Deleted Added
sdiff udiff text old ( 9524:d6ffa982a68b ) new ( 9647:5b6b315472e7 )
full compact
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "config/the_isa.hh"
48#include "cpu/simple/atomic.hh"
49#include "cpu/exetrace.hh"
50#include "debug/Drain.hh"
51#include "debug/ExecFaulting.hh"
52#include "debug/SimpleCPU.hh"
53#include "mem/packet.hh"
54#include "mem/packet_access.hh"
55#include "mem/physical.hh"
56#include "params/AtomicSimpleCPU.hh"
57#include "sim/faults.hh"
58#include "sim/system.hh"
59#include "sim/full_system.hh"
60
61using namespace std;
62using namespace TheISA;
63
64AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
65 : Event(CPU_Tick_Pri), cpu(c)
66{
67}
68
69
70void
71AtomicSimpleCPU::TickEvent::process()
72{
73 cpu->tick();
74}
75
76const char *
77AtomicSimpleCPU::TickEvent::description() const
78{
79 return "AtomicSimpleCPU tick";
80}
81
82void
83AtomicSimpleCPU::init()
84{
85 BaseCPU::init();
86
87 // Initialise the ThreadContext's memory proxies
88 tcBase()->initMemProxies(tcBase());
89
90 if (FullSystem && !params()->switched_out) {
91 ThreadID size = threadContexts.size();
92 for (ThreadID i = 0; i < size; ++i) {
93 ThreadContext *tc = threadContexts[i];
94 // initialize CPU, including PC
95 TheISA::initCPU(tc, tc->contextId());
96 }
97 }
98
99 // Atomic doesn't do MT right now, so contextId == threadId
100 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
101 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
102 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
103}
104
105AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
106 : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
107 simulate_data_stalls(p->simulate_data_stalls),
108 simulate_inst_stalls(p->simulate_inst_stalls),
109 drain_manager(NULL),
110 icachePort(name() + ".icache_port", this),
111 dcachePort(name() + ".dcache_port", this),
112 fastmem(p->fastmem)
113{
114 _status = Idle;
115}
116
117
118AtomicSimpleCPU::~AtomicSimpleCPU()
119{
120 if (tickEvent.scheduled()) {
121 deschedule(tickEvent);
122 }
123}
124
125unsigned int
126AtomicSimpleCPU::drain(DrainManager *dm)
127{
128 assert(!drain_manager);
129 if (switchedOut())
130 return 0;
131
132 if (!isDrained()) {
133 DPRINTF(Drain, "Requesting drain: %s\n", pcState());
134 drain_manager = dm;
135 return 1;
136 } else {
137 if (tickEvent.scheduled())
138 deschedule(tickEvent);
139
140 DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
141 return 0;
142 }
143}
144
145void
146AtomicSimpleCPU::drainResume()
147{
148 assert(!tickEvent.scheduled());
149 assert(!drain_manager);
150 if (switchedOut())
151 return;
152
153 DPRINTF(SimpleCPU, "Resume\n");
154 verifyMemoryMode();
155
156 assert(!threadContexts.empty());
157 if (threadContexts.size() > 1)
158 fatal("The atomic CPU only supports one thread.\n");
159
160 if (thread->status() == ThreadContext::Active) {
161 schedule(tickEvent, nextCycle());
162 _status = BaseSimpleCPU::Running;
163 } else {
164 _status = BaseSimpleCPU::Idle;
165 }
166
167 system->totalNumInsts = 0;
168}
169
170bool
171AtomicSimpleCPU::tryCompleteDrain()
172{
173 if (!drain_manager)
174 return false;
175
176 DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
177 if (!isDrained())
178 return false;
179
180 DPRINTF(Drain, "CPU done draining, processing drain event\n");
181 drain_manager->signalDrainDone();
182 drain_manager = NULL;
183
184 return true;
185}
186
187
188void
189AtomicSimpleCPU::switchOut()
190{
191 BaseSimpleCPU::switchOut();
192
193 assert(!tickEvent.scheduled());
194 assert(_status == BaseSimpleCPU::Running || _status == Idle);
195 assert(isDrained());
196}
197
198
199void
200AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
201{
202 BaseSimpleCPU::takeOverFrom(oldCPU);
203
204 // The tick event should have been descheduled by drain()
205 assert(!tickEvent.scheduled());
206
207 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
208 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
209 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
210}
211
212void
213AtomicSimpleCPU::verifyMemoryMode() const
214{
215 if (!system->isAtomicMode()) {
216 fatal("The atomic CPU requires the memory system to be in "
217 "'atomic' mode.\n");
218 }
219}
220
221void
222AtomicSimpleCPU::activateContext(ThreadID thread_num, Cycles delay)
223{
224 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
225
226 assert(thread_num == 0);
227 assert(thread);
228
229 assert(_status == Idle);
230 assert(!tickEvent.scheduled());
231
232 notIdleFraction++;
233 numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend);
234
235 //Make sure ticks are still on multiples of cycles
236 schedule(tickEvent, clockEdge(delay));
237 _status = BaseSimpleCPU::Running;
238}
239
240
241void
242AtomicSimpleCPU::suspendContext(ThreadID thread_num)
243{
244 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
245
246 assert(thread_num == 0);
247 assert(thread);
248
249 if (_status == Idle)
250 return;
251
252 assert(_status == BaseSimpleCPU::Running);
253
254 // tick event may not be scheduled if this gets called from inside
255 // an instruction's execution, e.g. "quiesce"
256 if (tickEvent.scheduled())
257 deschedule(tickEvent);
258
259 notIdleFraction--;
260 _status = Idle;
261}
262
263
264Fault
265AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
266 unsigned size, unsigned flags)
267{
268 // use the CPU's statically allocated read request and packet objects
269 Request *req = &data_read_req;
270
271 if (traceData) {
272 traceData->setAddr(addr);
273 }
274
275 //The block size of our peer.
