Deleted Added
sdiff udiff text old ( 10529:05b5a6cf3521 ) new ( 10537:47fe87b0cf97 )
full compact
1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "base/output.hh"
48#include "config/the_isa.hh"
49#include "cpu/simple/atomic.hh"
50#include "cpu/exetrace.hh"
51#include "debug/Drain.hh"
52#include "debug/ExecFaulting.hh"
53#include "debug/SimpleCPU.hh"
54#include "mem/packet.hh"
55#include "mem/packet_access.hh"
56#include "mem/physical.hh"
57#include "params/AtomicSimpleCPU.hh"
58#include "sim/faults.hh"
59#include "sim/system.hh"
60#include "sim/full_system.hh"
61
62using namespace std;
63using namespace TheISA;
64
65AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
66 : Event(CPU_Tick_Pri), cpu(c)
67{
68}
69
70
71void
72AtomicSimpleCPU::TickEvent::process()
73{
74 cpu->tick();
75}
76
77const char *
78AtomicSimpleCPU::TickEvent::description() const
79{
80 return "AtomicSimpleCPU tick";
81}
82
83void
84AtomicSimpleCPU::init()
85{
86 BaseCPU::init();
87
88 // Initialise the ThreadContext's memory proxies
89 tcBase()->initMemProxies(tcBase());
90
91 if (FullSystem && !params()->switched_out) {
92 ThreadID size = threadContexts.size();
93 for (ThreadID i = 0; i < size; ++i) {
94 ThreadContext *tc = threadContexts[i];
95 // initialize CPU, including PC
96 TheISA::initCPU(tc, tc->contextId());
97 }
98 }
99
100 // Atomic doesn't do MT right now, so contextId == threadId
101 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
102 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
103 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
104}
105
106AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
107 : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
108 simulate_data_stalls(p->simulate_data_stalls),
109 simulate_inst_stalls(p->simulate_inst_stalls),
110 drain_manager(NULL),
111 icachePort(name() + ".icache_port", this),
112 dcachePort(name() + ".dcache_port", this),
113 fastmem(p->fastmem)
114{
115 _status = Idle;
116}
117
118
119AtomicSimpleCPU::~AtomicSimpleCPU()
120{
121 if (tickEvent.scheduled()) {
122 deschedule(tickEvent);
123 }
124}
125
126unsigned int
127AtomicSimpleCPU::drain(DrainManager *dm)
128{
129 assert(!drain_manager);
130 if (switchedOut())
131 return 0;
132
133 if (!isDrained()) {
134 DPRINTF(Drain, "Requesting drain: %s\n", pcState());
135 drain_manager = dm;
136 return 1;
137 } else {
138 if (tickEvent.scheduled())
139 deschedule(tickEvent);
140
141 DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
142 return 0;
143 }
144}
145
146void
147AtomicSimpleCPU::drainResume()
148{
149 assert(!tickEvent.scheduled());
150 assert(!drain_manager);
151 if (switchedOut())
152 return;
153
154 DPRINTF(SimpleCPU, "Resume\n");
155 verifyMemoryMode();
156
157 assert(!threadContexts.empty());
158 if (threadContexts.size() > 1)
159 fatal("The atomic CPU only supports one thread.\n");
160
161 if (thread->status() == ThreadContext::Active) {
162 schedule(tickEvent, nextCycle());
163 _status = BaseSimpleCPU::Running;
164 notIdleFraction = 1;
165 } else {
166 _status = BaseSimpleCPU::Idle;
167 notIdleFraction = 0;
168 }
169
170 system->totalNumInsts = 0;
171}
172
173bool
174AtomicSimpleCPU::tryCompleteDrain()
175{
176 if (!drain_manager)
177 return false;
178
179 DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
180 if (!isDrained())
181 return false;
182
183 DPRINTF(Drain, "CPU done draining, processing drain event\n");
184 drain_manager->signalDrainDone();
185 drain_manager = NULL;
186
187 return true;
188}
189
190
191void
192AtomicSimpleCPU::switchOut()
193{
194 BaseSimpleCPU::switchOut();
195
196 assert(!tickEvent.scheduled());
197 assert(_status == BaseSimpleCPU::Running || _status == Idle);
198 assert(isDrained());
199}
200
201
202void
203AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
204{
205 BaseSimpleCPU::takeOverFrom(oldCPU);
206
207 // The tick event should have been descheduled by drain()
208 assert(!tickEvent.scheduled());
209
210 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
211 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
212 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
213}
214
