atomic.cc (10563:755b18321206) atomic.cc (10596:1eec33d2fc52)
1/*
1/*
2 * Copyright 2014 Google, Inc.
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "base/output.hh"
48#include "config/the_isa.hh"
49#include "cpu/simple/atomic.hh"
50#include "cpu/exetrace.hh"
51#include "debug/Drain.hh"
52#include "debug/ExecFaulting.hh"
53#include "debug/SimpleCPU.hh"
54#include "mem/packet.hh"
55#include "mem/packet_access.hh"
56#include "mem/physical.hh"
57#include "params/AtomicSimpleCPU.hh"
58#include "sim/faults.hh"
59#include "sim/system.hh"
60#include "sim/full_system.hh"
61
62using namespace std;
63using namespace TheISA;
64
65AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
66 : Event(CPU_Tick_Pri), cpu(c)
67{
68}
69
70
71void
72AtomicSimpleCPU::TickEvent::process()
73{
74 cpu->tick();
75}
76
77const char *
78AtomicSimpleCPU::TickEvent::description() const
79{
80 return "AtomicSimpleCPU tick";
81}
82
83void
84AtomicSimpleCPU::init()
85{
86 BaseCPU::init();
87
88 // Initialise the ThreadContext's memory proxies
89 tcBase()->initMemProxies(tcBase());
90
91 if (FullSystem && !params()->switched_out) {
92 ThreadID size = threadContexts.size();
93 for (ThreadID i = 0; i < size; ++i) {
94 ThreadContext *tc = threadContexts[i];
95 // initialize CPU, including PC
96 TheISA::initCPU(tc, tc->contextId());
97 }
98 }
99
100 // Atomic doesn't do MT right now, so contextId == threadId
101 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
102 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
103 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
104}
105
106AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
107 : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
108 simulate_data_stalls(p->simulate_data_stalls),
109 simulate_inst_stalls(p->simulate_inst_stalls),
110 drain_manager(NULL),
111 icachePort(name() + ".icache_port", this),
112 dcachePort(name() + ".dcache_port", this),
113 fastmem(p->fastmem), dcache_access(false), dcache_latency(0),
114 ppCommit(nullptr)
115{
116 _status = Idle;
117}
118
119
120AtomicSimpleCPU::~AtomicSimpleCPU()
121{
122 if (tickEvent.scheduled()) {
123 deschedule(tickEvent);
124 }
125}
126
127unsigned int
128AtomicSimpleCPU::drain(DrainManager *dm)
129{
130 assert(!drain_manager);
131 if (switchedOut())
132 return 0;
133
134 if (!isDrained()) {
135 DPRINTF(Drain, "Requesting drain: %s\n", pcState());
136 drain_manager = dm;
137 return 1;
138 } else {
139 if (tickEvent.scheduled())
140 deschedule(tickEvent);
141
142 DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
143 return 0;
144 }
145}
146
147void
148AtomicSimpleCPU::drainResume()
149{
150 assert(!tickEvent.scheduled());
151 assert(!drain_manager);
152 if (switchedOut())
153 return;
154
155 DPRINTF(SimpleCPU, "Resume\n");
156 verifyMemoryMode();
157
158 assert(!threadContexts.empty());
159 if (threadContexts.size() > 1)
160 fatal("The atomic CPU only supports one thread.\n");
161
162 if (thread->status() == ThreadContext::Active) {
163 schedule(tickEvent, nextCycle());
164 _status = BaseSimpleCPU::Running;
165 notIdleFraction = 1;
166 } else {
167 _status = BaseSimpleCPU::Idle;
168 notIdleFraction = 0;
169 }
170
171 system->totalNumInsts = 0;
172}
173
174bool
175AtomicSimpleCPU::tryCompleteDrain()
176{
177 if (!drain_manager)
178 return false;
179
180 DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
181 if (!isDrained())
182 return false;
183
184 DPRINTF(Drain, "CPU done draining, processing drain event\n");
185 drain_manager->signalDrainDone();
186 drain_manager = NULL;
187
188 return true;
189}
190
191
192void
193AtomicSimpleCPU::switchOut()
194{
195 BaseSimpleCPU::switchOut();
196
197 assert(!tickEvent.scheduled());
198 assert(_status == BaseSimpleCPU::Running || _status == Idle);
199 assert(isDrained());
