomicSimpleCPU()
149{
150}
151
152void
153AtomicSimpleCPU::serialize(ostream &os)
154{
155 SimObject::State so_state = SimObject::getState();
156 SERIALIZE_ENUM(so_state);
157 Status _status = status();
158 SERIALIZE_ENUM(_status);
159 BaseSimpleCPU::serialize(os);
160 nameOut(os, csprintf("%s.tickEvent", name()));
161 tickEvent.serialize(os);
162}
163
164void
165AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
166{
167 SimObject::State so_state;
168 UNSERIALIZE_ENUM(so_state);
169 UNSERIALIZE_ENUM(_status);
170 BaseSimpleCPU::unserialize(cp, section);
171 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
172}
173
174void
175AtomicSimpleCPU::resume()
176{
177 if (_status != SwitchedOut && _status != Idle) {
178 assert(system->getMemoryMode() == System::Atomic);
179
180 changeState(SimObject::Running);
181 if (thread->status() == ThreadContext::Active) {
182 if (!tickEvent.scheduled()) {
183 tickEvent.schedule(nextCycle());
184 }
185 }
186 }
187}
188
189void
190AtomicSimpleCPU::switchOut()
191{
192 assert(status() == Running || status() == Idle);
193 _status = SwitchedOut;
194
195 tickEvent.squash();
196}
197
198
199void
200AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
201{
202 BaseCPU::takeOverFrom(oldCPU);
203
204 assert(!tickEvent.scheduled());
205
206 // if any of this CPU's ThreadContexts are active, mark the CPU as
207 // running and schedule its tick event.
208 for (int i = 0; i < threadContexts.size(); ++i) {
209 ThreadContext *tc = threadContexts[i];
210 if (tc->status() == ThreadContext::Active && _status != Running) {
211 _status = Running;
212 tickEvent.schedule(nextCycle());
213 break;
214 }
215 }
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/utility.hh"
33#include "cpu/exetrace.hh"
34#include "cpu/simple/atomic.hh"
35#include "mem/packet.hh"
36#include "mem/packet_access.hh"
37#include "sim/builder.hh"
38#include "sim/system.hh"
39
40using namespace std;
41using namespace TheISA;
42
43AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
44 : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
45{
46}
47
48
49void
50AtomicSimpleCPU::TickEvent::process()
51{
52 cpu->tick();
53}
54
55const char *
56AtomicSimpleCPU::TickEvent::description()
57{
58 return "AtomicSimpleCPU tick event";
59}
60
61Port *
62AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
63{
64 if (if_name == "dcache_port")
65 return &dcachePort;
66 else if (if_name == "icache_port")
67 return &icachePort;
68 else
69 panic("No Such Port\n");
70}
71
72void
73AtomicSimpleCPU::init()
74{
75 BaseCPU::init();
76#if FULL_SYSTEM
77 for (int i = 0; i < threadContexts.size(); ++i) {
78 ThreadContext *tc = threadContexts[i];
79
80 // initialize CPU, including PC
81 TheISA::initCPU(tc, tc->readCpuId());
82 }
83#endif
84}
85
86bool
87AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
88{
89 panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
90 return true;
91}
92
93Tick
94AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
95{
96 //Snooping a coherence request, just return
97 return curTick;
98}
99
100void
101AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
102{
103 //No internal storage to update, just return
104 return;
105}
106
107void
108AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
109{
110 if (status == RangeChange)
111 return;
112
113 panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
114}
115
116void
117AtomicSimpleCPU::CpuPort::recvRetry()
118{
119 panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
120}
121
122
123AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
124 : BaseSimpleCPU(p), tickEvent(this),
125 width(p->width), simulate_stalls(p->simulate_stalls),
126 icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this)
127{
128 _status = Idle;
129
130 ifetch_req = new Request();
131 ifetch_req->setThreadContext(p->cpu_id, 0); // Add thread ID if we add MT
132 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
133 ifetch_pkt->dataStatic(&inst);
134
135 data_read_req = new Request();
136 data_read_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too
137 data_read_pkt = new Packet(data_read_req, Packet::ReadReq,
138 Packet::Broadcast);
139 data_read_pkt->dataStatic(&dataReg);
140
141 data_write_req = new Request();
142 data_write_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too
143 data_write_pkt = new Packet(data_write_req, Packet::WriteReq,
144 Packet::Broadcast);
145}
146
147
148AtomicSimpleCPU::~AtomicSimpleCPU()
149{
150}
151
152void
153AtomicSimpleCPU::serialize(ostream &os)
154{
155 SimObject::State so_state = SimObject::getState();
156 SERIALIZE_ENUM(so_state);
