Deleted Added
sdiff udiff text old ( 12127:4207df055b0d ) new ( 12276:22c220be30c5 )
full compact
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2012-2013,2015 ARM Limited
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "cpu/simple/atomic.hh"
45
46#include "arch/locked_mem.hh"
47#include "arch/mmapped_ipr.hh"
48#include "arch/utility.hh"
49#include "base/bigint.hh"
50#include "base/output.hh"
51#include "config/the_isa.hh"
52#include "cpu/exetrace.hh"
53#include "debug/Drain.hh"
54#include "debug/ExecFaulting.hh"
55#include "debug/SimpleCPU.hh"
56#include "mem/packet.hh"
57#include "mem/packet_access.hh"
58#include "mem/physical.hh"
59#include "params/AtomicSimpleCPU.hh"
60#include "sim/faults.hh"
61#include "sim/full_system.hh"
62#include "sim/system.hh"
63
64using namespace std;
65using namespace TheISA;
66
67void
68AtomicSimpleCPU::init()
69{
70 BaseSimpleCPU::init();
71
72 int cid = threadContexts[0]->contextId();
73 ifetch_req.setContext(cid);
74 data_read_req.setContext(cid);
75 data_write_req.setContext(cid);
76}
77
78AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
79 : BaseSimpleCPU(p),
80 tickEvent([this]{ tick(); }, "AtomicSimpleCPU tick",
81 false, Event::CPU_Tick_Pri),
82 width(p->width), locked(false),
83 simulate_data_stalls(p->simulate_data_stalls),
84 simulate_inst_stalls(p->simulate_inst_stalls),
85 icachePort(name() + ".icache_port", this),
86 dcachePort(name() + ".dcache_port", this),
87 fastmem(p->fastmem), dcache_access(false), dcache_latency(0),
88 ppCommit(nullptr)
89{
90 _status = Idle;
91}
92
93
94AtomicSimpleCPU::~AtomicSimpleCPU()
95{
96 if (tickEvent.scheduled()) {
97 deschedule(tickEvent);
98 }
99}
100
101DrainState
102AtomicSimpleCPU::drain()
103{
104 if (switchedOut())
105 return DrainState::Drained;
106
107 if (!isDrained()) {
108 DPRINTF(Drain, "Requesting drain.\n");
109 return DrainState::Draining;
110 } else {
111 if (tickEvent.scheduled())
112 deschedule(tickEvent);
113
114 activeThreads.clear();
115 DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
116 return DrainState::Drained;
117 }
118}
119
120void
121AtomicSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
122{
123 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
124 pkt->cmdString());
125
126 for (ThreadID tid = 0; tid < numThreads; tid++) {
127 if (tid != sender) {
128 if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
129 wakeup(tid);
130 }
131
132 TheISA::handleLockedSnoop(threadInfo[tid]->thread,
133 pkt, dcachePort.cacheBlockMask);
134 }
135 }
136}
137
138void
139AtomicSimpleCPU::drainResume()
140{
141 assert(!tickEvent.scheduled());
142 if (switchedOut())
143 return;
144
145 DPRINTF(SimpleCPU, "Resume\n");
146 verifyMemoryMode();
147
148 assert(!threadContexts.empty());
149
150 _status = BaseSimpleCPU::Idle;
151
152 for (ThreadID tid = 0; tid < numThreads; tid++) {
153 if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
154 threadInfo[tid]->notIdleFraction = 1;
155 activeThreads.push_back(tid);
156 _status = BaseSimpleCPU::Running;
157
158 // Tick if any threads active
159 if (!tickEvent.scheduled()) {
160 schedule(tickEvent, nextCycle());
161 }
162 } else {
163 threadInfo[tid]->notIdleFraction = 0;
164 }
165 }
166}
167
168bool
169AtomicSimpleCPU::tryCompleteDrain()
170{
171 if (drainState() != DrainState::Draining)
172 return false;
173
174 DPRINTF(Drain, "tryCompleteDrain.\n");
175 if (!isDrained())
176 return false;
177
178 DPRINTF(Drain, "CPU done draining, processing drain event\n");
179 signalDrainDone();
180
181 return true;
182}
183
184
185void
186AtomicSimpleCPU::switchOut()
187{
188 BaseSimpleCPU::switchOut();
189
190 assert(!tickEvent.scheduled());
191 assert(_status == BaseSimpleCPU::Running || _status == Idle);
192 assert(isDrained());
193}
194
195
196void
197AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
198{
199 BaseSimpleCPU::takeOverFrom(oldCPU);
200
201 // The tick event should have been descheduled by drain()
202 assert(!tickEvent.scheduled());
203}
204
205void
206AtomicSimpleCPU::verifyMemoryMode() const
207{
208 if (!system->isAtomicMode()) {
209 fatal("The atomic CPU requires the memory system to be in "
210 "'atomic' mode.\n");
211 }
212}
213
214void
215AtomicSimpleCPU::activateContext(ThreadID thread_num)
216{
217 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
218
219 assert(thread_num < numThreads);
220
221 threadInfo[thread_num]->notIdleFraction = 1;
222 Cycles delta = ticksToCycles(threadInfo[thread_num]->thread->lastActivate -