200}
201
202
203void
204AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
205{
206 BaseSimpleCPU::takeOverFrom(oldCPU);
207
208 // The tick event should have been descheduled by drain()
209 assert(!tickEvent.scheduled());
210
211 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
212 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
213 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
214}
215
216void
217AtomicSimpleCPU::verifyMemoryMode() const
218{
219 if (!system->isAtomicMode()) {
220 fatal("The atomic CPU requires the memory system to be in "
221 "'atomic' mode.\n");
222 }
223}
224
225void
226AtomicSimpleCPU::activateContext(ThreadID thread_num)
227{
228 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
229
230 assert(thread_num == 0);
231 assert(thread);
232
233 assert(_status == Idle);
234 assert(!tickEvent.scheduled());
235
236 notIdleFraction = 1;
237 Cycles delta = ticksToCycles(thread->lastActivate - thread->lastSuspend);
238 numCycles += delta;
239 ppCycles->notify(delta);
240
241 //Make sure ticks are still on multiples of cycles
242 schedule(tickEvent, clockEdge(Cycles(0)));
243 _status = BaseSimpleCPU::Running;
244}
245
246
247void
248AtomicSimpleCPU::suspendContext(ThreadID thread_num)
249{
250 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
251
252 assert(thread_num == 0);
253 assert(thread);
254
255 if (_status == Idle)
256 return;
257
258 assert(_status == BaseSimpleCPU::Running);
259
260 // tick event may not be scheduled if this gets called from inside
261 // an instruction's execution, e.g. "quiesce"
262 if (tickEvent.scheduled())
263 deschedule(tickEvent);
264
265 notIdleFraction = 0;
266 _status = Idle;
267}
268
269
270Tick
271AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt)
272{
273 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
274 pkt->cmdString());
275
276 // X86 ISA: Snooping an invalidation for monitor/mwait
277 AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
278 if(cpu->getAddrMonitor()->doMonitor(pkt)) {
279 cpu->wakeup();
280 }
281
282 // if snoop invalidates, release any associated locks
283 if (pkt->isInvalidate()) {
284 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
285 pkt->getAddr());
286 TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask);
287 }
288
289 return 0;
290}
291
292void
293AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt)
294{
295 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
296 pkt->cmdString());
297
298 // X86 ISA: Snooping an invalidation for monitor/mwait
299 AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
300 if(cpu->getAddrMonitor()->doMonitor(pkt)) {
301 cpu->wakeup();
302 }
303
304 // if snoop invalidates, release any associated locks
305 if (pkt->isInvalidate()) {
306 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
307 pkt->getAddr());
308 TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask);
309 }
310}
311
312Fault
313AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
314 unsigned size, unsigned flags)
315{
316 // use the CPU's statically allocated read request and packet objects
317 Request *req = &data_read_req;
318
319 if (traceData) {
320 traceData->setAddr(addr);
321 }
322
323 //The size of the data we're trying to read.
324 int fullSize = size;
325
326 //The address of the second part of this access if it needs to be split
327 //across a cache line boundary.
328 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
329
330 if (secondAddr > addr)
331 size = secondAddr - addr;
332
333 dcache_latency = 0;
334
335 req->taskId(taskId());
336 while (1) {
337 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
338
339 // translate to physical address
340 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
341
342 // Now do the access.
