Deleted Added
sdiff udiff text old ( 9918:2c7219e2d999 ) new ( 9919:803903a8dac1 )
full compact
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 * Korey Sewell
43 */
44
45#include <list>
46
47#include "arch/isa_traits.hh"
48#include "arch/registers.hh"
49#include "config/the_isa.hh"
50#include "cpu/o3/rename.hh"
51#include "cpu/reg_class.hh"
52#include "debug/Activity.hh"
53#include "debug/Rename.hh"
54#include "debug/O3PipeView.hh"
55#include "params/DerivO3CPU.hh"
56
57using namespace std;
58
59template <class Impl>
60DefaultRename<Impl>::DefaultRename(O3CPU *_cpu, DerivO3CPUParams *params)
61 : cpu(_cpu),
62 iewToRenameDelay(params->iewToRenameDelay),
63 decodeToRenameDelay(params->decodeToRenameDelay),
64 commitToRenameDelay(params->commitToRenameDelay),
65 renameWidth(params->renameWidth),
66 commitWidth(params->commitWidth),
67 numThreads(params->numThreads),
68 maxPhysicalRegs(params->numPhysIntRegs + params->numPhysFloatRegs)
69{
70 // @todo: Make into a parameter.
71 skidBufferMax = (2 * (decodeToRenameDelay * params->decodeWidth)) + renameWidth;
72}
73
74template <class Impl>
75std::string
76DefaultRename<Impl>::name() const
77{
78 return cpu->name() + ".rename";
79}
80
81template <class Impl>
82void
83DefaultRename<Impl>::regStats()
84{
85 renameSquashCycles
86 .name(name() + ".SquashCycles")
87 .desc("Number of cycles rename is squashing")
88 .prereq(renameSquashCycles);
89 renameIdleCycles
90 .name(name() + ".IdleCycles")
91 .desc("Number of cycles rename is idle")
92 .prereq(renameIdleCycles);
93 renameBlockCycles
94 .name(name() + ".BlockCycles")
95 .desc("Number of cycles rename is blocking")
96 .prereq(renameBlockCycles);
97 renameSerializeStallCycles
98 .name(name() + ".serializeStallCycles")
99 .desc("count of cycles rename stalled for serializing inst")
100 .flags(Stats::total);
101 renameRunCycles
102 .name(name() + ".RunCycles")
103 .desc("Number of cycles rename is running")
104 .prereq(renameIdleCycles);
105 renameUnblockCycles
106 .name(name() + ".UnblockCycles")
107 .desc("Number of cycles rename is unblocking")
108 .prereq(renameUnblockCycles);
109 renameRenamedInsts
110 .name(name() + ".RenamedInsts")
111 .desc("Number of instructions processed by rename")
112 .prereq(renameRenamedInsts);
113 renameSquashedInsts
114 .name(name() + ".SquashedInsts")
115 .desc("Number of squashed instructions processed by rename")
116 .prereq(renameSquashedInsts);
117 renameROBFullEvents
118 .name(name() + ".ROBFullEvents")
119 .desc("Number of times rename has blocked due to ROB full")
120 .prereq(renameROBFullEvents);
121 renameIQFullEvents
122 .name(name() + ".IQFullEvents")
123 .desc("Number of times rename has blocked due to IQ full")
124 .prereq(renameIQFullEvents);
125 renameLSQFullEvents
126 .name(name() + ".LSQFullEvents")
127 .desc("Number of times rename has blocked due to LSQ full")
128 .prereq(renameLSQFullEvents);
129 renameFullRegistersEvents
130 .name(name() + ".FullRegisterEvents")
131 .desc("Number of times there has been no free registers")
132 .prereq(renameFullRegistersEvents);
133 renameRenamedOperands
134 .name(name() + ".RenamedOperands")
135 .desc("Number of destination operands rename has renamed")
136 .prereq(renameRenamedOperands);
137 renameRenameLookups
138 .name(name() + ".RenameLookups")
139 .desc("Number of register rename lookups that rename has made")
140 .prereq(renameRenameLookups);
141 renameCommittedMaps
142 .name(name() + ".CommittedMaps")
143 .desc("Number of HB maps that are committed")
144 .prereq(renameCommittedMaps);
145 renameUndoneMaps
146 .name(name() + ".UndoneMaps")
147 .desc("Number of HB maps that are undone due to squashing")
148 .prereq(renameUndoneMaps);
149 renamedSerializing
150 .name(name() + ".serializingInsts")
151 .desc("count of serializing insts renamed")
152 .flags(Stats::total)
153 ;
154 renamedTempSerializing
155 .name(name() + ".tempSerializingInsts")
156 .desc("count of temporary serializing insts renamed")
157 .flags(Stats::total)
158 ;
159 renameSkidInsts
160 .name(name() + ".skidInsts")
161 .desc("count of insts added to the skid buffer")
162 .flags(Stats::total)
163 ;
164 intRenameLookups
165 .name(name() + ".int_rename_lookups")
166 .desc("Number of integer rename lookups")
167 .prereq(intRenameLookups);
168 fpRenameLookups
169 .name(name() + ".fp_rename_lookups")
170 .desc("Number of floating rename lookups")
171 .prereq(fpRenameLookups);
172}
173
174template <class Impl>
175void
176DefaultRename<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
177{
178 timeBuffer = tb_ptr;
179
180 // Setup wire to read information from time buffer, from IEW stage.
