Deleted Added
sdiff udiff text old ( 5487:f0ac4112e128 ) new ( 5496:6899b894166f )
full compact
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/atomic.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/AtomicSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
46 : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
47{
48}
49
50
51void
52AtomicSimpleCPU::TickEvent::process()
53{
54 cpu->tick();
55}
56
57const char *
58AtomicSimpleCPU::TickEvent::description() const
59{
60 return "AtomicSimpleCPU tick";
61}
62
63Port *
64AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
65{
66 if (if_name == "dcache_port")
67 return &dcachePort;
68 else if (if_name == "icache_port")
69 return &icachePort;
70 else if (if_name == "physmem_port") {
71 hasPhysMemPort = true;
72 return &physmemPort;
73 }
74 else
75 panic("No Such Port\n");
76}
77
78void
79AtomicSimpleCPU::init()
80{
81 BaseCPU::init();
82 cpuId = tc->readCpuId();
83#if FULL_SYSTEM
84 for (int i = 0; i < threadContexts.size(); ++i) {
85 ThreadContext *tc = threadContexts[i];
86
87 // initialize CPU, including PC
88 TheISA::initCPU(tc, cpuId);
89 }
90#endif
91 if (hasPhysMemPort) {
92 bool snoop = false;
93 AddrRangeList pmAddrList;
94 physmemPort.getPeerAddressRanges(pmAddrList, snoop);
95 physMemAddr = *pmAddrList.begin();
96 }
97 ifetch_req.setThreadContext(cpuId, 0); // Add thread ID if we add MT
98 data_read_req.setThreadContext(cpuId, 0); // Add thread ID here too
99 data_write_req.setThreadContext(cpuId, 0); // Add thread ID here too
100}
101
102bool
103AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
104{
105 panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
106 return true;
107}
108
109Tick
110AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
111{
112 //Snooping a coherence request, just return
113 return 0;
114}
115
116void
117AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
118{
119 //No internal storage to update, just return
120 return;
121}
122
123void
124AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
125{
126 if (status == RangeChange) {
127 if (!snoopRangeSent) {
128 snoopRangeSent = true;
129 sendStatusChange(Port::RangeChange);
130 }
131 return;
132 }
133
134 panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
135}
136
137void
138AtomicSimpleCPU::CpuPort::recvRetry()
139{
140 panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
141}
142
143void
144AtomicSimpleCPU::DcachePort::setPeer(Port *port)
145{
146 Port::setPeer(port);
147
148#if FULL_SYSTEM
149 // Update the ThreadContext's memory ports (Functional/Virtual
150 // Ports)
151 cpu->tcBase()->connectMemPorts();
152#endif
153}
154
155AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
156 : BaseSimpleCPU(p), tickEvent(this), width(p->width),
157 simulate_data_stalls(p->simulate_data_stalls),
158 simulate_inst_stalls(p->simulate_inst_stalls),
159 icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
160 physmemPort(name() + "-iport", this), hasPhysMemPort(false)
161{
162 _status = Idle;
163
164 icachePort.snoopRangeSent = false;
165 dcachePort.snoopRangeSent = false;
166
167}
168
169
170AtomicSimpleCPU::~AtomicSimpleCPU()
171{
172}
173
174void
175AtomicSimpleCPU::serialize(ostream &os)
176{
177 SimObject::State so_state = SimObject::getState();
178 SERIALIZE_ENUM(so_state);
179 Status _status = status();
180 SERIALIZE_ENUM(_status);
181 BaseSimpleCPU::serialize(os);
182 nameOut(os, csprintf("%s.tickEvent", name()));
183 tickEvent.serialize(os);
184}
185
186void
187AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
188{
189 SimObject::State so_state;
190 UNSERIALIZE_ENUM(so_state);
191 UNSERIALIZE_ENUM(_status);
192 BaseSimpleCPU::unserialize(cp, section);
193 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
194}
195
196void
197AtomicSimpleCPU::resume()
198{
199 if (_status == Idle || _status == SwitchedOut)
200 return;
201
202 DPRINTF(SimpleCPU, "Resume\n");
203 assert(system->getMemoryMode() == Enums::atomic);
204
205 changeState(SimObject::Running);
206 if (thread->status() == ThreadContext::Active) {
207 if (!tickEvent.scheduled()) {
208 tickEvent.schedule(nextCycle());
209 }
210 }
211}
212
213void
214AtomicSimpleCPU::switchOut()
215{
216 assert(status() == Running || status() == Idle);
217 _status = SwitchedOut;
218
219 tickEvent.squash();
220}
221
222
223void
224AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
225{
226 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
227
228 assert(!tickEvent.scheduled());
229
230 // if any of this CPU's ThreadContexts are active, mark the CPU as
231 // running and schedule its tick event.