343 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
344 Packet pkt(req, MemCmd::ReadReq);
345 pkt.refineCommand();
346 pkt.dataStatic(data);
347
348 if (req->isMmappedIpr())
349 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
350 else {
351 if (fastmem && system->isMemAddr(pkt.getAddr()))
352 system->getPhysMem().access(&pkt);
353 else
354 dcache_latency += dcachePort.sendAtomic(&pkt);
355 }
356 dcache_access = true;
357
358 assert(!pkt.isError());
359
360 if (req->isLLSC()) {
361 TheISA::handleLockedRead(thread, req);
362 }
363 }
364
365 //If there's a fault, return it
366 if (fault != NoFault) {
367 if (req->isPrefetch()) {
368 return NoFault;
369 } else {
370 return fault;
371 }
372 }
373
374 //If we don't need to access a second cache line, stop now.
375 if (secondAddr <= addr)
376 {
377 if (req->isLocked() && fault == NoFault) {
378 assert(!locked);
379 locked = true;
380 }
381 return fault;
382 }
383
384 /*
385 * Set up for accessing the second cache line.
386 */
387
388 //Move the pointer we're reading into to the correct location.
389 data += size;
390 //Adjust the size to get the remaining bytes.
391 size = addr + fullSize - secondAddr;
392 //And access the right address.
393 addr = secondAddr;
394 }
395}
396
397
398Fault
399AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
400 Addr addr, unsigned flags, uint64_t *res)
401{
402
403 static uint8_t zero_array[64] = {};
404
405 if (data == NULL) {
406 assert(size <= 64);
407 assert(flags & Request::CACHE_BLOCK_ZERO);
408 // This must be a cache block cleaning request
409 data = zero_array;
410 }
411
412 // use the CPU's statically allocated write request and packet objects
413 Request *req = &data_write_req;
414
415 if (traceData) {
416 traceData->setAddr(addr);
417 }
418
419 //The size of the data we're trying to read.
420 int fullSize = size;
421
422 //The address of the second part of this access if it needs to be split
423 //across a cache line boundary.
424 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
425
426 if(secondAddr > addr)
427 size = secondAddr - addr;
428
429 dcache_latency = 0;
430
431 req->taskId(taskId());
432 while(1) {
433 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
434
435 // translate to physical address
436 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
437
438 // Now do the access.
439 if (fault == NoFault) {
440 MemCmd cmd = MemCmd::WriteReq; // default
441 bool do_access = true; // flag to suppress cache access
442
443 if (req->isLLSC()) {
444 cmd = MemCmd::StoreCondReq;
445 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
446 } else if (req->isSwap()) {
447 cmd = MemCmd::SwapReq;
448 if (req->isCondSwap()) {
449 assert(res);
450 req->setExtraData(*res);
451 }
452 }
453
454 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
455 Packet pkt = Packet(req, cmd);
456 pkt.dataStatic(data);
457
458 if (req->isMmappedIpr()) {
459 dcache_latency +=
460 TheISA::handleIprWrite(thread->getTC(), &pkt);
461 } else {
462 if (fastmem && system->isMemAddr(pkt.getAddr()))
463 system->getPhysMem().access(&pkt);
464 else
465 dcache_latency += dcachePort.sendAtomic(&pkt);
466 }
467 dcache_access = true;
468 assert(!pkt.isError());
469
470 if (req->isSwap()) {
471 assert(res);
472 memcpy(res, pkt.getConstPtr<uint8_t>(), fullSize);
473 }
474 }
475
476 if (res && !req->isSwap()) {
477 *res = req->getExtraData();
478 }
479 }
480
481 //If there's a fault or we don't need to access a second cache line,
482 //stop now.
483 if (fault != NoFault || secondAddr <= addr)
484 {
485 if (req->isLocked() && fault == NoFault) {
486 assert(locked);
487 locked = false;
488 }
489 if (fault != NoFault && req->isPrefetch()) {
490 return NoFault;
491 } else {
492 return fault;
493 }
494 }
495
496 /*
497 * Set up for accessing the second cache line.
498 */
499
500 //Move the pointer we're reading into to the correct location.
501 data += size;
502 //Adjust the size to get the remaining bytes.
503 size = addr + fullSize - secondAddr;
504 //And access the right address.