276 unsigned blockSize = dcachePort.peerBlockSize();
277 //The size of the data we're trying to read.
278 int fullSize = size;
279
280 //The address of the second part of this access if it needs to be split
281 //across a cache line boundary.
282 Addr secondAddr = roundDown(addr + size - 1, blockSize);
283
284 if (secondAddr > addr)
285 size = secondAddr - addr;
286
287 dcache_latency = 0;
288
289 while (1) {
290 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
291
292 // translate to physical address
293 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
294
295 // Now do the access.
296 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
297 Packet pkt = Packet(req,
298 req->isLLSC() ? MemCmd::LoadLockedReq :
299 MemCmd::ReadReq);
300 pkt.dataStatic(data);
301
302 if (req->isMmappedIpr())
303 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
304 else {
305 if (fastmem && system->isMemAddr(pkt.getAddr()))
306 system->getPhysMem().access(&pkt);
307 else
308 dcache_latency += dcachePort.sendAtomic(&pkt);
309 }
310 dcache_access = true;
311
312 assert(!pkt.isError());
313
314 if (req->isLLSC()) {
315 TheISA::handleLockedRead(thread, req);
316 }
317 }
318
319 //If there's a fault, return it
320 if (fault != NoFault) {
321 if (req->isPrefetch()) {
322 return NoFault;
323 } else {
324 return fault;
325 }
326 }
327
328 //If we don't need to access a second cache line, stop now.
329 if (secondAddr <= addr)
330 {
331 if (req->isLocked() && fault == NoFault) {
332 assert(!locked);
333 locked = true;
334 }
335 return fault;
336 }
337
338 /*
339 * Set up for accessing the second cache line.
340 */
341
342 //Move the pointer we're reading into to the correct location.
343 data += size;
344 //Adjust the size to get the remaining bytes.
345 size = addr + fullSize - secondAddr;
346 //And access the right address.
347 addr = secondAddr;
348 }
349}
350
351
352Fault
353AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
354 Addr addr, unsigned flags, uint64_t *res)
355{
356 // use the CPU's statically allocated write request and packet objects
357 Request *req = &data_write_req;
358
359 if (traceData) {
360 traceData->setAddr(addr);
361 }
362
363 //The block size of our peer.
364 unsigned blockSize = dcachePort.peerBlockSize();
365 //The size of the data we're trying to read.
366 int fullSize = size;
367
368 //The address of the second part of this access if it needs to be split
369 //across a cache line boundary.
370 Addr secondAddr = roundDown(addr + size - 1, blockSize);
371
372 if(secondAddr > addr)
373 size = secondAddr - addr;
374
375 dcache_latency = 0;
376
377 while(1) {
378 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
379
380 // translate to physical address
381 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
382
383 // Now do the access.
384 if (fault == NoFault) {
385 MemCmd cmd = MemCmd::WriteReq; // default
386 bool do_access = true; // flag to suppress cache access
387
388 if (req->isLLSC()) {
389 cmd = MemCmd::StoreCondReq;
390 do_access = TheISA::handleLockedWrite(thread, req);
391 } else if (req->isSwap()) {
392 cmd = MemCmd::SwapReq;
393 if (req->isCondSwap()) {
394 assert(res);
395 req->setExtraData(*res);
396 }
397 }
398
399 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
400 Packet pkt = Packet(req, cmd);
401 pkt.dataStatic(data);
402
403 if (req->isMmappedIpr()) {
404 dcache_latency +=
405 TheISA::handleIprWrite(thread->getTC(), &pkt);
406 } else {
407 if (fastmem && system->isMemAddr(pkt.getAddr()))
408 system->getPhysMem().access(&pkt);
409 else
410 dcache_latency += dcachePort.sendAtomic(&pkt);
411 }
412 dcache_access = true;
413 assert(!pkt.isError());
414
415 if (req->isSwap()) {
416 assert(res);
417 memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
418 }
419 }
420
421 if (res && !req->isSwap()) {
422 *res = req->getExtraData();
423 }
424 }
425
426 //If there's a fault or we don't need to access a second cache line,
427 //stop now.