232 for (int i = 0; i < threadContexts.size(); ++i) {
233 ThreadContext *tc = threadContexts[i];
234 if (tc->status() == ThreadContext::Active && _status != Running) {
235 _status = Running;
236 tickEvent.schedule(nextCycle());
237 break;
238 }
239 }
240 if (_status != Running) {
241 _status = Idle;
242 }
243 assert(threadContexts.size() == 1);
244 cpuId = tc->readCpuId();
245 ifetch_req.setThreadContext(cpuId, 0); // Add thread ID if we add MT
246 data_read_req.setThreadContext(cpuId, 0); // Add thread ID here too
247 data_write_req.setThreadContext(cpuId, 0); // Add thread ID here too
248}
249
250
251void
252AtomicSimpleCPU::activateContext(int thread_num, int delay)
253{
254 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
255
256 assert(thread_num == 0);
257 assert(thread);
258
259 assert(_status == Idle);
260 assert(!tickEvent.scheduled());
261
262 notIdleFraction++;
263 numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
264
265 //Make sure ticks are still on multiples of cycles
266 tickEvent.schedule(nextCycle(curTick + ticks(delay)));
267 _status = Running;
268}
269
270
271void
272AtomicSimpleCPU::suspendContext(int thread_num)
273{
274 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
275
276 assert(thread_num == 0);
277 assert(thread);
278
279 assert(_status == Running);
280
281 // tick event may not be scheduled if this gets called from inside
282 // an instruction's execution, e.g. "quiesce"
283 if (tickEvent.scheduled())
284 tickEvent.deschedule();
285
286 notIdleFraction--;
287 _status = Idle;
288}
289
290
291template <class T>
292Fault
293AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
294{
295 // use the CPU's statically allocated read request and packet objects
296 Request *req = &data_read_req;
297
298 if (traceData) {
299 traceData->setAddr(addr);
300 }
301
302 //The block size of our peer.
303 int blockSize = dcachePort.peerBlockSize();
304 //The size of the data we're trying to read.
305 int dataSize = sizeof(T);
306
307 uint8_t * dataPtr = (uint8_t *)&data;
308
309 //The address of the second part of this access if it needs to be split
310 //across a cache line boundary.
311 Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
312
313 if(secondAddr > addr)
314 dataSize = secondAddr - addr;
315
316 dcache_latency = 0;
317
318 while(1) {
319 req->setVirt(0, addr, dataSize, flags, thread->readPC());
320
321 // translate to physical address
322 Fault fault = thread->translateDataReadReq(req);
323
324 // Now do the access.
325 if (fault == NoFault) {
326 Packet pkt = Packet(req,
327 req->isLocked() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
328 Packet::Broadcast);
329 pkt.dataStatic(dataPtr);
330
331 if (req->isMmapedIpr())
332 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
333 else {
334 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
335 dcache_latency += physmemPort.sendAtomic(&pkt);
336 else
337 dcache_latency += dcachePort.sendAtomic(&pkt);
338 }
339 dcache_access = true;
340
341 assert(!pkt.isError());
342
343 if (req->isLocked()) {
344 TheISA::handleLockedRead(thread, req);
345 }
346 }
347
348 // This will need a new way to tell if it has a dcache attached.
349 if (req->isUncacheable())
350 recordEvent("Uncached Read");
351
352 //If there's a fault, return it
353 if (fault != NoFault)
354 return fault;
355 //If we don't need to access a second cache line, stop now.
356 if (secondAddr <= addr)
357 {
358 data = gtoh(data);
359 if (traceData) {
360 traceData->setData(data);
361 }
362 return fault;
363 }
364
365 /*
366 * Set up for accessing the second cache line.
367 */
368
369 //Move the pointer we're reading into to the correct location.
370 dataPtr += dataSize;
371 //Adjust the size to get the remaining bytes.