505 addr = secondAddr;
506 }
507}
508
509
510void
511AtomicSimpleCPU::tick()
512{
513 DPRINTF(SimpleCPU, "Tick\n");
514
515 Tick latency = 0;
516
517 for (int i = 0; i < width || locked; ++i) {
518 numCycles++;
519 ppCycles->notify(1);
520
3 * Copyright (c) 2012-2013 ARM Limited
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "arch/locked_mem.hh"
45#include "arch/mmapped_ipr.hh"
46#include "arch/utility.hh"
47#include "base/bigint.hh"
48#include "base/output.hh"
49#include "config/the_isa.hh"
50#include "cpu/simple/atomic.hh"
51#include "cpu/exetrace.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/SimpleCPU.hh"
55#include "mem/packet.hh"
56#include "mem/packet_access.hh"
57#include "mem/physical.hh"
58#include "params/AtomicSimpleCPU.hh"
59#include "sim/faults.hh"
60#include "sim/system.hh"
61#include "sim/full_system.hh"
62
63using namespace std;
64using namespace TheISA;
65
66AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
67 : Event(CPU_Tick_Pri), cpu(c)
68{
69}
70
71
72void
73AtomicSimpleCPU::TickEvent::process()
74{
75 cpu->tick();
76}
77
78const char *
79AtomicSimpleCPU::TickEvent::description() const
80{
81 return "AtomicSimpleCPU tick";
82}
83
84void
85AtomicSimpleCPU::init()
86{
87 BaseCPU::init();
88
89 // Initialise the ThreadContext's memory proxies
90 tcBase()->initMemProxies(tcBase());
91
92 if (FullSystem && !params()->switched_out) {
93 ThreadID size = threadContexts.size();
94 for (ThreadID i = 0; i < size; ++i) {
95 ThreadContext *tc = threadContexts[i];
96 // initialize CPU, including PC
97 TheISA::initCPU(tc, tc->contextId());
98 }
99 }
100
101 // Atomic doesn't do MT right now, so contextId == threadId
102 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
103 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
104 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
105}
106
107AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
108 : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
109 simulate_data_stalls(p->simulate_data_stalls),
110 simulate_inst_stalls(p->simulate_inst_stalls),
111 drain_manager(NULL),
112 icachePort(name() + ".icache_port", this),
113 dcachePort(name() + ".dcache_port", this),
114 fastmem(p->fastmem), dcache_access(false), dcache_latency(0),
115 ppCommit(nullptr)
116{
117 _status = Idle;
118}
119
120
121AtomicSimpleCPU::~AtomicSimpleCPU()
122{
123 if (tickEvent.scheduled()) {
124 deschedule(tickEvent);
125 }
126}
127
128unsigned int
129AtomicSimpleCPU::drain(DrainManager *dm)
130{
131 assert(!drain_manager);
132 if (switchedOut())
133 return 0;
134
135 if (!isDrained()) {
136 DPRINTF(Drain, "Requesting drain: %s\n", pcState());
137 drain_manager = dm;
138 return 1;
139 } else {
140 if (tickEvent.scheduled())
141 deschedule(tickEvent);
142
143 DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
144 return 0;
145 }
146}
147
148void
149AtomicSimpleCPU::drainResume()
150{
151 assert(!tickEvent.scheduled());
152 assert(!drain_manager);
153 if (switchedOut())
154 return;
155
156 DPRINTF(SimpleCPU, "Resume\n");
157 verifyMemoryMode();
158
159 assert(!threadContexts.empty());
160 if (threadContexts.size() > 1)
161 fatal("The atomic CPU only supports one thread.\n");
162
163 if (thread->status() == ThreadContext::Active) {
164 schedule(tickEvent, nextCycle());
165 _status = BaseSimpleCPU::Running;
166 notIdleFraction = 1;
167 } else {
168 _status = BaseSimpleCPU::Idle;
169 notIdleFraction = 0;
170 }
171
172 system->totalNumInsts = 0;
173}
174
175bool
176AtomicSimpleCPU::tryCompleteDrain()
177{
178 if (!drain_manager)
179 return false;
180
181 DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
182 if (!isDrained())
183 return false;
184
185 DPRINTF(Drain, "CPU done draining, processing drain event\n");
186 drain_manager->signalDrainDone();
187 drain_manager = NULL;
188
189 return true;
190}
191
192
193void
194AtomicSimpleCPU::switchOut()
195{
196 BaseSimpleCPU::switchOut();