181 fromIEW = timeBuffer->getWire(-iewToRenameDelay);
182
183 // Setup wire to read infromation from time buffer, from commit stage.
184 fromCommit = timeBuffer->getWire(-commitToRenameDelay);
185
186 // Setup wire to write information to previous stages.
187 toDecode = timeBuffer->getWire(0);
188}
189
190template <class Impl>
191void
192DefaultRename<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
193{
194 renameQueue = rq_ptr;
195
196 // Setup wire to write information to future stages.
197 toIEW = renameQueue->getWire(0);
198}
199
200template <class Impl>
201void
202DefaultRename<Impl>::setDecodeQueue(TimeBuffer<DecodeStruct> *dq_ptr)
203{
204 decodeQueue = dq_ptr;
205
206 // Setup wire to get information from decode.
207 fromDecode = decodeQueue->getWire(-decodeToRenameDelay);
208}
209
210template <class Impl>
211void
212DefaultRename<Impl>::startupStage()
213{
214 resetStage();
215}
216
217template <class Impl>
218void
219DefaultRename<Impl>::resetStage()
220{
221 _status = Inactive;
222
223 resumeSerialize = false;
224 resumeUnblocking = false;
225
226 // Grab the number of free entries directly from the stages.
227 for (ThreadID tid = 0; tid < numThreads; tid++) {
228 renameStatus[tid] = Idle;
229
230 freeEntries[tid].iqEntries = iew_ptr->instQueue.numFreeEntries(tid);
231 freeEntries[tid].lsqEntries = iew_ptr->ldstQueue.numFreeEntries(tid);
232 freeEntries[tid].robEntries = commit_ptr->numROBFreeEntries(tid);
233 emptyROB[tid] = true;
234
235 stalls[tid].iew = false;
236 stalls[tid].commit = false;
237 serializeInst[tid] = NULL;
238
239 instsInProgress[tid] = 0;
240
241 serializeOnNextInst[tid] = false;
242 }
243}
244
245template<class Impl>
246void
247DefaultRename<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
248{
249 activeThreads = at_ptr;
250}
251
252
253template <class Impl>
254void
255DefaultRename<Impl>::setRenameMap(RenameMap rm_ptr[])
256{
257 for (ThreadID tid = 0; tid < numThreads; tid++)
258 renameMap[tid] = &rm_ptr[tid];
259}
260
261template <class Impl>
262void
263DefaultRename<Impl>::setFreeList(FreeList *fl_ptr)
264{
265 freeList = fl_ptr;
266}
267
268template<class Impl>
269void
270DefaultRename<Impl>::setScoreboard(Scoreboard *_scoreboard)
271{
272 scoreboard = _scoreboard;
273}
274
275template <class Impl>
276bool
277DefaultRename<Impl>::isDrained() const
278{
279 for (ThreadID tid = 0; tid < numThreads; tid++) {
280 if (instsInProgress[tid] != 0 ||
281 !historyBuffer[tid].empty() ||
282 !skidBuffer[tid].empty() ||
283 !insts[tid].empty())
284 return false;
285 }
286 return true;
287}
288
289template <class Impl>
290void
291DefaultRename<Impl>::takeOverFrom()
292{
293 resetStage();
294}
295
296template <class Impl>
297void
298DefaultRename<Impl>::drainSanityCheck() const
299{
300 for (ThreadID tid = 0; tid < numThreads; tid++) {
301 assert(historyBuffer[tid].empty());
302 assert(insts[tid].empty());
303 assert(skidBuffer[tid].empty());
304 assert(instsInProgress[tid] == 0);
305 }
306}
307
308template <class Impl>
309void
310DefaultRename<Impl>::squash(const InstSeqNum &squash_seq_num, ThreadID tid)
311{
312 DPRINTF(Rename, "[tid:%u]: Squashing instructions.\n",tid);
313
314 // Clear the stall signal if rename was blocked or unblocking before.