157 Status _status = status();
158 SERIALIZE_ENUM(_status);
159 BaseSimpleCPU::serialize(os);
160 nameOut(os, csprintf("%s.tickEvent", name()));
161 tickEvent.serialize(os);
162}
163
164void
165AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
166{
167 SimObject::State so_state;
168 UNSERIALIZE_ENUM(so_state);
169 UNSERIALIZE_ENUM(_status);
170 BaseSimpleCPU::unserialize(cp, section);
171 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
172}
173
174void
175AtomicSimpleCPU::resume()
176{
177 if (_status != SwitchedOut && _status != Idle) {
178 assert(system->getMemoryMode() == System::Atomic);
179
180 changeState(SimObject::Running);
181 if (thread->status() == ThreadContext::Active) {
182 if (!tickEvent.scheduled()) {
183 tickEvent.schedule(nextCycle());
184 }
185 }
186 }
187}
188
189void
190AtomicSimpleCPU::switchOut()
191{
192 assert(status() == Running || status() == Idle);
193 _status = SwitchedOut;
194
195 tickEvent.squash();
196}
197
198
199void
200AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
201{
202 BaseCPU::takeOverFrom(oldCPU);
203
204 assert(!tickEvent.scheduled());
205
206 // if any of this CPU's ThreadContexts are active, mark the CPU as
207 // running and schedule its tick event.
208 for (int i = 0; i < threadContexts.size(); ++i) {
209 ThreadContext *tc = threadContexts[i];
210 if (tc->status() == ThreadContext::Active && _status != Running) {
211 _status = Running;
212 tickEvent.schedule(nextCycle());
213 break;
214 }
215 }
216 if (_status != Running) {
217 _status = Idle;
218 }
219}
220
221
222void
223AtomicSimpleCPU::activateContext(int thread_num, int delay)
224{
225 assert(thread_num == 0);
226 assert(thread);
227
228 assert(_status == Idle);
229 assert(!tickEvent.scheduled());
230
231 notIdleFraction++;
232 //Make sure ticks are still on multiples of cycles
233 tickEvent.schedule(nextCycle(curTick + cycles(delay)));
234 _status = Running;
235}
236
237
238void
239AtomicSimpleCPU::suspendContext(int thread_num)
240{
241 assert(thread_num == 0);
242 assert(thread);
243
244 assert(_status == Running);
245
246 // tick event may not be scheduled if this gets called from inside
247 // an instruction's execution, e.g. "quiesce"
248 if (tickEvent.scheduled())
249 tickEvent.deschedule();
250
251 notIdleFraction--;
252 _status = Idle;
253}
254
255
256template <class T>
257Fault
258AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
259{
260 // use the CPU's statically allocated read request and packet objects
261 Request *req = data_read_req;
262 PacketPtr pkt = data_read_pkt;
263
264 req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
265
266 if (traceData) {
267 traceData->setAddr(addr);
268 }
269
270 // translate to physical address
271 Fault fault = thread->translateDataReadReq(req);
272
273 // Now do the access.
274 if (fault == NoFault) {
275 pkt->reinitFromRequest();
276
277 dcache_latency = dcachePort.sendAtomic(pkt);
278 dcache_access = true;
279
280 assert(pkt->result == Packet::Success);
281 data = pkt->get<T>();
282
283 if (req->isLocked()) {
284 TheISA::handleLockedRead(thread, req);
285 }
286 }
287
288 // This will need a new way to tell if it has a dcache attached.
289 if (req->isUncacheable())
290 recordEvent("Uncached Read");
291
292 return fault;
293}
294
295#ifndef DOXYGEN_SHOULD_SKIP_THIS
296
297template
298Fault
299AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
300
301template
302Fault
303AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
304
305template
306Fault
307AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
308
309template
310Fault
311AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
312
313#endif //DOXYGEN_SHOULD_SKIP_THIS
314
315template<>
316Fault
317AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
318{
319 return read(addr, *(uint64_t*)&data, flags);
320}
321
322template<>
323Fault
324AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
325{
326 return read(addr, *(uint32_t*)&data, flags);
327}
328
329
330template<>
331Fault
332AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
333{
334 return read(addr, (uint32_t&)data, flags);
335}
336
337
338template <class T>
339Fault
340AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
341{
342 // use the CPU's statically allocated write request and packet objects
343 Request *req = data_write_req;
344 PacketPtr pkt = data_write_pkt;
345
346 req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
347
348 if (traceData) {
349 traceData->setAddr(addr);
350 }
351
352 // translate to physical address
353 Fault fault = thread->translateDataWriteReq(req);
354
355 // Now do the access.
