1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#ifndef __CPU_O3_ROB_HH__
45#define __CPU_O3_ROB_HH__
46
47#include <string>
48#include <utility>
49#include <vector>
50
51#include "arch/registers.hh"
52#include "base/types.hh"
53#include "config/the_isa.hh"
54#include "enums/SMTQueuePolicy.hh"
55
56struct DerivO3CPUParams;
57
58/**
59 * ROB class. The ROB is largely what drives squashing.
60 */
61template <class Impl>
62class ROB
63{
64 public:
65 //Typedefs from the Impl.
66 typedef typename Impl::O3CPU O3CPU;
67 typedef typename Impl::DynInstPtr DynInstPtr;
68
69 typedef std::pair<RegIndex, PhysRegIndex> UnmapInfo;
70 typedef typename std::list<DynInstPtr>::iterator InstIt;
71
72 /** Possible ROB statuses. */
73 enum Status {
74 Running,
75 Idle,
76 ROBSquashing
77 };
78
78 /** SMT ROB Sharing Policy */
79 enum ROBPolicy{
80 Dynamic,
81 Partitioned,
82 Threshold
83 };
84
79 private:
80 /** Per-thread ROB status. */
81 Status robStatus[Impl::MaxThreads];
82
83 /** ROB resource sharing policy for SMT mode. */
90 ROBPolicy robPolicy;
84 SMTQueuePolicy robPolicy;
85
86 public:
87 /** ROB constructor.
88 * @param _cpu The cpu object pointer.
89 * @param params The cpu params including several ROB-specific parameters.
90 */
91 ROB(O3CPU *_cpu, DerivO3CPUParams *params);
92
93 std::string name() const;
94
95 /** Sets pointer to the list of active threads.
96 * @param at_ptr Pointer to the list of active threads.
97 */
98 void setActiveThreads(std::list<ThreadID> *at_ptr);
99
100 /** Perform sanity checks after a drain. */
101 void drainSanityCheck() const;
102
103 /** Takes over another CPU's thread. */
104 void takeOverFrom();
105
106 /** Function to insert an instruction into the ROB. Note that whatever
107 * calls this function must ensure that there is enough space within the
108 * ROB for the new instruction.
109 * @param inst The instruction being inserted into the ROB.
110 */
111 void insertInst(const DynInstPtr &inst);
112
113 /** Returns pointer to the head instruction within the ROB. There is
114 * no guarantee as to the return value if the ROB is empty.
115 * @retval Pointer to the DynInst that is at the head of the ROB.
116 */
117// DynInstPtr readHeadInst();
118
119 /** Returns a pointer to the head instruction of a specific thread within
120 * the ROB.
121 * @return Pointer to the DynInst that is at the head of the ROB.
122 */
123 const DynInstPtr &readHeadInst(ThreadID tid);
124
125 /** Returns a pointer to the instruction with the given sequence if it is
126 * in the ROB.
127 */
128 DynInstPtr findInst(ThreadID tid, InstSeqNum squash_inst);
129
130 /** Returns pointer to the tail instruction within the ROB. There is
131 * no guarantee as to the return value if the ROB is empty.
132 * @retval Pointer to the DynInst that is at the tail of the ROB.
133 */
134// DynInstPtr readTailInst();
135
136 /** Returns a pointer to the tail instruction of a specific thread within
137 * the ROB.
138 * @return Pointer to the DynInst that is at the tail of the ROB.
139 */
140 DynInstPtr readTailInst(ThreadID tid);
141
142 /** Retires the head instruction, removing it from the ROB. */
143// void retireHead();
144
145 /** Retires the head instruction of a specific thread, removing it from the
146 * ROB.
147 */
148 void retireHead(ThreadID tid);
149
150 /** Is the oldest instruction across all threads ready. */
151// bool isHeadReady();
152
153 /** Is the oldest instruction across a particular thread ready. */
154 bool isHeadReady(ThreadID tid);
155
156 /** Is there any commitable head instruction across all threads ready. */
157 bool canCommit();
158
159 /** Re-adjust ROB partitioning. */
160 void resetEntries();
161
162 /** Number of entries needed For 'num_threads' amount of threads. */
163 int entryAmount(ThreadID num_threads);
164
165 /** Returns the number of total free entries in the ROB. */
166 unsigned numFreeEntries();
167
168 /** Returns the number of free entries in a specific ROB paritition. */
169 unsigned numFreeEntries(ThreadID tid);
170
171 /** Returns the maximum number of entries for a specific thread. */
172 unsigned getMaxEntries(ThreadID tid)
173 { return maxEntries[tid]; }
174
175 /** Returns the number of entries being used by a specific thread. */
176 unsigned getThreadEntries(ThreadID tid)
177 { return threadEntries[tid]; }
178
179 /** Returns if the ROB is full. */
180 bool isFull()
181 { return numInstsInROB == numEntries; }
182
183 /** Returns if a specific thread's partition is full. */
184 bool isFull(ThreadID tid)
185 { return threadEntries[tid] == numEntries; }
186
187 /** Returns if the ROB is empty. */
188 bool isEmpty() const
189 { return numInstsInROB == 0; }
190
191 /** Returns if a specific thread's partition is empty. */
192 bool isEmpty(ThreadID tid) const
193 { return threadEntries[tid] == 0; }
194
195 /** Executes the squash, marking squashed instructions. */
196 void doSquash(ThreadID tid);
197
198 /** Squashes all instructions younger than the given sequence number for
199 * the specific thread.