315 // If it still needs to block, the blocking should happen the next
316 // cycle and there should be space to hold everything due to the squash.
317 if (renameStatus[tid] == Blocked ||
318 renameStatus[tid] == Unblocking) {
319 toDecode->renameUnblock[tid] = 1;
320
321 resumeSerialize = false;
322 serializeInst[tid] = NULL;
323 } else if (renameStatus[tid] == SerializeStall) {
324 if (serializeInst[tid]->seqNum <= squash_seq_num) {
325 DPRINTF(Rename, "Rename will resume serializing after squash\n");
326 resumeSerialize = true;
327 assert(serializeInst[tid]);
328 } else {
329 resumeSerialize = false;
330 toDecode->renameUnblock[tid] = 1;
331
332 serializeInst[tid] = NULL;
333 }
334 }
335
336 // Set the status to Squashing.
337 renameStatus[tid] = Squashing;
338
339 // Squash any instructions from decode.
340 unsigned squashCount = 0;
341
342 for (int i=0; i<fromDecode->size; i++) {
343 if (fromDecode->insts[i]->threadNumber == tid &&
344 fromDecode->insts[i]->seqNum > squash_seq_num) {
345 fromDecode->insts[i]->setSquashed();
346 wroteToTimeBuffer = true;
347 squashCount++;
348 }
349
350 }
351
352 // Clear the instruction list and skid buffer in case they have any
353 // insts in them.
354 insts[tid].clear();
355
356 // Clear the skid buffer in case it has any data in it.
357 skidBuffer[tid].clear();
358
359 doSquash(squash_seq_num, tid);
360}
361
362template <class Impl>
363void
364DefaultRename<Impl>::tick()
365{
366 wroteToTimeBuffer = false;
367
368 blockThisCycle = false;
369
370 bool status_change = false;
371
372 toIEWIndex = 0;
373
374 sortInsts();
375
376 list<ThreadID>::iterator threads = activeThreads->begin();
377 list<ThreadID>::iterator end = activeThreads->end();
378
379 // Check stall and squash signals.
380 while (threads != end) {
381 ThreadID tid = *threads++;
382
383 DPRINTF(Rename, "Processing [tid:%i]\n", tid);
384
385 status_change = checkSignalsAndUpdate(tid) || status_change;
386
387 rename(status_change, tid);
388 }
389
390 if (status_change) {
391 updateStatus();
392 }
393
394 if (wroteToTimeBuffer) {
395 DPRINTF(Activity, "Activity this cycle.\n");
396 cpu->activityThisCycle();
397 }
398
399 threads = activeThreads->begin();
400
401 while (threads != end) {
402 ThreadID tid = *threads++;
403
404 // If we committed this cycle then doneSeqNum will be > 0
405 if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
406 !fromCommit->commitInfo[tid].squash &&
407 renameStatus[tid] != Squashing) {
408
409 removeFromHistory(fromCommit->commitInfo[tid].doneSeqNum,
410 tid);
411 }
412 }
413
414 // @todo: make into updateProgress function
415 for (ThreadID tid = 0; tid < numThreads; tid++) {
416 instsInProgress[tid] -= fromIEW->iewInfo[tid].dispatched;
417
418 assert(instsInProgress[tid] >=0);
419 }
420
421}
422
423template<class Impl>
424void
425DefaultRename<Impl>::rename(bool &status_change, ThreadID tid)
426{
427 // If status is Running or idle,
428 // call renameInsts()
429 // If status is Unblocking,
430 // buffer any instructions coming from decode
431 // continue trying to empty skid buffer
432 // check if stall conditions have passed
433
434 if (renameStatus[tid] == Blocked) {
435 ++renameBlockCycles;
436 } else if (renameStatus[tid] == Squashing) {
437 ++renameSquashCycles;
438 } else if (renameStatus[tid] == SerializeStall) {
439 ++renameSerializeStallCycles;
440 // If we are currently in SerializeStall and resumeSerialize
441 // was set, then that means that we are resuming serializing
442 // this cycle. Tell the previous stages to block.
443 if (resumeSerialize) {
444 resumeSerialize = false;
445 block(tid);
446 toDecode->renameUnblock[tid] = false;
447 }
448 } else if (renameStatus[tid] == Unblocking) {
449 if (resumeUnblocking) {
450 block(tid);
451 resumeUnblocking = false;
452 toDecode->renameUnblock[tid] = false;
453 }
454 }
455
456 if (renameStatus[tid] == Running ||
457 renameStatus[tid] == Idle) {
458 DPRINTF(Rename, "[tid:%u]: Not blocked, so attempting to run "
459 "stage.\n", tid);
460
461 renameInsts(tid);
462 } else if (renameStatus[tid] == Unblocking) {
463 renameInsts(tid);
464
465 if (validInsts()) {
466 // Add the current inputs to the skid buffer so they can be
467 // reprocessed when this stage unblocks.