356 if (fault == NoFault) {
357 bool do_access = true; // flag to suppress cache access
358
359 if (req->isLocked()) {
360 do_access = TheISA::handleLockedWrite(thread, req);
361 }
362
363 if (do_access) {
364 data = htog(data);
365 pkt->reinitFromRequest();
366 pkt->dataStatic(&data);
367
368 dcache_latency = dcachePort.sendAtomic(pkt);
369 dcache_access = true;
370
371 assert(pkt->result == Packet::Success);
372 }
373
374 if (req->isLocked()) {
375 uint64_t scResult = req->getScResult();
376 if (scResult != 0) {
377 // clear failure counter
378 thread->setStCondFailures(0);
379 }
380 if (res) {
381 *res = req->getScResult();
382 }
383 }
384 }
385
386 // This will need a new way to tell if it's hooked up to a cache or not.
387 if (req->isUncacheable())
388 recordEvent("Uncached Write");
389
390 // If the write needs to have a fault on the access, consider calling
391 // changeStatus() and changing it to "bad addr write" or something.
392 return fault;
393}
394
395
396#ifndef DOXYGEN_SHOULD_SKIP_THIS
397template
398Fault
399AtomicSimpleCPU::write(uint64_t data, Addr addr,
400 unsigned flags, uint64_t *res);
401
402template
403Fault
404AtomicSimpleCPU::write(uint32_t data, Addr addr,
405 unsigned flags, uint64_t *res);
406
407template
408Fault
409AtomicSimpleCPU::write(uint16_t data, Addr addr,
410 unsigned flags, uint64_t *res);
411
412template
413Fault
414AtomicSimpleCPU::write(uint8_t data, Addr addr,
415 unsigned flags, uint64_t *res);
416
417#endif //DOXYGEN_SHOULD_SKIP_THIS
418
419template<>
420Fault
421AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
422{
423 return write(*(uint64_t*)&data, addr, flags, res);
424}
425
426template<>
427Fault
428AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
429{
430 return write(*(uint32_t*)&data, addr, flags, res);
431}
432
433
434template<>
435Fault
436AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
437{
438 return write((uint32_t)data, addr, flags, res);
439}
440
441
442void
443AtomicSimpleCPU::tick()
444{
445 Tick latency = cycles(1); // instruction takes one cycle by default
446
447 for (int i = 0; i < width; ++i) {
448 numCycles++;
449
450 if (!curStaticInst || !curStaticInst->isDelayedCommit())
451 checkForInterrupts();
452
453 Fault fault = setupFetchRequest(ifetch_req);
454
455 if (fault == NoFault) {
456 ifetch_pkt->reinitFromRequest();
457
458 Tick icache_latency = icachePort.sendAtomic(ifetch_pkt);
459 // ifetch_req is initialized to read the instruction directly
460 // into the CPU object's inst field.