372 dataSize = addr + sizeof(T) - secondAddr;
373 //And access the right address.
374 addr = secondAddr;
375 }
376}
377
378Fault
379AtomicSimpleCPU::translateDataReadAddr(Addr vaddr, Addr & paddr,
380 int size, unsigned flags)
381{
382 // use the CPU's statically allocated read request and packet objects
383 Request *req = &data_read_req;
384
385 if (traceData) {
386 traceData->setAddr(vaddr);
387 }
388
389 //The block size of our peer.
390 int blockSize = dcachePort.peerBlockSize();
391 //The size of the data we're trying to read.
392 int dataSize = size;
393
394 bool firstTimeThrough = true;
395
396 //The address of the second part of this access if it needs to be split
397 //across a cache line boundary.
398 Addr secondAddr = roundDown(vaddr + dataSize - 1, blockSize);
399
400 if(secondAddr > vaddr)
401 dataSize = secondAddr - vaddr;
402
403 while(1) {
404 req->setVirt(0, vaddr, dataSize, flags, thread->readPC());
405
406 // translate to physical address
407 Fault fault = thread->translateDataReadReq(req);
408
409 //If there's a fault, return it
410 if (fault != NoFault)
411 return fault;
412
413 if (firstTimeThrough) {
414 paddr = req->getPaddr();
415 firstTimeThrough = false;
416 }
417
418 //If we don't need to access a second cache line, stop now.
419 if (secondAddr <= vaddr)
420 return fault;
421
422 /*
423 * Set up for accessing the second cache line.
424 */
425
426 //Adjust the size to get the remaining bytes.
427 dataSize = vaddr + size - secondAddr;
428 //And access the right address.
429 vaddr = secondAddr;
430 }
431}
432
433#ifndef DOXYGEN_SHOULD_SKIP_THIS
434
435template
436Fault
437AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
438
439template
440Fault
441AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
442
443template
444Fault
445AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
446
447template
448Fault
449AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
450
451template
452Fault
453AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
454
455template
456Fault
457AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
458
459#endif //DOXYGEN_SHOULD_SKIP_THIS
460
461template<>
462Fault
463AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
464{
465 return read(addr, *(uint64_t*)&data, flags);
466}
467
468template<>
469Fault
470AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
471{
472 return read(addr, *(uint32_t*)&data, flags);
473}
474
475
476template<>
477Fault
478AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
479{
480 return read(addr, (uint32_t&)data, flags);
481}
482
483
484template <class T>
485Fault
486AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
487{
488 // use the CPU's statically allocated write request and packet objects
489 Request *req = &data_write_req;
490
491 if (traceData) {
492 traceData->setAddr(addr);
493 }
494
495 //The block size of our peer.
496 int blockSize = dcachePort.peerBlockSize();
497 //The size of the data we're trying to read.
498 int dataSize = sizeof(T);
499
500 uint8_t * dataPtr = (uint8_t *)&data;
501
502 //The address of the second part of this access if it needs to be split
503 //across a cache line boundary.
504 Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
505
506 if(secondAddr > addr)
507 dataSize = secondAddr - addr;
508
509 dcache_latency = 0;
510
511 while(1) {
512 req->setVirt(0, addr, dataSize, flags, thread->readPC());
513
514 // translate to physical address
515 Fault fault = thread->translateDataWriteReq(req);
516
517 // Now do the access.
518 if (fault == NoFault) {
519 MemCmd cmd = MemCmd::WriteReq; // default
520 bool do_access = true; // flag to suppress cache access
521
522 if (req->isLocked()) {
523 cmd = MemCmd::StoreCondReq;
524 do_access = TheISA::handleLockedWrite(thread, req);
525 } else if (req->isSwap()) {
526 cmd = MemCmd::SwapReq;
527 if (req->isCondSwap()) {
528 assert(res);
529 req->setExtraData(*res);
530 }
531 }
532
533 if (do_access) {
534 Packet pkt = Packet(req, cmd, Packet::Broadcast);
535 pkt.dataStatic(dataPtr);
536
537 if (req->isMmapedIpr()) {
538 dcache_latency +=
539 TheISA::handleIprWrite(thread->getTC(), &pkt);
540 } else {
541 //XXX This needs to be outside of the loop in order to
542 //work properly for cache line boundary crossing
543 //accesses in transendian simulations.