200 */
201 void squash(InstSeqNum squash_num, ThreadID tid);
202
203 /** Updates the head instruction with the new oldest instruction. */
204 void updateHead();
205
206 /** Updates the tail instruction with the new youngest instruction. */
207 void updateTail();
208
209 /** Reads the PC of the oldest head instruction. */
210// uint64_t readHeadPC();
211
212 /** Reads the PC of the head instruction of a specific thread. */
213// uint64_t readHeadPC(ThreadID tid);
214
215 /** Reads the next PC of the oldest head instruction. */
216// uint64_t readHeadNextPC();
217
218 /** Reads the next PC of the head instruction of a specific thread. */
219// uint64_t readHeadNextPC(ThreadID tid);
220
221 /** Reads the sequence number of the oldest head instruction. */
222// InstSeqNum readHeadSeqNum();
223
224 /** Reads the sequence number of the head instruction of a specific thread.
225 */
226// InstSeqNum readHeadSeqNum(ThreadID tid);
227
228 /** Reads the PC of the youngest tail instruction. */
229// uint64_t readTailPC();
230
231 /** Reads the PC of the tail instruction of a specific thread. */
232// uint64_t readTailPC(ThreadID tid);
233
234 /** Reads the sequence number of the youngest tail instruction. */
235// InstSeqNum readTailSeqNum();
236
237 /** Reads the sequence number of tail instruction of a specific thread. */
238// InstSeqNum readTailSeqNum(ThreadID tid);
239
240 /** Checks if the ROB is still in the process of squashing instructions.
241 * @retval Whether or not the ROB is done squashing.
242 */
243 bool isDoneSquashing(ThreadID tid) const
244 { return doneSquashing[tid]; }
245
246 /** Checks if the ROB is still in the process of squashing instructions for
247 * any thread.
248 */
249 bool isDoneSquashing();
250
251 /** This is more of a debugging function than anything. Use
252 * numInstsInROB to get the instructions in the ROB unless you are
253 * double checking that variable.
254 */
255 int countInsts();
256
257 /** This is more of a debugging function than anything. Use
258 * threadEntries to get the instructions in the ROB unless you are
259 * double checking that variable.
260 */
261 int countInsts(ThreadID tid);
262
263 /** Registers statistics. */
264 void regStats();
265
266 private:
267 /** Reset the ROB state */
268 void resetState();
269
270 /** Pointer to the CPU. */
271 O3CPU *cpu;
272
273 /** Active Threads in CPU */
274 std::list<ThreadID> *activeThreads;
275
276 /** Number of instructions in the ROB. */
277 unsigned numEntries;
278
279 /** Entries Per Thread */
280 unsigned threadEntries[Impl::MaxThreads];
281
282 /** Max Insts a Thread Can Have in the ROB */
283 unsigned maxEntries[Impl::MaxThreads];
284
285 /** ROB List of Instructions */
286 std::list<DynInstPtr> instList[Impl::MaxThreads];
287
288 /** Number of instructions that can be squashed in a single cycle. */
289 unsigned squashWidth;
290
291 public:
292 /** Iterator pointing to the instruction which is the last instruction
293 * in the ROB. This may at times be invalid (ie when the ROB is empty),
294 * however it should never be incorrect.
295 */
296 InstIt tail;
297
298 /** Iterator pointing to the instruction which is the first instruction in
299 * in the ROB*/
300 InstIt head;
301
302 private:
303 /** Iterator used for walking through the list of instructions when
304 * squashing. Used so that there is persistent state between cycles;
305 * when squashing, the instructions are marked as squashed but not
306 * immediately removed, meaning the tail iterator remains the same before
307 * and after a squash.
308 * This will always be set to cpu->instList.end() if it is invalid.
309 */
310 InstIt squashIt[Impl::MaxThreads];
311
312 public:
313 /** Number of instructions in the ROB. */
314 int numInstsInROB;
315
316 /** Dummy instruction returned if there are no insts left. */
317 DynInstPtr dummyInst;
318
319 private:
320 /** The sequence number of the squashed instruction. */
321 InstSeqNum squashedSeqNum[Impl::MaxThreads];
322
323 /** Is the ROB done squashing. */
324 bool doneSquashing[Impl::MaxThreads];
325
326 /** Number of active threads. */
327 ThreadID numThreads;
328
329 // The number of rob_reads
330 Stats::Scalar robReads;
331 // The number of rob_writes
332 Stats::Scalar robWrites;
333};
334
335#endif //__CPU_O3_ROB_HH__