197
198 assert(!tickEvent.scheduled());
199 assert(_status == BaseSimpleCPU::Running || _status == Idle);
200 assert(isDrained());
201}
202
203
204void
205AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
206{
207 BaseSimpleCPU::takeOverFrom(oldCPU);
208
209 // The tick event should have been descheduled by drain()
210 assert(!tickEvent.scheduled());
211
212 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
213 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
214 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
215}
216
217void
218AtomicSimpleCPU::verifyMemoryMode() const
219{
220 if (!system->isAtomicMode()) {
221 fatal("The atomic CPU requires the memory system to be in "
222 "'atomic' mode.\n");
223 }
224}
225
226void
227AtomicSimpleCPU::activateContext(ThreadID thread_num)
228{
229 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
230
231 assert(thread_num == 0);
232 assert(thread);
233
234 assert(_status == Idle);
235 assert(!tickEvent.scheduled());
236
237 notIdleFraction = 1;
238 Cycles delta = ticksToCycles(thread->lastActivate - thread->lastSuspend);
239 numCycles += delta;
240 ppCycles->notify(delta);
241
242 //Make sure ticks are still on multiples of cycles
243 schedule(tickEvent, clockEdge(Cycles(0)));
244 _status = BaseSimpleCPU::Running;
245}
246
247
248void
249AtomicSimpleCPU::suspendContext(ThreadID thread_num)
250{
251 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
252
253 assert(thread_num == 0);
254 assert(thread);
255
256 if (_status == Idle)
257 return;
258
259 assert(_status == BaseSimpleCPU::Running);
260
261 // tick event may not be scheduled if this gets called from inside
262 // an instruction's execution, e.g. "quiesce"
263 if (tickEvent.scheduled())
264 deschedule(tickEvent);
265
266 notIdleFraction = 0;
267 _status = Idle;
268}
269
270
271Tick
272AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt)
273{
274 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
275 pkt->cmdString());
276
277 // X86 ISA: Snooping an invalidation for monitor/mwait
278 AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
279 if(cpu->getAddrMonitor()->doMonitor(pkt)) {
280 cpu->wakeup();
281 }
282
283 // if snoop invalidates, release any associated locks
284 if (pkt->isInvalidate()) {
285 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
286 pkt->getAddr());
287 TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask);
288 }
289
290 return 0;
291}
292
293void
294AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt)
295{
296 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
297 pkt->cmdString());
298
299 // X86 ISA: Snooping an invalidation for monitor/mwait
300 AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
301 if(cpu->getAddrMonitor()->doMonitor(pkt)) {
302 cpu->wakeup();
303 }
304
305 // if snoop invalidates, release any associated locks
306 if (pkt->isInvalidate()) {
307 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
308 pkt->getAddr());
309 TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask);
310 }
311}
312
313Fault
314AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
315 unsigned size, unsigned flags)
316{
317 // use the CPU's statically allocated read request and packet objects
318 Request *req = &data_read_req;
319
320 if (traceData) {
321 traceData->setAddr(addr);
322 }
323
324 //The size of the data we're trying to read.
325 int fullSize = size;
326
327 //The address of the second part of this access if it needs to be split
328 //across a cache line boundary.
329 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
330
331 if (secondAddr > addr)
332 size = secondAddr - addr;
333
334 dcache_latency = 0;
335
336 req->taskId(taskId());
337 while (1) {
338 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
339
340 // translate to physical address
341 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
342
343 // Now do the access.
