Deleted Added
sdiff udiff text old ( 8922:17f037ad8918 ) new ( 8926:570b44fe6e04 )
full compact
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmapped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "config/the_isa.hh"
36#include "cpu/simple/atomic.hh"
37#include "cpu/exetrace.hh"
38#include "debug/ExecFaulting.hh"
39#include "debug/SimpleCPU.hh"
40#include "mem/packet.hh"
41#include "mem/packet_access.hh"
42#include "params/AtomicSimpleCPU.hh"
43#include "sim/faults.hh"
44#include "sim/system.hh"
45#include "sim/full_system.hh"
46
47using namespace std;
48using namespace TheISA;
49
50AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
51 : Event(CPU_Tick_Pri), cpu(c)
52{
53}
54
55
56void
57AtomicSimpleCPU::TickEvent::process()
58{
59 cpu->tick();
60}
61
62const char *
63AtomicSimpleCPU::TickEvent::description() const
64{
65 return "AtomicSimpleCPU tick";
66}
67
68MasterPort &
69AtomicSimpleCPU::getMasterPort(const string &if_name, int idx)
70{
71 if (if_name == "physmem_port") {
72 hasPhysMemPort = true;
73 return physmemPort;
74 } else {
75 return BaseCPU::getMasterPort(if_name, idx);
76 }
77}
78
79void
80AtomicSimpleCPU::init()
81{
82 BaseCPU::init();
83
84 // Initialise the ThreadContext's memory proxies
85 tcBase()->initMemProxies(tcBase());
86
87 if (FullSystem) {
88 ThreadID size = threadContexts.size();
89 for (ThreadID i = 0; i < size; ++i) {
90 ThreadContext *tc = threadContexts[i];
91 // initialize CPU, including PC
92 TheISA::initCPU(tc, tc->contextId());
93 }
94 }
95
96 if (hasPhysMemPort) {
97 AddrRangeList pmAddrList = physmemPort.getSlavePort().getAddrRanges();
98 physMemAddr = *pmAddrList.begin();
99 }
100 // Atomic doesn't do MT right now, so contextId == threadId
101 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
102 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
103 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
104}
105
106AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
107 : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
108 simulate_data_stalls(p->simulate_data_stalls),
109 simulate_inst_stalls(p->simulate_inst_stalls),
110 icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
111 physmemPort(name() + "-iport", this), hasPhysMemPort(false)
112{
113 _status = Idle;
114}
115
116
117AtomicSimpleCPU::~AtomicSimpleCPU()
118{
119 if (tickEvent.scheduled()) {
120 deschedule(tickEvent);
121 }
122}
123
124void
125AtomicSimpleCPU::serialize(ostream &os)
126{
127 SimObject::State so_state = SimObject::getState();
128 SERIALIZE_ENUM(so_state);
129 SERIALIZE_SCALAR(locked);
130 BaseSimpleCPU::serialize(os);
131 nameOut(os, csprintf("%s.tickEvent", name()));
132 tickEvent.serialize(os);
133}
134
135void
136AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
137{
138 SimObject::State so_state;
139 UNSERIALIZE_ENUM(so_state);
140 UNSERIALIZE_SCALAR(locked);
141 BaseSimpleCPU::unserialize(cp, section);
142 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
143}
144
145void
146AtomicSimpleCPU::resume()
147{
148 if (_status == Idle || _status == SwitchedOut)
149 return;
150
151 DPRINTF(SimpleCPU, "Resume\n");
152 assert(system->getMemoryMode() == Enums::atomic);
153
154 changeState(SimObject::Running);
155 if (thread->status() == ThreadContext::Active) {
156 if (!tickEvent.scheduled())
157 schedule(tickEvent, nextCycle());
158 }
159 system->totalNumInsts = 0;
160}
161
162void
163AtomicSimpleCPU::switchOut()
164{
165 assert(_status == Running || _status == Idle);
166 _status = SwitchedOut;
167
168 tickEvent.squash();
169}
170
171
172void
173AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
174{
175 BaseCPU::takeOverFrom(oldCPU);
176
177 assert(!tickEvent.scheduled());
178
179 // if any of this CPU's ThreadContexts are active, mark the CPU as
180 // running and schedule its tick event.