544 data = htog(data);
545 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
546 dcache_latency += physmemPort.sendAtomic(&pkt);
547 else
548 dcache_latency += dcachePort.sendAtomic(&pkt);
549 }
550 dcache_access = true;
551 assert(!pkt.isError());
552
553 if (req->isSwap()) {
554 assert(res);
555 *res = pkt.get<T>();
556 }
557 }
558
559 if (res && !req->isSwap()) {
560 *res = req->getExtraData();
561 }
562 }
563
564 // This will need a new way to tell if it's hooked up to a cache or not.
565 if (req->isUncacheable())
566 recordEvent("Uncached Write");
567
568 //If there's a fault or we don't need to access a second cache line,
569 //stop now.
570 if (fault != NoFault || secondAddr <= addr)
571 {
572 // If the write needs to have a fault on the access, consider
573 // calling changeStatus() and changing it to "bad addr write"
574 // or something.
575 if (traceData) {
576 traceData->setData(data);
577 }
578 return fault;
579 }
580
581 /*
582 * Set up for accessing the second cache line.
583 */
584
585 //Move the pointer we're reading into to the correct location.
586 dataPtr += dataSize;
587 //Adjust the size to get the remaining bytes.
588 dataSize = addr + sizeof(T) - secondAddr;
589 //And access the right address.
590 addr = secondAddr;
591 }
592}
593
594Fault
595AtomicSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
596 int size, unsigned flags)
597{
598 // use the CPU's statically allocated write request and packet objects
599 Request *req = &data_write_req;
600
601 if (traceData) {
602 traceData->setAddr(vaddr);
603 }
604
605 //The block size of our peer.
606 int blockSize = dcachePort.peerBlockSize();
607
608 //The address of the second part of this access if it needs to be split
609 //across a cache line boundary.
610 Addr secondAddr = roundDown(vaddr + size - 1, blockSize);
611
612 //The size of the data we're trying to read.
613 int dataSize = size;
614
615 bool firstTimeThrough = true;
616
617 if(secondAddr > vaddr)
618 dataSize = secondAddr - vaddr;
619
620 dcache_latency = 0;
621
622 while(1) {
623 req->setVirt(0, vaddr, dataSize, flags, thread->readPC());
624
625 // translate to physical address
626 Fault fault = thread->translateDataWriteReq(req);
627
628 //If there's a fault or we don't need to access a second cache line,
629 //stop now.
630 if (fault != NoFault)
631 return fault;
632
633 if (firstTimeThrough) {
634 paddr = req->getPaddr();
635 firstTimeThrough = false;
636 }
637
638 if (secondAddr <= vaddr)
639 return fault;
640
641 /*
642 * Set up for accessing the second cache line.
643 */
644
645 //Adjust the size to get the remaining bytes.
646 dataSize = vaddr + size - secondAddr;
647 //And access the right address.
648 vaddr = secondAddr;
649 }
650}
651
652
653#ifndef DOXYGEN_SHOULD_SKIP_THIS
654
655template
656Fault
657AtomicSimpleCPU::write(Twin32_t data, Addr addr,
658 unsigned flags, uint64_t *res);
659
660template
661Fault
662AtomicSimpleCPU::write(Twin64_t data, Addr addr,
663 unsigned flags, uint64_t *res);
664
665template
666Fault
667AtomicSimpleCPU::write(uint64_t data, Addr addr,
668 unsigned flags, uint64_t *res);
669
670template
671Fault
672AtomicSimpleCPU::write(uint32_t data, Addr addr,
673 unsigned flags, uint64_t *res);
674
675template
676Fault
677AtomicSimpleCPU::write(uint16_t data, Addr addr,
678 unsigned flags, uint64_t *res);
679
680template
681Fault
682AtomicSimpleCPU::write(uint8_t data, Addr addr,
683 unsigned flags, uint64_t *res);
684
685#endif //DOXYGEN_SHOULD_SKIP_THIS
686
687template<>
688Fault
689AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
690{
691 return write(*(uint64_t*)&data, addr, flags, res);
692}
693
694template<>
695Fault
696AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
697{
698 return write(*(uint32_t*)&data, addr, flags, res);
699}
700
701
702template<>
703Fault
704AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
705{
706 return write((uint32_t)data, addr, flags, res);
707}
708
709
710void
711AtomicSimpleCPU::tick()
712{
713 DPRINTF(SimpleCPU, "Tick\n");
714
715 Tick latency = 0;
716
717 for (int i = 0; i < width; ++i) {
718 numCycles++;
719
720 if (!curStaticInst || !curStaticInst->isDelayedCommit())
721 checkForInterrupts();
722
723 checkPcEventQueue();
724
725 Fault fault = setupFetchRequest(&ifetch_req);
726
727 if (fault == NoFault) {
728 Tick icache_latency = 0;
729 bool icache_access = false;
730 dcache_access = false; // assume no dcache access
731
732 //Fetch more instruction memory if necessary
733 //if(predecoder.needMoreBytes())
734 //{
735 icache_access = true;
736 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
737 Packet::Broadcast);
738 ifetch_pkt.dataStatic(&inst);
739
740 if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
741 icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
742 else
743 icache_latency = icachePort.sendAtomic(&ifetch_pkt);
744
745 assert(!ifetch_pkt.isError());
746
747 // ifetch_req is initialized to read the instruction directly
748 // into the CPU object's inst field.