223 threadInfo[thread_num]->thread->lastSuspend);
224 numCycles += delta;
225 ppCycles->notify(delta);
226
227 if (!tickEvent.scheduled()) {
228 //Make sure ticks are still on multiples of cycles
229 schedule(tickEvent, clockEdge(Cycles(0)));
230 }
231 _status = BaseSimpleCPU::Running;
232 if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
233 == activeThreads.end()) {
234 activeThreads.push_back(thread_num);
235 }
236
237 BaseCPU::activateContext(thread_num);
238}
239
240
241void
242AtomicSimpleCPU::suspendContext(ThreadID thread_num)
243{
244 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
245
246 assert(thread_num < numThreads);
247 activeThreads.remove(thread_num);
248
249 if (_status == Idle)
250 return;
251
252 assert(_status == BaseSimpleCPU::Running);
253
254 threadInfo[thread_num]->notIdleFraction = 0;
255
256 if (activeThreads.empty()) {
257 _status = Idle;
258
259 if (tickEvent.scheduled()) {
260 deschedule(tickEvent);
261 }
262 }
263
264 BaseCPU::suspendContext(thread_num);
265}
266
267
268Tick
269AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt)
270{
271 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
272 pkt->cmdString());
273
274 // X86 ISA: Snooping an invalidation for monitor/mwait
275 AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
276
277 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
278 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
279 cpu->wakeup(tid);
280 }
281 }
282
283 // if snoop invalidates, release any associated locks
284 // When run without caches, Invalidation packets will not be received
285 // hence we must check if the incoming packets are writes and wakeup
286 // the processor accordingly
287 if (pkt->isInvalidate() || pkt->isWrite()) {
288 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
289 pkt->getAddr());
290 for (auto &t_info : cpu->threadInfo) {
291 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
292 }
293 }
294
295 return 0;
296}
297
298void
299AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt)
300{
301 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
302 pkt->cmdString());
303
304 // X86 ISA: Snooping an invalidation for monitor/mwait
305 AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
306 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
307 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
308 cpu->wakeup(tid);
309 }
310 }
311
312 // if snoop invalidates, release any associated locks
313 if (pkt->isInvalidate()) {
314 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
315 pkt->getAddr());
316 for (auto &t_info : cpu->threadInfo) {
317 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
318 }
319 }
320}
321
322Fault
323AtomicSimpleCPU::readMem(Addr addr, uint8_t * data, unsigned size,
324 Request::Flags flags)
325{
326 SimpleExecContext& t_info = *threadInfo[curThread];
327 SimpleThread* thread = t_info.thread;
328
329 // use the CPU's statically allocated read request and packet objects
330 Request *req = &data_read_req;
331
332 if (traceData)
333 traceData->setMem(addr, size, flags);
334
335 //The size of the data we're trying to read.
336 int fullSize = size;
337
338 //The address of the second part of this access if it needs to be split
339 //across a cache line boundary.
340 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
341
342 if (secondAddr > addr)
343 size = secondAddr - addr;
344
345 dcache_latency = 0;
346
347 req->taskId(taskId());
348 while (1) {
349 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
350
351 // translate to physical address
352 Fault fault = thread->dtb->translateAtomic(req, thread->getTC(),
353 BaseTLB::Read);
354
355 // Now do the access.
356 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
357 Packet pkt(req, Packet::makeReadCmd(req));
358 pkt.dataStatic(data);
359
360 if (req->isMmappedIpr())
361 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
362 else {
363 if (fastmem && system->isMemAddr(pkt.getAddr()))
364 system->getPhysMem().access(&pkt);
365 else
366 dcache_latency += dcachePort.sendAtomic(&pkt);
367 }
368 dcache_access = true;
369
370 assert(!pkt.isError());
371
372 if (req->isLLSC()) {
373 TheISA::handleLockedRead(thread, req);
374 }
375 }
376
377 //If there's a fault, return it
378 if (fault != NoFault) {
379 if (req->isPrefetch()) {
380 return NoFault;
381 } else {
382 return fault;
383 }
384 }
385
386 //If we don't need to access a second cache line, stop now.