215void
216AtomicSimpleCPU::verifyMemoryMode() const
217{
218 if (!system->isAtomicMode()) {
219 fatal("The atomic CPU requires the memory system to be in "
220 "'atomic' mode.\n");
221 }
222}
223
224void
225AtomicSimpleCPU::activateContext(ThreadID thread_num)
226{
227 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
228
229 assert(thread_num == 0);
230 assert(thread);
231
232 assert(_status == Idle);
233 assert(!tickEvent.scheduled());
234
235 notIdleFraction = 1;
236 Cycles delta = ticksToCycles(thread->lastActivate - thread->lastSuspend);
237 numCycles += delta;
238 ppCycles->notify(delta);
239
240 //Make sure ticks are still on multiples of cycles
241 schedule(tickEvent, clockEdge(Cycles(0)));
242 _status = BaseSimpleCPU::Running;
243}
244
245
246void
247AtomicSimpleCPU::suspendContext(ThreadID thread_num)
248{
249 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
250
251 assert(thread_num == 0);
252 assert(thread);
253
254 if (_status == Idle)
255 return;
256
257 assert(_status == BaseSimpleCPU::Running);
258
259 // tick event may not be scheduled if this gets called from inside
260 // an instruction's execution, e.g. "quiesce"
261 if (tickEvent.scheduled())
262 deschedule(tickEvent);
263
264 notIdleFraction = 0;
265 _status = Idle;
266}
267
268
269Tick
270AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt)
271{
272 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
273 pkt->cmdString());
274
275 // X86 ISA: Snooping an invalidation for monitor/mwait
276 AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
277 if(cpu->getAddrMonitor()->doMonitor(pkt)) {
278 cpu->wakeup();
279 }
280
281 // if snoop invalidates, release any associated locks
282 if (pkt->isInvalidate()) {
283 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
284 pkt->getAddr());
285 TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask);
286 }
287
288 return 0;
289}
290
291void
292AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt)
293{
294 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
295 pkt->cmdString());
296
297 // X86 ISA: Snooping an invalidation for monitor/mwait
298 AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
299 if(cpu->getAddrMonitor()->doMonitor(pkt)) {
300 cpu->wakeup();
301 }
302
303 // if snoop invalidates, release any associated locks
304 if (pkt->isInvalidate()) {
305 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
306 pkt->getAddr());
307 TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask);
308 }
309}
310
311Fault
312AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
313 unsigned size, unsigned flags)
314{
315 // use the CPU's statically allocated read request and packet objects
316 Request *req = &data_read_req;
317
318 if (traceData) {
319 traceData->setAddr(addr);
320 }
321
322 //The size of the data we're trying to read.
323 int fullSize = size;
324
325 //The address of the second part of this access if it needs to be split
326 //across a cache line boundary.
327 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
328
329 if (secondAddr > addr)
330 size = secondAddr - addr;
331
332 dcache_latency = 0;
333
334 req->taskId(taskId());
335 while (1) {
336 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
337
338 // translate to physical address
339 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
340
341 // Now do the access.
342 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
343 Packet pkt(req, MemCmd::ReadReq);
344 pkt.refineCommand();
345 pkt.dataStatic(data);
346
347 if (req->isMmappedIpr())
348 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
349 else {
350 if (fastmem && system->isMemAddr(pkt.getAddr()))
351 system->getPhysMem().access(&pkt);
352 else
353 dcache_latency += dcachePort.sendAtomic(&pkt);
354 }
355 dcache_access = true;
356
357 assert(!pkt.isError());
358
359 if (req->isLLSC()) {
360 TheISA::handleLockedRead(thread, req);
361 }
362 }
363
364 //If there's a fault, return it
365 if (fault != NoFault) {
366 if (req->isPrefetch()) {
367 return NoFault;
368 } else {
369 return fault;
370 }
371 }
372
373 //If we don't need to access a second cache line, stop now.