749 //}
750
751 preExecute();
752
753 if (curStaticInst) {
754 fault = curStaticInst->execute(this, traceData);
755
756 // keep an instruction count
757 if (fault == NoFault)
758 countInst();
759 else if (traceData) {
760 // If there was a fault, we should trace this instruction.
761 delete traceData;
762 traceData = NULL;
763 }
764
765 postExecute();
766 }
767
768 // @todo remove me after debugging with legion done
769 if (curStaticInst && (!curStaticInst->isMicroop() ||
770 curStaticInst->isFirstMicroop()))
771 instCnt++;
772
773 Tick stall_ticks = 0;
774 if (simulate_inst_stalls && icache_access)
775 stall_ticks += icache_latency;
776
777 if (simulate_data_stalls && dcache_access)
778 stall_ticks += dcache_latency;
779
780 if (stall_ticks) {
781 Tick stall_cycles = stall_ticks / ticks(1);
782 Tick aligned_stall_ticks = ticks(stall_cycles);
783
784 if (aligned_stall_ticks < stall_ticks)
785 aligned_stall_ticks += 1;
786
787 latency += aligned_stall_ticks;
788 }
789
790 }
791 if(fault != NoFault || !stayAtPC)
792 advancePC(fault);
793 }
794
795 // instruction takes at least one cycle
796 if (latency < ticks(1))
797 latency = ticks(1);
798
799 if (_status != Idle)
800 tickEvent.schedule(curTick + latency);
801}
802
803
804void
805AtomicSimpleCPU::printAddr(Addr a)
806{
807 dcachePort.printAddr(a);
808}
809
810
811////////////////////////////////////////////////////////////////////////
812//
813// AtomicSimpleCPU Simulation Object
814//
815AtomicSimpleCPU *
816AtomicSimpleCPUParams::create()
817{
818 AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
819 params->name = name;
820 params->numberOfThreads = 1;
821 params->max_insts_any_thread = max_insts_any_thread;
822 params->max_insts_all_threads = max_insts_all_threads;
823 params->max_loads_any_thread = max_loads_any_thread;
824 params->max_loads_all_threads = max_loads_all_threads;
825 params->progress_interval = progress_interval;
826 params->deferRegistration = defer_registration;
827 params->phase = phase;
828 params->clock = clock;
829 params->functionTrace = function_trace;
830 params->functionTraceStart = function_trace_start;
831 params->width = width;
832 params->simulate_data_stalls = simulate_data_stalls;
833 params->simulate_inst_stalls = simulate_inst_stalls;
834 params->system = system;
835 params->cpu_id = cpu_id;
836 params->tracer = tracer;
837
838 params->itb = itb;
839 params->dtb = dtb;
840#if FULL_SYSTEM
841 params->profile = profile;
842 params->do_quiesce = do_quiesce;
843 params->do_checkpoint_insts = do_checkpoint_insts;
844 params->do_statistics_insts = do_statistics_insts;
845#else
846 if (workload.size() != 1)
847 panic("only one workload allowed");
848 params->process = workload[0];
849#endif
850
851 AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
852 return cpu;
853}