461
462 dcache_access = false; // assume no dcache access
463 preExecute();
464 fault = curStaticInst->execute(this, traceData);
465 postExecute();
466
467 if (simulate_stalls) {
468 Tick icache_stall = icache_latency - cycles(1);
469 Tick dcache_stall =
470 dcache_access ? dcache_latency - cycles(1) : 0;
471 Tick stall_cycles = (icache_stall + dcache_stall) / cycles(1);
472 if (cycles(stall_cycles) < (icache_stall + dcache_stall))
473 latency += cycles(stall_cycles+1);
474 else
475 latency += cycles(stall_cycles);
476 }
477
478 }
479
480 advancePC(fault);
481 }
482
483 if (_status != Idle)
484 tickEvent.schedule(curTick + latency);
485}
486
487
488////////////////////////////////////////////////////////////////////////
489//
490// AtomicSimpleCPU Simulation Object
491//
492BEGIN_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
493
494 Param<Counter> max_insts_any_thread;
495 Param<Counter> max_insts_all_threads;
496 Param<Counter> max_loads_any_thread;
497 Param<Counter> max_loads_all_threads;
498 Param<Tick> progress_interval;
499 SimObjectParam<System *> system;
500 Param<int> cpu_id;
501
502#if FULL_SYSTEM
503 SimObjectParam<TheISA::ITB *> itb;
504 SimObjectParam<TheISA::DTB *> dtb;
505 Param<Tick> profile;
216}
217
218
219void
220AtomicSimpleCPU::activateContext(int thread_num, int delay)
221{
222 assert(thread_num == 0);
223 assert(thread);
224
225 assert(_status == Idle);
226 assert(!tickEvent.scheduled());
227
228 notIdleFraction++;
229 //Make sure ticks are still on multiples of cycles
230 tickEvent.schedule(nextCycle(curTick + cycles(delay)));
231 _status = Running;
232}
233
234
235void
236AtomicSimpleCPU::suspendContext(int thread_num)
237{
238 assert(thread_num == 0);
239 assert(thread);
240
241 assert(_status == Running);
242
243 // tick event may not be scheduled if this gets called from inside
244 // an instruction's execution, e.g. "quiesce"
245 if (tickEvent.scheduled())
246 tickEvent.deschedule();
247
248 notIdleFraction--;
249 _status = Idle;
250}
251
252
253template <class T>
254Fault
255AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
256{
257 // use the CPU's statically allocated read request and packet objects
258 Request *req = data_read_req;
259 PacketPtr pkt = data_read_pkt;
260
261 req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
262
263 if (traceData) {
264 traceData->setAddr(addr);
265 }
266
267 // translate to physical address
268 Fault fault = thread->translateDataReadReq(req);
269
270 // Now do the access.
271 if (fault == NoFault) {
272 pkt->reinitFromRequest();
273
274 dcache_latency = dcachePort.sendAtomic(pkt);
275 dcache_access = true;
276
277 assert(pkt->result == Packet::Success);
278 data = pkt->get<T>();
279
280 if (req->isLocked()) {
281 TheISA::handleLockedRead(thread, req);
282 }
283 }
284
285 // This will need a new way to tell if it has a dcache attached.
286 if (req->isUncacheable())
287 recordEvent("Uncached Read");
288
289 return fault;
290}
291
292#ifndef DOXYGEN_SHOULD_SKIP_THIS
293
294template
295Fault
296AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
297
298template
299Fault
300AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
301
302template
303Fault
304AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
305
306template
307Fault
308AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
309
310#endif //DOXYGEN_SHOULD_SKIP_THIS
311
312template<>
313Fault
314AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
315{
316 return read(addr, *(uint64_t*)&data, flags);
317}
318
319template<>
320Fault
321AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
322{
323 return read(addr, *(uint32_t*)&data, flags);
324}
325
326
327template<>
328Fault
329AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
330{
331 return read(addr, (uint32_t&)data, flags);
332}
333
334
335template <class T>
336Fault
337AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
338{
339 // use the CPU's statically allocated write request and packet objects
340 Request *req = data_write_req;
341 PacketPtr pkt = data_write_pkt;
342
343 req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
344
345 if (traceData) {
346 traceData->setAddr(addr);
347 }
348
349 // translate to physical address
350 Fault fault = thread->translateDataWriteReq(req);
351
352 // Now do the access.
353 if (fault == NoFault) {
354 bool do_access = true; // flag to suppress cache access
355
356 if (req->isLocked()) {
357 do_access = TheISA::handleLockedWrite(thread, req);
358 }
359
360 if (do_access) {
361 data = htog(data);
362 pkt->reinitFromRequest();
363 pkt->dataStatic(&data);
364
365 dcache_latency = dcachePort.sendAtomic(pkt);
366 dcache_access = true;
367
368 assert(pkt->result == Packet::Success);
369 }
370
371 if (req->isLocked()) {
372 uint64_t scResult = req->getScResult();
373 if (scResult != 0) {
374 // clear failure counter
375 thread->setStCondFailures(0);
376 }
377 if (res) {
378 *res = req->getScResult();
379 }
380 }
381 }
382
383 // This will need a new way to tell if it's hooked up to a cache or not.
384 if (req->isUncacheable())
385 recordEvent("Uncached Write");
386
387 // If the write needs to have a fault on the access, consider calling
388 // changeStatus() and changing it to "bad addr write" or something.