468 skidInsert(tid);
469 }
470
471 // If we switched over to blocking, then there's a potential for
472 // an overall status change.
473 status_change = unblock(tid) || status_change || blockThisCycle;
474 }
475}
476
477template <class Impl>
478void
479DefaultRename<Impl>::renameInsts(ThreadID tid)
480{
481 // Instructions can be either in the skid buffer or the queue of
482 // instructions coming from decode, depending on the status.
483 int insts_available = renameStatus[tid] == Unblocking ?
484 skidBuffer[tid].size() : insts[tid].size();
485
486 // Check the decode queue to see if instructions are available.
487 // If there are no available instructions to rename, then do nothing.
488 if (insts_available == 0) {
489 DPRINTF(Rename, "[tid:%u]: Nothing to do, breaking out early.\n",
490 tid);
491 // Should I change status to idle?
492 ++renameIdleCycles;
493 return;
494 } else if (renameStatus[tid] == Unblocking) {
495 ++renameUnblockCycles;
496 } else if (renameStatus[tid] == Running) {
497 ++renameRunCycles;
498 }
499
500 DynInstPtr inst;
501
502 // Will have to do a different calculation for the number of free
503 // entries.
504 int free_rob_entries = calcFreeROBEntries(tid);
505 int free_iq_entries = calcFreeIQEntries(tid);
506 int free_lsq_entries = calcFreeLSQEntries(tid);
507 int min_free_entries = free_rob_entries;
508
509 FullSource source = ROB;
510
511 if (free_iq_entries < min_free_entries) {
512 min_free_entries = free_iq_entries;
513 source = IQ;
514 }
515
516 if (free_lsq_entries < min_free_entries) {
517 min_free_entries = free_lsq_entries;
518 source = LSQ;
519 }
520
521 // Check if there's any space left.
522 if (min_free_entries <= 0) {
523 DPRINTF(Rename, "[tid:%u]: Blocking due to no free ROB/IQ/LSQ "
524 "entries.\n"
525 "ROB has %i free entries.\n"
526 "IQ has %i free entries.\n"
527 "LSQ has %i free entries.\n",
528 tid,
529 free_rob_entries,
530 free_iq_entries,
531 free_lsq_entries);
532
533 blockThisCycle = true;
534
535 block(tid);
536
537 incrFullStat(source);
538
539 return;
540 } else if (min_free_entries < insts_available) {
541 DPRINTF(Rename, "[tid:%u]: Will have to block this cycle."
542 "%i insts available, but only %i insts can be "
543 "renamed due to ROB/IQ/LSQ limits.\n",
544 tid, insts_available, min_free_entries);
545
546 insts_available = min_free_entries;
547
548 blockThisCycle = true;
549
550 incrFullStat(source);
551 }
552
553 InstQueue &insts_to_rename = renameStatus[tid] == Unblocking ?
554 skidBuffer[tid] : insts[tid];
555
556 DPRINTF(Rename, "[tid:%u]: %i available instructions to "
557 "send iew.\n", tid, insts_available);
558
559 DPRINTF(Rename, "[tid:%u]: %i insts pipelining from Rename | %i insts "
560 "dispatched to IQ last cycle.\n",
561 tid, instsInProgress[tid], fromIEW->iewInfo[tid].dispatched);
562
563 // Handle serializing the next instruction if necessary.
564 if (serializeOnNextInst[tid]) {
565 if (emptyROB[tid] && instsInProgress[tid] == 0) {
566 // ROB already empty; no need to serialize.
567 serializeOnNextInst[tid] = false;
568 } else if (!insts_to_rename.empty()) {
569 insts_to_rename.front()->setSerializeBefore();
570 }
571 }
572
573 int renamed_insts = 0;
574
575 while (insts_available > 0 && toIEWIndex < renameWidth) {
576 DPRINTF(Rename, "[tid:%u]: Sending instructions to IEW.\n", tid);
577
578 assert(!insts_to_rename.empty());
579
580 inst = insts_to_rename.front();
581
582 insts_to_rename.pop_front();
583
584 if (renameStatus[tid] == Unblocking) {
585 DPRINTF(Rename,"[tid:%u]: Removing [sn:%lli] PC:%s from rename "
586 "skidBuffer\n", tid, inst->seqNum, inst->pcState());
587 }
588
589 if (inst->isSquashed()) {
590 DPRINTF(Rename, "[tid:%u]: instruction %i with PC %s is "
591 "squashed, skipping.\n", tid, inst->seqNum,
592 inst->pcState());
593
594 ++renameSquashedInsts;
595
596 // Decrement how many instructions are available.