387 if (secondAddr <= addr)
388 {
389 if (req->isLockedRMW() && fault == NoFault) {
390 assert(!locked);
391 locked = true;
392 }
393
394 return fault;
395 }
396
397 /*
398 * Set up for accessing the second cache line.
399 */
400
401 //Move the pointer we're reading into to the correct location.
402 data += size;
403 //Adjust the size to get the remaining bytes.
404 size = addr + fullSize - secondAddr;
405 //And access the right address.
406 addr = secondAddr;
407 }
408}
409
410Fault
411AtomicSimpleCPU::initiateMemRead(Addr addr, unsigned size,
412 Request::Flags flags)
413{
414 panic("initiateMemRead() is for timing accesses, and should "
415 "never be called on AtomicSimpleCPU.\n");
416}
417
418Fault
419AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size, Addr addr,
420 Request::Flags flags, uint64_t *res)
421{
422 SimpleExecContext& t_info = *threadInfo[curThread];
423 SimpleThread* thread = t_info.thread;
424 static uint8_t zero_array[64] = {};
425
426 if (data == NULL) {
427 assert(size <= 64);
428 assert(flags & Request::CACHE_BLOCK_ZERO);
429 // This must be a cache block cleaning request
430 data = zero_array;
431 }
432
433 // use the CPU's statically allocated write request and packet objects
434 Request *req = &data_write_req;
435
436 if (traceData)
437 traceData->setMem(addr, size, flags);
438
439 //The size of the data we're trying to read.
440 int fullSize = size;
441
442 //The address of the second part of this access if it needs to be split
443 //across a cache line boundary.
444 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
445
446 if (secondAddr > addr)
447 size = secondAddr - addr;
448
449 dcache_latency = 0;
450
451 req->taskId(taskId());
452 while (1) {
453 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
454
455 // translate to physical address
456 Fault fault = thread->dtb->translateAtomic(req, thread->getTC(), BaseTLB::Write);
457
458 // Now do the access.
459 if (fault == NoFault) {
460 MemCmd cmd = MemCmd::WriteReq; // default
461 bool do_access = true; // flag to suppress cache access
462
463 if (req->isLLSC()) {
464 cmd = MemCmd::StoreCondReq;
465 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
466 } else if (req->isSwap()) {
467 cmd = MemCmd::SwapReq;
468 if (req->isCondSwap()) {
469 assert(res);
470 req->setExtraData(*res);
471 }
472 }
473
474 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
475 Packet pkt = Packet(req, cmd);
476 pkt.dataStatic(data);
477
478 if (req->isMmappedIpr()) {
479 dcache_latency +=
480 TheISA::handleIprWrite(thread->getTC(), &pkt);
481 } else {
482 if (fastmem && system->isMemAddr(pkt.getAddr()))
483 system->getPhysMem().access(&pkt);
484 else
485 dcache_latency += dcachePort.sendAtomic(&pkt);
486
487 // Notify other threads on this CPU of write
488 threadSnoop(&pkt, curThread);
489 }
490 dcache_access = true;
491 assert(!pkt.isError());
492
493 if (req->isSwap()) {
494 assert(res);
495 memcpy(res, pkt.getConstPtr<uint8_t>(), fullSize);
496 }
497 }
498
499 if (res && !req->isSwap()) {
500 *res = req->getExtraData();
501 }
502 }
503
504 //If there's a fault or we don't need to access a second cache line,
505 //stop now.
506 if (fault != NoFault || secondAddr <= addr)
507 {
508 if (req->isLockedRMW() && fault == NoFault) {
509 assert(locked);
510 locked = false;
511 }
512
513
514 if (fault != NoFault && req->isPrefetch()) {
515 return NoFault;
516 } else {
517 return fault;
518 }
519 }
520
521 /*
522 * Set up for accessing the second cache line.
523 */
524
525 //Move the pointer we're reading into to the correct location.
526 data += size;
527 //Adjust the size to get the remaining bytes.
528 size = addr + fullSize - secondAddr;
529 //And access the right address.