389 return fault;
390}
391
392
393#ifndef DOXYGEN_SHOULD_SKIP_THIS
394template
395Fault
396AtomicSimpleCPU::write(uint64_t data, Addr addr,
397 unsigned flags, uint64_t *res);
398
399template
400Fault
401AtomicSimpleCPU::write(uint32_t data, Addr addr,
402 unsigned flags, uint64_t *res);
403
404template
405Fault
406AtomicSimpleCPU::write(uint16_t data, Addr addr,
407 unsigned flags, uint64_t *res);
408
409template
410Fault
411AtomicSimpleCPU::write(uint8_t data, Addr addr,
412 unsigned flags, uint64_t *res);
413
414#endif //DOXYGEN_SHOULD_SKIP_THIS
415
416template<>
417Fault
418AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
419{
420 return write(*(uint64_t*)&data, addr, flags, res);
421}
422
423template<>
424Fault
425AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
426{
427 return write(*(uint32_t*)&data, addr, flags, res);
428}
429
430
431template<>
432Fault
433AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
434{
435 return write((uint32_t)data, addr, flags, res);
436}
437
438
439void
440AtomicSimpleCPU::tick()
441{
442 Tick latency = cycles(1); // instruction takes one cycle by default
443
444 for (int i = 0; i < width; ++i) {
445 numCycles++;
446
447 if (!curStaticInst || !curStaticInst->isDelayedCommit())
448 checkForInterrupts();
449
450 Fault fault = setupFetchRequest(ifetch_req);
451
452 if (fault == NoFault) {
453 ifetch_pkt->reinitFromRequest();
454
455 Tick icache_latency = icachePort.sendAtomic(ifetch_pkt);
456 // ifetch_req is initialized to read the instruction directly
457 // into the CPU object's inst field.
458
459 dcache_access = false; // assume no dcache access
460 preExecute();
461 fault = curStaticInst->execute(this, traceData);
462 postExecute();
463
464 if (simulate_stalls) {
465 Tick icache_stall = icache_latency - cycles(1);
466 Tick dcache_stall =
467 dcache_access ? dcache_latency - cycles(1) : 0;
468 Tick stall_cycles = (icache_stall + dcache_stall) / cycles(1);
469 if (cycles(stall_cycles) < (icache_stall + dcache_stall))
470 latency += cycles(stall_cycles+1);
471 else
472 latency += cycles(stall_cycles);
473 }
474
475 }
476
477 advancePC(fault);
478 }
479
480 if (_status != Idle)
481 tickEvent.schedule(curTick + latency);
482}
483
484
485////////////////////////////////////////////////////////////////////////
486//
487// AtomicSimpleCPU Simulation Object
488//
489BEGIN_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
490
491 Param<Counter> max_insts_any_thread;
492 Param<Counter> max_insts_all_threads;
493 Param<Counter> max_loads_any_thread;
494 Param<Counter> max_loads_all_threads;
495 Param<Tick> progress_interval;
496 SimObjectParam<System *> system;
497 Param<int> cpu_id;
498
499#if FULL_SYSTEM
500 SimObjectParam<TheISA::ITB *> itb;
501 SimObjectParam<TheISA::DTB *> dtb;
502 Param<Tick> profile;
503
504 Param<bool> do_quiesce;
505 Param<bool> do_checkpoint_insts;
506 Param<bool> do_statistics_insts;
506#else
507 SimObjectParam<Process *> workload;
508#endif // FULL_SYSTEM
509
510 Param<int> clock;
511
512 Param<bool> defer_registration;
513 Param<int> width;
514 Param<bool> function_trace;
515 Param<Tick> function_trace_start;
516 Param<bool> simulate_stalls;
517
518END_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
519
520BEGIN_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
521
522 INIT_PARAM(max_insts_any_thread,
523 "terminate when any thread reaches this inst count"),
524 INIT_PARAM(max_insts_all_threads,
525 "terminate when all threads have reached this inst count"),
526 INIT_PARAM(max_loads_any_thread,
527 "terminate when any thread reaches this load count"),
528 INIT_PARAM(max_loads_all_threads,
529 "terminate when all threads have reached this load count"),
530 INIT_PARAM(progress_interval, "Progress interval"),
531 INIT_PARAM(system, "system object"),
532 INIT_PARAM(cpu_id, "processor ID"),
533
534#if FULL_SYSTEM
535 INIT_PARAM(itb, "Instruction TLB"),
536 INIT_PARAM(dtb, "Data TLB"),
537 INIT_PARAM(profile, ""),
507#else
508 SimObjectParam<Process *> workload;
509#endif // FULL_SYSTEM
510
511 Param<int> clock;
512
513 Param<bool> defer_registration;
514 Param<int> width;
515 Param<bool> function_trace;