374 if (secondAddr <= addr)
375 {
376 if (req->isLocked() && fault == NoFault) {
377 assert(!locked);
378 locked = true;
379 }
380 return fault;
381 }
382
383 /*
384 * Set up for accessing the second cache line.
385 */
386
387 //Move the pointer we're reading into to the correct location.
388 data += size;
389 //Adjust the size to get the remaining bytes.
390 size = addr + fullSize - secondAddr;
391 //And access the right address.
392 addr = secondAddr;
393 }
394}
395
396
397Fault
398AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
399 Addr addr, unsigned flags, uint64_t *res)
400{
401
402 static uint8_t zero_array[64] = {};
403
404 if (data == NULL) {
405 assert(size <= 64);
406 assert(flags & Request::CACHE_BLOCK_ZERO);
407 // This must be a cache block cleaning request
408 data = zero_array;
409 }
410
411 // use the CPU's statically allocated write request and packet objects
412 Request *req = &data_write_req;
413
414 if (traceData) {
415 traceData->setAddr(addr);
416 }
417
418 //The size of the data we're trying to read.
419 int fullSize = size;
420
421 //The address of the second part of this access if it needs to be split
422 //across a cache line boundary.
423 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
424
425 if(secondAddr > addr)
426 size = secondAddr - addr;
427
428 dcache_latency = 0;
429
430 req->taskId(taskId());
431 while(1) {
432 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
433
434 // translate to physical address
435 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
436
437 // Now do the access.
438 if (fault == NoFault) {
439 MemCmd cmd = MemCmd::WriteReq; // default
440 bool do_access = true; // flag to suppress cache access
441
442 if (req->isLLSC()) {
443 cmd = MemCmd::StoreCondReq;
444 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
445 } else if (req->isSwap()) {
446 cmd = MemCmd::SwapReq;
447 if (req->isCondSwap()) {
448 assert(res);
449 req->setExtraData(*res);
450 }
451 }
452
453 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
454 Packet pkt = Packet(req, cmd);
455 pkt.dataStatic(data);
456
457 if (req->isMmappedIpr()) {
458 dcache_latency +=
459 TheISA::handleIprWrite(thread->getTC(), &pkt);
460 } else {
461 if (fastmem && system->isMemAddr(pkt.getAddr()))
462 system->getPhysMem().access(&pkt);
463 else
464 dcache_latency += dcachePort.sendAtomic(&pkt);
465 }
466 dcache_access = true;
467 assert(!pkt.isError());
468
469 if (req->isSwap()) {
470 assert(res);
471 memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
472 }
473 }
474
475 if (res && !req->isSwap()) {
476 *res = req->getExtraData();
477 }
478 }
479
480 //If there's a fault or we don't need to access a second cache line,
481 //stop now.
482 if (fault != NoFault || secondAddr <= addr)
483 {
484 if (req->isLocked() && fault == NoFault) {
485 assert(locked);
486 locked = false;
487 }
488 if (fault != NoFault && req->isPrefetch()) {
489 return NoFault;
490 } else {
491 return fault;
492 }
493 }
494
495 /*
496 * Set up for accessing the second cache line.
497 */
498
499 //Move the pointer we're reading into to the correct location.
500 data += size;
501 //Adjust the size to get the remaining bytes.
502 size = addr + fullSize - secondAddr;
503 //And access the right address.