597 --insts_available;
598
599 continue;
600 }
601
602 DPRINTF(Rename, "[tid:%u]: Processing instruction [sn:%lli] with "
603 "PC %s.\n", tid, inst->seqNum, inst->pcState());
604
605 // Check here to make sure there are enough destination registers
606 // to rename to. Otherwise block.
607 if (renameMap[tid]->numFreeEntries() < inst->numDestRegs()) {
608 DPRINTF(Rename, "Blocking due to lack of free "
609 "physical registers to rename to.\n");
610 blockThisCycle = true;
611 insts_to_rename.push_front(inst);
612 ++renameFullRegistersEvents;
613
614 break;
615 }
616
617 // Handle serializeAfter/serializeBefore instructions.
618 // serializeAfter marks the next instruction as serializeBefore.
619 // serializeBefore makes the instruction wait in rename until the ROB
620 // is empty.
621
622 // In this model, IPR accesses are serialize before
623 // instructions, and store conditionals are serialize after
624 // instructions. This is mainly due to lack of support for
625 // out-of-order operations of either of those classes of
626 // instructions.
627 if ((inst->isIprAccess() || inst->isSerializeBefore()) &&
628 !inst->isSerializeHandled()) {
629 DPRINTF(Rename, "Serialize before instruction encountered.\n");
630
631 if (!inst->isTempSerializeBefore()) {
632 renamedSerializing++;
633 inst->setSerializeHandled();
634 } else {
635 renamedTempSerializing++;
636 }
637
638 // Change status over to SerializeStall so that other stages know
639 // what this is blocked on.
640 renameStatus[tid] = SerializeStall;
641
642 serializeInst[tid] = inst;
643
644 blockThisCycle = true;
645
646 break;
647 } else if ((inst->isStoreConditional() || inst->isSerializeAfter()) &&
648 !inst->isSerializeHandled()) {
649 DPRINTF(Rename, "Serialize after instruction encountered.\n");
650
651 renamedSerializing++;
652
653 inst->setSerializeHandled();
654
655 serializeAfter(insts_to_rename, tid);
656 }
657
658 renameSrcRegs(inst, inst->threadNumber);
659
660 renameDestRegs(inst, inst->threadNumber);
661
662 ++renamed_insts;
663
664
665 // Put instruction in rename queue.
666 toIEW->insts[toIEWIndex] = inst;
667 ++(toIEW->size);
668
669 // Increment which instruction we're on.
670 ++toIEWIndex;
671
672 // Decrement how many instructions are available.
673 --insts_available;
674 }
675
676 instsInProgress[tid] += renamed_insts;
677 renameRenamedInsts += renamed_insts;
678
679 // If we wrote to the time buffer, record this.
680 if (toIEWIndex) {
681 wroteToTimeBuffer = true;
682 }
683
684 // Check if there's any instructions left that haven't yet been renamed.
685 // If so then block.
686 if (insts_available) {
687 blockThisCycle = true;
688 }
689
690 if (blockThisCycle) {
691 block(tid);
692 toDecode->renameUnblock[tid] = false;
693 }
694}
695
696template<class Impl>
697void
698DefaultRename<Impl>::skidInsert(ThreadID tid)
699{
700 DynInstPtr inst = NULL;
701
702 while (!insts[tid].empty()) {
703 inst = insts[tid].front();
704
705 insts[tid].pop_front();
706
707 assert(tid == inst->threadNumber);
708
709 DPRINTF(Rename, "[tid:%u]: Inserting [sn:%lli] PC: %s into Rename "
710 "skidBuffer\n", tid, inst->seqNum, inst->pcState());
711
712 ++renameSkidInsts;
713
714 skidBuffer[tid].push_back(inst);
715 }
716
717 if (skidBuffer[tid].size() > skidBufferMax)
718 {
719 typename InstQueue::iterator it;
720 warn("Skidbuffer contents:\n");
721 for(it = skidBuffer[tid].begin(); it != skidBuffer[tid].end(); it++)
722 {
723 warn("[tid:%u]: %s [sn:%i].\n", tid,
724 (*it)->staticInst->disassemble(inst->instAddr()),
725 (*it)->seqNum);
726 }
727 panic("Skidbuffer Exceeded Max Size");
728 }
729}
730
731template <class Impl>
732void
733DefaultRename<Impl>::sortInsts()
734{
735 int insts_from_decode = fromDecode->size;
736 for (int i = 0; i < insts_from_decode; ++i) {
737 DynInstPtr inst = fromDecode->insts[i];
738 insts[inst->threadNumber].push_back(inst);
739#if TRACING_ON
740 if (DTRACE(O3PipeView)) {
741 inst->renameTick = curTick() - inst->fetchTick;
742 }
743#endif
744 }
745}
746
747template<class Impl>
748bool
749DefaultRename<Impl>::skidsEmpty()
750{
751 list<ThreadID>::iterator threads = activeThreads->begin();
752 list<ThreadID>::iterator end = activeThreads->end();
753
754 while (threads != end) {
755 ThreadID tid = *threads++;
756
757 if (!skidBuffer[tid].empty())
758 return false;
759 }
760
761 return true;
762}
763
764template<class Impl>
765void
766DefaultRename<Impl>::updateStatus()
767{
768 bool any_unblocking = false;
769
770 list<ThreadID>::iterator threads = activeThreads->begin();
771 list<ThreadID>::iterator end = activeThreads->end();
772
773 while (threads != end) {
774 ThreadID tid = *threads++;
775
776 if (renameStatus[tid] == Unblocking) {
777 any_unblocking = true;
778 break;
779 }
780 }
781
782 // Rename will have activity if it's unblocking.