181 ThreadID size = threadContexts.size();
182 for (ThreadID i = 0; i < size; ++i) {
183 ThreadContext *tc = threadContexts[i];
184 if (tc->status() == ThreadContext::Active && _status != Running) {
185 _status = Running;
186 schedule(tickEvent, nextCycle());
187 break;
188 }
189 }
190 if (_status != Running) {
191 _status = Idle;
192 }
193 assert(threadContexts.size() == 1);
194 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
195 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
196 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
197}
198
199
200void
201AtomicSimpleCPU::activateContext(ThreadID thread_num, int delay)
202{
203 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
204
205 assert(thread_num == 0);
206 assert(thread);
207
208 assert(_status == Idle);
209 assert(!tickEvent.scheduled());
210
211 notIdleFraction++;
212 numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
213
214 //Make sure ticks are still on multiples of cycles
215 schedule(tickEvent, nextCycle(curTick() + ticks(delay)));
216 _status = Running;
217}
218
219
220void
221AtomicSimpleCPU::suspendContext(ThreadID thread_num)
222{
223 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
224
225 assert(thread_num == 0);
226 assert(thread);
227
228 if (_status == Idle)
229 return;
230
231 assert(_status == Running);
232
233 // tick event may not be scheduled if this gets called from inside
234 // an instruction's execution, e.g. "quiesce"
235 if (tickEvent.scheduled())
236 deschedule(tickEvent);
237
238 notIdleFraction--;
239 _status = Idle;
240}
241
242
243Fault
244AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
245 unsigned size, unsigned flags)
246{
247 // use the CPU's statically allocated read request and packet objects
248 Request *req = &data_read_req;
249
250 if (traceData) {
251 traceData->setAddr(addr);
252 }
253
254 //The block size of our peer.
255 unsigned blockSize = dcachePort.peerBlockSize();
256 //The size of the data we're trying to read.
257 int fullSize = size;
258
259 //The address of the second part of this access if it needs to be split
260 //across a cache line boundary.
261 Addr secondAddr = roundDown(addr + size - 1, blockSize);
262
263 if (secondAddr > addr)
264 size = secondAddr - addr;
265
266 dcache_latency = 0;
267
268 while (1) {
269 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
270
271 // translate to physical address
272 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
273
274 // Now do the access.
275 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
276 Packet pkt = Packet(req,
277 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
278 Packet::Broadcast);
279 pkt.dataStatic(data);
280
281 if (req->isMmappedIpr())
282 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
283 else {
284 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
285 dcache_latency += physmemPort.sendAtomic(&pkt);
286 else
287 dcache_latency += dcachePort.sendAtomic(&pkt);
288 }
289 dcache_access = true;
290
291 assert(!pkt.isError());
292
293 if (req->isLLSC()) {
294 TheISA::handleLockedRead(thread, req);
295 }
296 }
297
298 //If there's a fault, return it
299 if (fault != NoFault) {
300 if (req->isPrefetch()) {
301 return NoFault;
302 } else {
303 return fault;
304 }
305 }
306
307 //If we don't need to access a second cache line, stop now.
308 if (secondAddr <= addr)
309 {
310 if (req->isLocked() && fault == NoFault) {
311 assert(!locked);
312 locked = true;
313 }
314 return fault;
315 }
316
317 /*
318 * Set up for accessing the second cache line.
319 */
320
321 //Move the pointer we're reading into to the correct location.
322 data += size;
323 //Adjust the size to get the remaining bytes.
324 size = addr + fullSize - secondAddr;
325 //And access the right address.
326 addr = secondAddr;
327 }
328}
329
330
331Fault
332AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
333 Addr addr, unsigned flags, uint64_t *res)
334{
335 // use the CPU's statically allocated write request and packet objects
336 Request *req = &data_write_req;
337
338 if (traceData) {
339 traceData->setAddr(addr);
340 }
341
342 //The block size of our peer.
343 unsigned blockSize = dcachePort.peerBlockSize();
344 //The size of the data we're trying to read.
345 int fullSize = size;
346
347 //The address of the second part of this access if it needs to be split
348 //across a cache line boundary.
349 Addr secondAddr = roundDown(addr + size - 1, blockSize);
350
351 if(secondAddr > addr)
352 size = secondAddr - addr;
353
354 dcache_latency = 0;
355
356 while(1) {
357 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
358
359 // translate to physical address
360 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
361
362 // Now do the access.
363 if (fault == NoFault) {
364 MemCmd cmd = MemCmd::WriteReq; // default
365 bool do_access = true; // flag to suppress cache access
366
367 if (req->isLLSC()) {
368 cmd = MemCmd::StoreCondReq;
369 do_access = TheISA::handleLockedWrite(thread, req);
370 } else if (req->isSwap()) {
371 cmd = MemCmd::SwapReq;
372 if (req->isCondSwap()) {
373 assert(res);
374 req->setExtraData(*res);
375 }
376 }
377
378 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
379 Packet pkt = Packet(req, cmd, Packet::Broadcast);
380 pkt.dataStatic(data);
381
382 if (req->isMmappedIpr()) {
383 dcache_latency +=
384 TheISA::handleIprWrite(thread->getTC(), &pkt);
385 } else {
386 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
387 dcache_latency += physmemPort.sendAtomic(&pkt);
388 else
389 dcache_latency += dcachePort.sendAtomic(&pkt);
390 }
391 dcache_access = true;
392 assert(!pkt.isError());
393
394 if (req->isSwap()) {
395 assert(res);
396 memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
397 }
398 }
399
400 if (res && !req->isSwap()) {
401 *res = req->getExtraData();
402 }
403 }
404
405 //If there's a fault or we don't need to access a second cache line,
406 //stop now.