530 addr = secondAddr;
531 }
532}
533
534
535void
536AtomicSimpleCPU::tick()
537{
538 DPRINTF(SimpleCPU, "Tick\n");
539
540 // Change thread if multi-threaded
541 swapActiveThread();
542
543 // Set memroy request ids to current thread
544 if (numThreads > 1) {
545 ContextID cid = threadContexts[curThread]->contextId();
546
547 ifetch_req.setContext(cid);
548 data_read_req.setContext(cid);
549 data_write_req.setContext(cid);
550 }
551
552 SimpleExecContext& t_info = *threadInfo[curThread];
553 SimpleThread* thread = t_info.thread;
554
555 Tick latency = 0;
556
557 for (int i = 0; i < width || locked; ++i) {
558 numCycles++;
559 ppCycles->notify(1);
560
561 if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
562 checkForInterrupts();
563 checkPcEventQueue();
564 }
565
566 // We must have just got suspended by a PC event
567 if (_status == Idle) {
568 tryCompleteDrain();
569 return;
570 }
571
572 Fault fault = NoFault;
573
574 TheISA::PCState pcState = thread->pcState();
575
576 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
577 !curMacroStaticInst;
578 if (needToFetch) {
579 ifetch_req.taskId(taskId());
580 setupFetchRequest(&ifetch_req);
581 fault = thread->itb->translateAtomic(&ifetch_req, thread->getTC(),
582 BaseTLB::Execute);
583 }
584
585 if (fault == NoFault) {
586 Tick icache_latency = 0;
587 bool icache_access = false;
588 dcache_access = false; // assume no dcache access
589
590 if (needToFetch) {
591 // This is commented out because the decoder would act like
592 // a tiny cache otherwise. It wouldn't be flushed when needed
593 // like the I cache. It should be flushed, and when that works
594 // this code should be uncommented.
595 //Fetch more instruction memory if necessary
596 //if (decoder.needMoreBytes())
597 //{
598 icache_access = true;
599 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
600 ifetch_pkt.dataStatic(&inst);
601
602 if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
603 system->getPhysMem().access(&ifetch_pkt);
604 else
605 icache_latency = icachePort.sendAtomic(&ifetch_pkt);
606
607 assert(!ifetch_pkt.isError());
608
609 // ifetch_req is initialized to read the instruction directly
610 // into the CPU object's inst field.
611 //}
612 }
613
614 preExecute();
615
616 Tick stall_ticks = 0;
617 if (curStaticInst) {
618 fault = curStaticInst->execute(&t_info, traceData);
619
620 // keep an instruction count
621 if (fault == NoFault) {
622 countInst();
623 ppCommit->notify(std::make_pair(thread, curStaticInst));
624 }
625 else if (traceData && !DTRACE(ExecFaulting)) {
626 delete traceData;
627 traceData = NULL;
628 }
629
630 if (dynamic_pointer_cast<SyscallRetryFault>(fault)) {
631 // Retry execution of system calls after a delay.
632 // Prevents immediate re-execution since conditions which
633 // caused the retry are unlikely to change every tick.
634 stall_ticks += clockEdge(syscallRetryLatency) - curTick();
635 }
636
637 postExecute();
638 }
639
640 // @todo remove me after debugging with legion done
641 if (curStaticInst && (!curStaticInst->isMicroop() ||
642 curStaticInst->isFirstMicroop()))
643 instCnt++;
644
645 if (simulate_inst_stalls && icache_access)
646 stall_ticks += icache_latency;
647
648 if (simulate_data_stalls && dcache_access)
649 stall_ticks += dcache_latency;
650
651 if (stall_ticks) {
652 // the atomic cpu does its accounting in ticks, so
653 // keep counting in ticks but round to the clock
654 // period
655 latency += divCeil(stall_ticks, clockPeriod()) *
656 clockPeriod();
657 }
658
659 }
660 if (fault != NoFault || !t_info.stayAtPC)
661 advancePC(fault);
662 }
663
664 if (tryCompleteDrain())
665 return;
666
667 // instruction takes at least one cycle
668 if (latency < clockPeriod())
669 latency = clockPeriod();
670
671 if (_status != Idle)
672 reschedule(tickEvent, curTick() + latency, true);
673}
674
675void
676AtomicSimpleCPU::regProbePoints()
677{
678 BaseCPU::regProbePoints();
679
680 ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>>
681 (getProbeManager(), "Commit");
682}
683
684void
685AtomicSimpleCPU::printAddr(Addr a)
686{
687 dcachePort.printAddr(a);
688}
689
690////////////////////////////////////////////////////////////////////////
691//
692// AtomicSimpleCPU Simulation Object
693//
694AtomicSimpleCPU *
695AtomicSimpleCPUParams::create()
696{
697 return new AtomicSimpleCPU(this);
698}