516 Param<Tick> function_trace_start;
517 Param<bool> simulate_stalls;
518
519END_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
520
521BEGIN_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
522
523 INIT_PARAM(max_insts_any_thread,
524 "terminate when any thread reaches this inst count"),
525 INIT_PARAM(max_insts_all_threads,
526 "terminate when all threads have reached this inst count"),
527 INIT_PARAM(max_loads_any_thread,
528 "terminate when any thread reaches this load count"),
529 INIT_PARAM(max_loads_all_threads,
530 "terminate when all threads have reached this load count"),
531 INIT_PARAM(progress_interval, "Progress interval"),
532 INIT_PARAM(system, "system object"),
533 INIT_PARAM(cpu_id, "processor ID"),
534
535#if FULL_SYSTEM
536 INIT_PARAM(itb, "Instruction TLB"),
537 INIT_PARAM(dtb, "Data TLB"),
538 INIT_PARAM(profile, ""),
539 INIT_PARAM(do_quiesce, ""),
540 INIT_PARAM(do_checkpoint_insts, ""),
541 INIT_PARAM(do_statistics_insts, ""),
538#else
539 INIT_PARAM(workload, "processes to run"),
540#endif // FULL_SYSTEM
541
542 INIT_PARAM(clock, "clock speed"),
543 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
544 INIT_PARAM(width, "cpu width"),
545 INIT_PARAM(function_trace, "Enable function trace"),
546 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
547 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
548
549END_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
550
551
552CREATE_SIM_OBJECT(AtomicSimpleCPU)
553{
554 AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
555 params->name = getInstanceName();
556 params->numberOfThreads = 1;
557 params->max_insts_any_thread = max_insts_any_thread;
558 params->max_insts_all_threads = max_insts_all_threads;
559 params->max_loads_any_thread = max_loads_any_thread;
560 params->max_loads_all_threads = max_loads_all_threads;
561 params->progress_interval = progress_interval;
562 params->deferRegistration = defer_registration;
563 params->clock = clock;
564 params->functionTrace = function_trace;
565 params->functionTraceStart = function_trace_start;
566 params->width = width;
567 params->simulate_stalls = simulate_stalls;
568 params->system = system;
569 params->cpu_id = cpu_id;
570
571#if FULL_SYSTEM
572 params->itb = itb;
573 params->dtb = dtb;
574 params->profile = profile;
542#else
543 INIT_PARAM(workload, "processes to run"),
544#endif // FULL_SYSTEM
545
546 INIT_PARAM(clock, "clock speed"),
547 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
548 INIT_PARAM(width, "cpu width"),
549 INIT_PARAM(function_trace, "Enable function trace"),
550 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
551 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
552
553END_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
554
555
556CREATE_SIM_OBJECT(AtomicSimpleCPU)
557{
558 AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
559 params->name = getInstanceName();
560 params->numberOfThreads = 1;
561 params->max_insts_any_thread = max_insts_any_thread;
562 params->max_insts_all_threads = max_insts_all_threads;
563 params->max_loads_any_thread = max_loads_any_thread;
564 params->max_loads_all_threads = max_loads_all_threads;
565 params->progress_interval = progress_interval;
566 params->deferRegistration = defer_registration;
567 params->clock = clock;
568 params->functionTrace = function_trace;
569 params->functionTraceStart = function_trace_start;
570 params->width = width;
571 params->simulate_stalls = simulate_stalls;
572 params->system = system;
573 params->cpu_id = cpu_id;
574
575#if FULL_SYSTEM
576 params->itb = itb;
577 params->dtb = dtb;
578 params->profile = profile;
579 params->do_quiesce = do_quiesce;
580 params->do_checkpoint_insts = do_checkpoint_insts;
581 params->do_statistics_insts = do_statistics_insts;
575#else
576 params->process = workload;
577#endif
578
579 AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
580 return cpu;
581}
582
583REGISTER_SIM_OBJECT("AtomicSimpleCPU", AtomicSimpleCPU)
584
582#else
583 params->process = workload;
584#endif
585
586 AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
587 return cpu;
588}
589
590REGISTER_SIM_OBJECT("AtomicSimpleCPU", AtomicSimpleCPU)
591