407 if (fault != NoFault || secondAddr <= addr)
408 {
409 if (req->isLocked() && fault == NoFault) {
410 assert(locked);
411 locked = false;
412 }
413 if (fault != NoFault && req->isPrefetch()) {
414 return NoFault;
415 } else {
416 return fault;
417 }
418 }
419
420 /*
421 * Set up for accessing the second cache line.
422 */
423
424 //Move the pointer we're reading into to the correct location.
425 data += size;
426 //Adjust the size to get the remaining bytes.
427 size = addr + fullSize - secondAddr;
428 //And access the right address.
429 addr = secondAddr;
430 }
431}
432
433
434void
435AtomicSimpleCPU::tick()
436{
437 DPRINTF(SimpleCPU, "Tick\n");
438
439 Tick latency = 0;
440
441 for (int i = 0; i < width || locked; ++i) {
442 numCycles++;
443
444 if (!curStaticInst || !curStaticInst->isDelayedCommit())
445 checkForInterrupts();
446
447 checkPcEventQueue();
448 // We must have just got suspended by a PC event
449 if (_status == Idle)
450 return;
451
452 Fault fault = NoFault;
453
454 TheISA::PCState pcState = thread->pcState();
455
456 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
457 !curMacroStaticInst;
458 if (needToFetch) {
459 setupFetchRequest(&ifetch_req);
460 fault = thread->itb->translateAtomic(&ifetch_req, tc,
461 BaseTLB::Execute);
462 }
463
464 if (fault == NoFault) {
465 Tick icache_latency = 0;
466 bool icache_access = false;
467 dcache_access = false; // assume no dcache access
468
469 if (needToFetch) {
470 // This is commented out because the predecoder would act like
471 // a tiny cache otherwise. It wouldn't be flushed when needed
472 // like the I cache. It should be flushed, and when that works
473 // this code should be uncommented.
474 //Fetch more instruction memory if necessary
475 //if(predecoder.needMoreBytes())
476 //{
477 icache_access = true;
478 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
479 Packet::Broadcast);
480 ifetch_pkt.dataStatic(&inst);
481
482 if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
483 icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
484 else
485 icache_latency = icachePort.sendAtomic(&ifetch_pkt);
486
487 assert(!ifetch_pkt.isError());
488
489 // ifetch_req is initialized to read the instruction directly
490 // into the CPU object's inst field.
491 //}
492 }
493
494 preExecute();
495
496 if (curStaticInst) {
497 fault = curStaticInst->execute(this, traceData);
498
499 // keep an instruction count
500 if (fault == NoFault)
501 countInst();
502 else if (traceData && !DTRACE(ExecFaulting)) {
503 delete traceData;
504 traceData = NULL;
505 }
506
507 postExecute();
508 }
509
510 // @todo remove me after debugging with legion done
511 if (curStaticInst && (!curStaticInst->isMicroop() ||
512 curStaticInst->isFirstMicroop()))
513 instCnt++;
514
515 Tick stall_ticks = 0;
516 if (simulate_inst_stalls && icache_access)
517 stall_ticks += icache_latency;
518
519 if (simulate_data_stalls && dcache_access)
520 stall_ticks += dcache_latency;
521
522 if (stall_ticks) {
523 Tick stall_cycles = stall_ticks / ticks(1);
524 Tick aligned_stall_ticks = ticks(stall_cycles);
525
526 if (aligned_stall_ticks < stall_ticks)
527 aligned_stall_ticks += 1;
528
529 latency += aligned_stall_ticks;
530 }
531
532 }
533 if(fault != NoFault || !stayAtPC)
534 advancePC(fault);
535 }
536
537 // instruction takes at least one cycle
538 if (latency < ticks(1))
539 latency = ticks(1);
540
541 if (_status != Idle)
542 schedule(tickEvent, curTick() + latency);
543}
544
545
546void
547AtomicSimpleCPU::printAddr(Addr a)
548{
549 dcachePort.printAddr(a);
550}
551
552
553////////////////////////////////////////////////////////////////////////
554//
555// AtomicSimpleCPU Simulation Object
556//
557AtomicSimpleCPU *
558AtomicSimpleCPUParams::create()
559{
560 numThreads = 1;
561 if (!FullSystem && workload.size() != 1)
562 panic("only one workload allowed");
563 return new AtomicSimpleCPU(this);
564}