344 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
345 Packet pkt(req, MemCmd::ReadReq);
346 pkt.refineCommand();
347 pkt.dataStatic(data);
348
349 if (req->isMmappedIpr())
350 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
351 else {
352 if (fastmem && system->isMemAddr(pkt.getAddr()))
353 system->getPhysMem().access(&pkt);
354 else
355 dcache_latency += dcachePort.sendAtomic(&pkt);
356 }
357 dcache_access = true;
358
359 assert(!pkt.isError());
360
361 if (req->isLLSC()) {
362 TheISA::handleLockedRead(thread, req);
363 }
364 }
365
366 //If there's a fault, return it
367 if (fault != NoFault) {
368 if (req->isPrefetch()) {
369 return NoFault;
370 } else {
371 return fault;
372 }
373 }
374
375 //If we don't need to access a second cache line, stop now.
376 if (secondAddr <= addr)
377 {
378 if (req->isLocked() && fault == NoFault) {
379 assert(!locked);
380 locked = true;
381 }
382 return fault;
383 }
384
385 /*
386 * Set up for accessing the second cache line.
387 */
388
389 //Move the pointer we're reading into to the correct location.
390 data += size;
391 //Adjust the size to get the remaining bytes.
392 size = addr + fullSize - secondAddr;
393 //And access the right address.
394 addr = secondAddr;
395 }
396}
397
398
399Fault
400AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
401 Addr addr, unsigned flags, uint64_t *res)
402{
403
404 static uint8_t zero_array[64] = {};
405
406 if (data == NULL) {
407 assert(size <= 64);
408 assert(flags & Request::CACHE_BLOCK_ZERO);
409 // This must be a cache block cleaning request
410 data = zero_array;
411 }
412
413 // use the CPU's statically allocated write request and packet objects
414 Request *req = &data_write_req;
415
416 if (traceData) {
417 traceData->setAddr(addr);
418 }
419
420 //The size of the data we're trying to read.
421 int fullSize = size;
422
423 //The address of the second part of this access if it needs to be split
424 //across a cache line boundary.
425 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
426
427 if(secondAddr > addr)
428 size = secondAddr - addr;
429
430 dcache_latency = 0;
431
432 req->taskId(taskId());
433 while(1) {
434 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
435
436 // translate to physical address
437 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
438
439 // Now do the access.
440 if (fault == NoFault) {
441 MemCmd cmd = MemCmd::WriteReq; // default
442 bool do_access = true; // flag to suppress cache access
443
444 if (req->isLLSC()) {
445 cmd = MemCmd::StoreCondReq;
446 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
447 } else if (req->isSwap()) {
448 cmd = MemCmd::SwapReq;
449 if (req->isCondSwap()) {
450 assert(res);
451 req->setExtraData(*res);
452 }
453 }
454
455 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
456 Packet pkt = Packet(req, cmd);
457 pkt.dataStatic(data);
458
459 if (req->isMmappedIpr()) {
460 dcache_latency +=
461 TheISA::handleIprWrite(thread->getTC(), &pkt);
462 } else {
463 if (fastmem && system->isMemAddr(pkt.getAddr()))
464 system->getPhysMem().access(&pkt);
465 else
466 dcache_latency += dcachePort.sendAtomic(&pkt);
467 }
468 dcache_access = true;
469 assert(!pkt.isError());
470
471 if (req->isSwap()) {
472 assert(res);
473 memcpy(res, pkt.getConstPtr<uint8_t>(), fullSize);
474 }
475 }
476
477 if (res && !req->isSwap()) {
478 *res = req->getExtraData();
479 }
480 }
481
482 //If there's a fault or we don't need to access a second cache line,
483 //stop now.
484 if (fault != NoFault || secondAddr <= addr)
485 {
486 if (req->isLocked() && fault == NoFault) {
487 assert(locked);
488 locked = false;
489 }
490 if (fault != NoFault && req->isPrefetch()) {
491 return NoFault;
492 } else {
493 return fault;
494 }
495 }
496
497 /*
498 * Set up for accessing the second cache line.
499 */
500
501 //Move the pointer we're reading into to the correct location.
502 data += size;
503 //Adjust the size to get the remaining bytes.
504 size = addr + fullSize - secondAddr;
505 //And access the right address.