783 if (any_unblocking) {
784 if (_status == Inactive) {
785 _status = Active;
786
787 DPRINTF(Activity, "Activating stage.\n");
788
789 cpu->activateStage(O3CPU::RenameIdx);
790 }
791 } else {
792 // If it's not unblocking, then rename will not have any internal
793 // activity. Switch it to inactive.
794 if (_status == Active) {
795 _status = Inactive;
796 DPRINTF(Activity, "Deactivating stage.\n");
797
798 cpu->deactivateStage(O3CPU::RenameIdx);
799 }
800 }
801}
802
803template <class Impl>
804bool
805DefaultRename<Impl>::block(ThreadID tid)
806{
807 DPRINTF(Rename, "[tid:%u]: Blocking.\n", tid);
808
809 // Add the current inputs onto the skid buffer, so they can be
810 // reprocessed when this stage unblocks.
811 skidInsert(tid);
812
813 // Only signal backwards to block if the previous stages do not think
814 // rename is already blocked.
815 if (renameStatus[tid] != Blocked) {
816 // If resumeUnblocking is set, we unblocked during the squash,
817 // but now we're have unblocking status. We need to tell earlier
818 // stages to block.
819 if (resumeUnblocking || renameStatus[tid] != Unblocking) {
820 toDecode->renameBlock[tid] = true;
821 toDecode->renameUnblock[tid] = false;
822 wroteToTimeBuffer = true;
823 }
824
825 // Rename can not go from SerializeStall to Blocked, otherwise
826 // it would not know to complete the serialize stall.
827 if (renameStatus[tid] != SerializeStall) {
828 // Set status to Blocked.
829 renameStatus[tid] = Blocked;
830 return true;
831 }
832 }
833
834 return false;
835}
836
837template <class Impl>
838bool
839DefaultRename<Impl>::unblock(ThreadID tid)
840{
841 DPRINTF(Rename, "[tid:%u]: Trying to unblock.\n", tid);
842
843 // Rename is done unblocking if the skid buffer is empty.
844 if (skidBuffer[tid].empty() && renameStatus[tid] != SerializeStall) {
845
846 DPRINTF(Rename, "[tid:%u]: Done unblocking.\n", tid);
847
848 toDecode->renameUnblock[tid] = true;
849 wroteToTimeBuffer = true;
850
851 renameStatus[tid] = Running;
852 return true;
853 }
854
855 return false;
856}
857
858template <class Impl>
859void
860DefaultRename<Impl>::doSquash(const InstSeqNum &squashed_seq_num, ThreadID tid)
861{
862 typename std::list<RenameHistory>::iterator hb_it =
863 historyBuffer[tid].begin();
864
865 // After a syscall squashes everything, the history buffer may be empty
866 // but the ROB may still be squashing instructions.
867 if (historyBuffer[tid].empty()) {
868 return;
869 }
870
871 // Go through the most recent instructions, undoing the mappings
872 // they did and freeing up the registers.
873 while (!historyBuffer[tid].empty() &&
874 (*hb_it).instSeqNum > squashed_seq_num) {
875 assert(hb_it != historyBuffer[tid].end());
876
877 DPRINTF(Rename, "[tid:%u]: Removing history entry with sequence "
878 "number %i.\n", tid, (*hb_it).instSeqNum);
879
880 // Tell the rename map to set the architected register to the
881 // previous physical register that it was renamed to.