504 addr = secondAddr;
505 }
506}
507
508
509void
510AtomicSimpleCPU::tick()
511{
512 DPRINTF(SimpleCPU, "Tick\n");
513
514 Tick latency = 0;
515
516 for (int i = 0; i < width || locked; ++i) {
517 numCycles++;
518 ppCycles->notify(1);
519
520 if (!curStaticInst || !curStaticInst->isDelayedCommit())
521 checkForInterrupts();
522
523 checkPcEventQueue();
524 // We must have just got suspended by a PC event
525 if (_status == Idle) {
526 tryCompleteDrain();
527 return;
528 }
529
530 Fault fault = NoFault;
531
532 TheISA::PCState pcState = thread->pcState();
533
534 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
535 !curMacroStaticInst;
536 if (needToFetch) {
537 ifetch_req.taskId(taskId());
538 setupFetchRequest(&ifetch_req);
539 fault = thread->itb->translateAtomic(&ifetch_req, tc,
540 BaseTLB::Execute);
541 }
542
543 if (fault == NoFault) {
544 Tick icache_latency = 0;
545 bool icache_access = false;
546 dcache_access = false; // assume no dcache access
547
548 if (needToFetch) {
549 // This is commented out because the decoder would act like
550 // a tiny cache otherwise. It wouldn't be flushed when needed
551 // like the I cache. It should be flushed, and when that works
552 // this code should be uncommented.
553 //Fetch more instruction memory if necessary
554 //if(decoder.needMoreBytes())
555 //{
556 icache_access = true;
557 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
558 ifetch_pkt.dataStatic(&inst);
559
560 if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
561 system->getPhysMem().access(&ifetch_pkt);
562 else
563 icache_latency = icachePort.sendAtomic(&ifetch_pkt);
564
565 assert(!ifetch_pkt.isError());
566
567 // ifetch_req is initialized to read the instruction directly
568 // into the CPU object's inst field.
569 //}
570 }
571
572 preExecute();
573
574 if (curStaticInst) {
575 fault = curStaticInst->execute(this, traceData);
576
577 // keep an instruction count
578 if (fault == NoFault) {
579 countInst();
580 if (!curStaticInst->isMicroop() ||
581 curStaticInst->isLastMicroop()) {
582 ppCommit->notify(std::make_pair(thread, curStaticInst));
583 }
584 }
585 else if (traceData && !DTRACE(ExecFaulting)) {
586 delete traceData;
587 traceData = NULL;
588 }
589
590 postExecute();
591 }
592
593 // @todo remove me after debugging with legion done
594 if (curStaticInst && (!curStaticInst->isMicroop() ||
595 curStaticInst->isFirstMicroop()))
596 instCnt++;
597
598 Tick stall_ticks = 0;
599 if (simulate_inst_stalls && icache_access)
600 stall_ticks += icache_latency;
601
602 if (simulate_data_stalls && dcache_access)
603 stall_ticks += dcache_latency;
604
605 if (stall_ticks) {
606 // the atomic cpu does its accounting in ticks, so
607 // keep counting in ticks but round to the clock
608 // period
609 latency += divCeil(stall_ticks, clockPeriod()) *
610 clockPeriod();
611 }
612
613 }
614 if(fault != NoFault || !stayAtPC)
615 advancePC(fault);
616 }
617
618 if (tryCompleteDrain())
619 return;
620
621 // instruction takes at least one cycle
622 if (latency < clockPeriod())
623 latency = clockPeriod();
624
625 if (_status != Idle)
626 schedule(tickEvent, curTick() + latency);
627}
628
629void
630AtomicSimpleCPU::regProbePoints()
631{
632 BaseCPU::regProbePoints();
633
634 ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>>
635 (getProbeManager(), "Commit");
636}
637
638void
639AtomicSimpleCPU::printAddr(Addr a)
640{
641 dcachePort.printAddr(a);
642}
643
644////////////////////////////////////////////////////////////////////////
645//
646// AtomicSimpleCPU Simulation Object
647//
648AtomicSimpleCPU *
649AtomicSimpleCPUParams::create()
650{
651 numThreads = 1;
652 if (!FullSystem && workload.size() != 1)
653 panic("only one workload allowed");
654 return new AtomicSimpleCPU(this);
655}