506 addr = secondAddr;
507 }
508}
509
510
511void
512AtomicSimpleCPU::tick()
513{
514 DPRINTF(SimpleCPU, "Tick\n");
515
516 Tick latency = 0;
517
518 for (int i = 0; i < width || locked; ++i) {
519 numCycles++;
520 ppCycles->notify(1);
521
521 if (!curStaticInst || !curStaticInst->isDelayedCommit())
522 if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
522 checkForInterrupts();
523 checkForInterrupts();
524 checkPcEventQueue();
525 }
523
526
524 checkPcEventQueue();
525 // We must have just got suspended by a PC event
526 if (_status == Idle) {
527 tryCompleteDrain();
528 return;
529 }
530
531 Fault fault = NoFault;
532
533 TheISA::PCState pcState = thread->pcState();
534
535 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
536 !curMacroStaticInst;
537 if (needToFetch) {
538 ifetch_req.taskId(taskId());
539 setupFetchRequest(&ifetch_req);
540 fault = thread->itb->translateAtomic(&ifetch_req, tc,
541 BaseTLB::Execute);
542 }
543
544 if (fault == NoFault) {
545 Tick icache_latency = 0;
546 bool icache_access = false;
547 dcache_access = false; // assume no dcache access
548
549 if (needToFetch) {
550 // This is commented out because the decoder would act like
551 // a tiny cache otherwise. It wouldn't be flushed when needed
552 // like the I cache. It should be flushed, and when that works
553 // this code should be uncommented.
554 //Fetch more instruction memory if necessary
555 //if(decoder.needMoreBytes())
556 //{
557 icache_access = true;
558 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
559 ifetch_pkt.dataStatic(&inst);
560
561 if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
562 system->getPhysMem().access(&ifetch_pkt);
563 else
564 icache_latency = icachePort.sendAtomic(&ifetch_pkt);
565
566 assert(!ifetch_pkt.isError());
567
568 // ifetch_req is initialized to read the instruction directly
569 // into the CPU object's inst field.
570 //}
571 }
572
573 preExecute();
574
575 if (curStaticInst) {
576 fault = curStaticInst->execute(this, traceData);
577
578 // keep an instruction count
579 if (fault == NoFault) {
580 countInst();
581 if (!curStaticInst->isMicroop() ||
582 curStaticInst->isLastMicroop()) {
583 ppCommit->notify(std::make_pair(thread, curStaticInst));
584 }
585 }
586 else if (traceData && !DTRACE(ExecFaulting)) {
587 delete traceData;
588 traceData = NULL;
589 }
590
591 postExecute();
592 }
593
594 // @todo remove me after debugging with legion done
595 if (curStaticInst && (!curStaticInst->isMicroop() ||
596 curStaticInst->isFirstMicroop()))
597 instCnt++;
598
599 Tick stall_ticks = 0;
600 if (simulate_inst_stalls && icache_access)
601 stall_ticks += icache_latency;
602
603 if (simulate_data_stalls && dcache_access)
604 stall_ticks += dcache_latency;
605
606 if (stall_ticks) {
607 // the atomic cpu does its accounting in ticks, so
608 // keep counting in ticks but round to the clock
609 // period
610 latency += divCeil(stall_ticks, clockPeriod()) *
611 clockPeriod();
612 }
613
614 }
615 if(fault != NoFault || !stayAtPC)
616 advancePC(fault);
617 }
618
619 if (tryCompleteDrain())
620 return;
621
622 // instruction takes at least one cycle
623 if (latency < clockPeriod())
624 latency = clockPeriod();
625
626 if (_status != Idle)
627 schedule(tickEvent, curTick() + latency);
628}
629
630void
631AtomicSimpleCPU::regProbePoints()
632{
633 BaseCPU::regProbePoints();
634
635 ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>>
636 (getProbeManager(), "Commit");
637}
638
639void
640AtomicSimpleCPU::printAddr(Addr a)
641{
642 dcachePort.printAddr(a);
643}
644
645////////////////////////////////////////////////////////////////////////
646//
647// AtomicSimpleCPU Simulation Object
648//
649AtomicSimpleCPU *
650AtomicSimpleCPUParams::create()
651{
652 numThreads = 1;
653 if (!FullSystem && workload.size() != 1)
654 panic("only one workload allowed");
655 return new AtomicSimpleCPU(this);
656}
527 // We must have just got suspended by a PC event
528 if (_status == Idle) {
529 tryCompleteDrain();
530 return;
531 }
532
533 Fault fault = NoFault;
534
535 TheISA::PCState pcState = thread->pcState();
536
537 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
538 !curMacroStaticInst;
539 if (needToFetch) {
540 ifetch_req.taskId(taskId());
541 setupFetchRequest(&ifetch_req);
542 fault = thread->itb->translateAtomic(&ifetch_req, tc,
543 BaseTLB::Execute);
544 }
545
546 if (fault == NoFault) {
547 Tick icache_latency = 0;
548 bool icache_access = false;
549 dcache_access = false; // assume no dcache access
550
551 if (needToFetch) {
552 // This is commented out because the decoder would act like
553 // a tiny cache otherwise. It wouldn't be flushed when needed
554 // like the I cache. It should be flushed, and when that works
555 // this code should be uncommented.