882 renameMap[tid]->setEntry(hb_it->archReg, hb_it->prevPhysReg);
883
884 // Put the renamed physical register back on the free list.
885 freeList->addReg(hb_it->newPhysReg);
886
887 historyBuffer[tid].erase(hb_it++);
888
889 ++renameUndoneMaps;
890 }
891}
892
893template<class Impl>
894void
895DefaultRename<Impl>::removeFromHistory(InstSeqNum inst_seq_num, ThreadID tid)
896{
897 DPRINTF(Rename, "[tid:%u]: Removing a committed instruction from the "
898 "history buffer %u (size=%i), until [sn:%lli].\n",
899 tid, tid, historyBuffer[tid].size(), inst_seq_num);
900
901 typename std::list<RenameHistory>::iterator hb_it =
902 historyBuffer[tid].end();
903
904 --hb_it;
905
906 if (historyBuffer[tid].empty()) {
907 DPRINTF(Rename, "[tid:%u]: History buffer is empty.\n", tid);
908 return;
909 } else if (hb_it->instSeqNum > inst_seq_num) {
910 DPRINTF(Rename, "[tid:%u]: Old sequence number encountered. Ensure "
911 "that a syscall happened recently.\n", tid);
912 return;
913 }
914
915 // Commit all the renames up until (and including) the committed sequence
916 // number. Some or even all of the committed instructions may not have
917 // rename histories if they did not have destination registers that were
918 // renamed.
919 while (!historyBuffer[tid].empty() &&
920 hb_it != historyBuffer[tid].end() &&
921 (*hb_it).instSeqNum <= inst_seq_num) {
922
923 DPRINTF(Rename, "[tid:%u]: Freeing up older rename of reg %i, "
924 "[sn:%lli].\n",
925 tid, (*hb_it).prevPhysReg, (*hb_it).instSeqNum);
926
927 freeList->addReg((*hb_it).prevPhysReg);
928 ++renameCommittedMaps;
929
930 historyBuffer[tid].erase(hb_it--);
931 }
932}
933
934template <class Impl>
935inline void
936DefaultRename<Impl>::renameSrcRegs(DynInstPtr &inst, ThreadID tid)
937{
938 assert(renameMap[tid] != 0);
939
940 unsigned num_src_regs = inst->numSrcRegs();
941
942 // Get the architectual register numbers from the source and
943 // destination operands, and redirect them to the right register.
944 // Will need to mark dependencies though.
945 for (int src_idx = 0; src_idx < num_src_regs; src_idx++) {
946 RegIndex src_reg = inst->srcRegIdx(src_idx);
947 RegIndex flat_src_reg = src_reg;
948 switch (regIdxToClass(src_reg)) {
949 case IntRegClass:
950 flat_src_reg = inst->tcBase()->flattenIntIndex(src_reg);
951 DPRINTF(Rename, "Flattening index %d to %d.\n",
952 (int)src_reg, (int)flat_src_reg);
953 break;
954
955 case FloatRegClass:
956 src_reg = src_reg - TheISA::FP_Reg_Base;
957 flat_src_reg = inst->tcBase()->flattenFloatIndex(src_reg);
958 DPRINTF(Rename, "Flattening index %d to %d.\n",
959 (int)src_reg, (int)flat_src_reg);
960 flat_src_reg += TheISA::NumIntRegs;
961 break;
962
963 case MiscRegClass:
964 flat_src_reg = src_reg - TheISA::Misc_Reg_Base +
965 TheISA::NumFloatRegs + TheISA::NumIntRegs;
966 DPRINTF(Rename, "Adjusting reg index from %d to %d.\n",
967 src_reg, flat_src_reg);
968 break;
969
970 default:
971 panic("Reg index is out of bound: %d.", src_reg);
972 }
973
974 // Look up the source registers to get the phys. register they've
975 // been renamed to, and set the sources to those registers.
976 PhysRegIndex renamed_reg = renameMap[tid]->lookup(flat_src_reg);
977
978 DPRINTF(Rename, "[tid:%u]: Looking up arch reg %i, got "
979 "physical reg %i.\n", tid, (int)flat_src_reg,
980 (int)renamed_reg);
981
982 inst->renameSrcReg(src_idx, renamed_reg);
983
984 // See if the register is ready or not.