428 if (fault != NoFault || secondAddr <= addr)
429 {
430 if (req->isLocked() && fault == NoFault) {
431 assert(locked);
432 locked = false;
433 }
434 if (fault != NoFault && req->isPrefetch()) {
435 return NoFault;
436 } else {
437 return fault;
438 }
439 }
440
441 /*
442 * Set up for accessing the second cache line.
443 */
444
445 //Move the pointer we're reading into to the correct location.
446 data += size;
447 //Adjust the size to get the remaining bytes.
448 size = addr + fullSize - secondAddr;
449 //And access the right address.
450 addr = secondAddr;
451 }
452}
453
454
455void
456AtomicSimpleCPU::tick()
457{
458 DPRINTF(SimpleCPU, "Tick\n");
459
460 Tick latency = 0;
461
462 for (int i = 0; i < width || locked; ++i) {
463 numCycles++;
464
465 if (!curStaticInst || !curStaticInst->isDelayedCommit())
466 checkForInterrupts();
467
468 checkPcEventQueue();
469 // We must have just got suspended by a PC event
470 if (_status == Idle) {
471 tryCompleteDrain();
472 return;
473 }
474
475 Fault fault = NoFault;
476
477 TheISA::PCState pcState = thread->pcState();
478
479 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
480 !curMacroStaticInst;
481 if (needToFetch) {
482 setupFetchRequest(&ifetch_req);
483 fault = thread->itb->translateAtomic(&ifetch_req, tc,
484 BaseTLB::Execute);
485 }
486
487 if (fault == NoFault) {
488 Tick icache_latency = 0;
489 bool icache_access = false;
490 dcache_access = false; // assume no dcache access
491
492 if (needToFetch) {
493 // This is commented out because the decoder would act like
494 // a tiny cache otherwise. It wouldn't be flushed when needed
495 // like the I cache. It should be flushed, and when that works
496 // this code should be uncommented.
497 //Fetch more instruction memory if necessary
498 //if(decoder.needMoreBytes())
499 //{
500 icache_access = true;
501 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
502 ifetch_pkt.dataStatic(&inst);
503
504 if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
505 system->getPhysMem().access(&ifetch_pkt);
506 else
507 icache_latency = icachePort.sendAtomic(&ifetch_pkt);
508
509 assert(!ifetch_pkt.isError());
510
511 // ifetch_req is initialized to read the instruction directly
512 // into the CPU object's inst field.
513 //}
514 }
515
516 preExecute();
517
518 if (curStaticInst) {
519 fault = curStaticInst->execute(this, traceData);
520
521 // keep an instruction count
522 if (fault == NoFault)
523 countInst();
524 else if (traceData && !DTRACE(ExecFaulting)) {
525 delete traceData;
526 traceData = NULL;
527 }
528
529 postExecute();
530 }
531
532 // @todo remove me after debugging with legion done
533 if (curStaticInst && (!curStaticInst->isMicroop() ||
534 curStaticInst->isFirstMicroop()))
535 instCnt++;
536
537 Tick stall_ticks = 0;
538 if (simulate_inst_stalls && icache_access)
539 stall_ticks += icache_latency;
540
541 if (simulate_data_stalls && dcache_access)
542 stall_ticks += dcache_latency;
543
544 if (stall_ticks) {
545 // the atomic cpu does its accounting in ticks, so
546 // keep counting in ticks but round to the clock
547 // period
548 latency += divCeil(stall_ticks, clockPeriod()) *
549 clockPeriod();
550 }
551
552 }
553 if(fault != NoFault || !stayAtPC)
554 advancePC(fault);
555 }
556
557 if (tryCompleteDrain())
558 return;
559
560 // instruction takes at least one cycle
561 if (latency < clockPeriod())
562 latency = clockPeriod();
563
564 if (_status != Idle)
565 schedule(tickEvent, curTick() + latency);
566}
567
568
569void
570AtomicSimpleCPU::printAddr(Addr a)
571{
572 dcachePort.printAddr(a);
573}
574
575
576////////////////////////////////////////////////////////////////////////
577//
578// AtomicSimpleCPU Simulation Object
579//
580AtomicSimpleCPU *
581AtomicSimpleCPUParams::create()
582{
583 numThreads = 1;
584 if (!FullSystem && workload.size() != 1)
585 panic("only one workload allowed");
586 return new AtomicSimpleCPU(this);
587}