556 //Fetch more instruction memory if necessary
557 //if(decoder.needMoreBytes())
558 //{
559 icache_access = true;
560 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
561 ifetch_pkt.dataStatic(&inst);
562
563 if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
564 system->getPhysMem().access(&ifetch_pkt);
565 else
566 icache_latency = icachePort.sendAtomic(&ifetch_pkt);
567
568 assert(!ifetch_pkt.isError());
569
570 // ifetch_req is initialized to read the instruction directly
571 // into the CPU object's inst field.
572 //}
573 }
574
575 preExecute();
576
577 if (curStaticInst) {
578 fault = curStaticInst->execute(this, traceData);
579
580 // keep an instruction count
581 if (fault == NoFault) {
582 countInst();
583 if (!curStaticInst->isMicroop() ||
584 curStaticInst->isLastMicroop()) {
585 ppCommit->notify(std::make_pair(thread, curStaticInst));
586 }
587 }
588 else if (traceData && !DTRACE(ExecFaulting)) {
589 delete traceData;
590 traceData = NULL;
591 }
592
593 postExecute();
594 }
595
596 // @todo remove me after debugging with legion done
597 if (curStaticInst && (!curStaticInst->isMicroop() ||
598 curStaticInst->isFirstMicroop()))
599 instCnt++;
600
601 Tick stall_ticks = 0;
602 if (simulate_inst_stalls && icache_access)
603 stall_ticks += icache_latency;
604
605 if (simulate_data_stalls && dcache_access)
606 stall_ticks += dcache_latency;
607
608 if (stall_ticks) {
609 // the atomic cpu does its accounting in ticks, so
610 // keep counting in ticks but round to the clock
611 // period
612 latency += divCeil(stall_ticks, clockPeriod()) *
613 clockPeriod();
614 }
615
616 }
617 if(fault != NoFault || !stayAtPC)
618 advancePC(fault);
619 }
620
621 if (tryCompleteDrain())
622 return;
623
624 // instruction takes at least one cycle
625 if (latency < clockPeriod())
626 latency = clockPeriod();
627
628 if (_status != Idle)
629 schedule(tickEvent, curTick() + latency);
630}
631
632void
633AtomicSimpleCPU::regProbePoints()
634{
635 BaseCPU::regProbePoints();
636
637 ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>>
638 (getProbeManager(), "Commit");
639}
640
641void
642AtomicSimpleCPU::printAddr(Addr a)
643{
644 dcachePort.printAddr(a);
645}
646
647////////////////////////////////////////////////////////////////////////
648//
649// AtomicSimpleCPU Simulation Object
650//
651AtomicSimpleCPU *
652AtomicSimpleCPUParams::create()
653{
654 numThreads = 1;
655 if (!FullSystem && workload.size() != 1)
656 panic("only one workload allowed");
657 return new AtomicSimpleCPU(this);
658}