985 if (scoreboard->getReg(renamed_reg) == true) {
986 DPRINTF(Rename, "[tid:%u]: Register %d is ready.\n",
987 tid, renamed_reg);
988
989 inst->markSrcRegReady(src_idx);
990 } else {
991 DPRINTF(Rename, "[tid:%u]: Register %d is not ready.\n",
992 tid, renamed_reg);
993 }
994
995 ++renameRenameLookups;
996 inst->isFloating() ? fpRenameLookups++ : intRenameLookups++;
997 }
998}
999
1000template <class Impl>
1001inline void
1002DefaultRename<Impl>::renameDestRegs(DynInstPtr &inst, ThreadID tid)
1003{
1004 typename RenameMap::RenameInfo rename_result;
1005
1006 unsigned num_dest_regs = inst->numDestRegs();
1007
1008 // Rename the destination registers.
1009 for (int dest_idx = 0; dest_idx < num_dest_regs; dest_idx++) {
1010 RegIndex dest_reg = inst->destRegIdx(dest_idx);
1011 RegIndex flat_dest_reg = dest_reg;
1012 switch (regIdxToClass(dest_reg)) {
1013 case IntRegClass:
1014 // Integer registers are flattened.
1015 flat_dest_reg = inst->tcBase()->flattenIntIndex(dest_reg);
1016 DPRINTF(Rename, "Flattening index %d to %d.\n",
1017 (int)dest_reg, (int)flat_dest_reg);
1018 break;
1019
1020 case FloatRegClass:
1021 dest_reg = dest_reg - TheISA::FP_Reg_Base;
1022 flat_dest_reg = inst->tcBase()->flattenFloatIndex(dest_reg);
1023 DPRINTF(Rename, "Flattening index %d to %d.\n",
1024 (int)dest_reg, (int)flat_dest_reg);
1025 flat_dest_reg += TheISA::NumIntRegs;
1026 break;
1027
1028 case MiscRegClass:
1029 // Floating point and Miscellaneous registers need their indexes
1030 // adjusted to account for the expanded number of flattened int regs.
1031 flat_dest_reg = dest_reg - TheISA::Misc_Reg_Base +
1032 TheISA::NumIntRegs + TheISA::NumFloatRegs;
1033 DPRINTF(Rename, "Adjusting reg index from %d to %d.\n",
1034 dest_reg, flat_dest_reg);
1035 break;
1036
1037 default:
1038 panic("Reg index is out of bound: %d.", dest_reg);
1039 }
1040
1041 inst->flattenDestReg(dest_idx, flat_dest_reg);
1042
1043 // Get the physical register that the destination will be
1044 // renamed to.
1045 rename_result = renameMap[tid]->rename(flat_dest_reg);
1046
1047 //Mark Scoreboard entry as not ready
1048 scoreboard->unsetReg(rename_result.first);
1049
1050 DPRINTF(Rename, "[tid:%u]: Renaming arch reg %i to physical "
1051 "reg %i.\n", tid, (int)flat_dest_reg,
1052 (int)rename_result.first);
1053
1054 // Record the rename information so that a history can be kept.
1055 RenameHistory hb_entry(inst->seqNum, flat_dest_reg,
1056 rename_result.first,
1057 rename_result.second);
1058
1059 historyBuffer[tid].push_front(hb_entry);
1060
1061 DPRINTF(Rename, "[tid:%u]: Adding instruction to history buffer "
1062 "(size=%i), [sn:%lli].\n",tid,
1063 historyBuffer[tid].size(),
1064 (*historyBuffer[tid].begin()).instSeqNum);
1065
1066 // Tell the instruction to rename the appropriate destination
1067 // register (dest_idx) to the new physical register
1068 // (rename_result.first), and record the previous physical
1069 // register that the same logical register was renamed to
1070 // (rename_result.second).
1071 inst->renameDestReg(dest_idx,
1072 rename_result.first,
1073 rename_result.second);
1074
1075 ++renameRenamedOperands;
1076 }
1077}
1078
1079template <class Impl>
1080inline int
1081DefaultRename<Impl>::calcFreeROBEntries(ThreadID tid)
1082{
1083 int num_free = freeEntries[tid].robEntries -
1084 (instsInProgress[tid] - fromIEW->iewInfo[tid].dispatched);
1085
1086 //DPRINTF(Rename,"[tid:%i]: %i rob free\n",tid,num_free);
1087
1088 return num_free;
1089}
1090
1091template <class Impl>
1092inline int
1093DefaultRename<Impl>::calcFreeIQEntries(ThreadID tid)
1094{
1095 int num_free = freeEntries[tid].iqEntries -
1096 (instsInProgress[tid] - fromIEW->iewInfo[tid].dispatched);
1097
1098 //DPRINTF(Rename,"[tid:%i]: %i iq free\n",tid,num_free);
1099
1100 return num_free;
1101}
1102
1103template <class Impl>
1104inline int
1105DefaultRename<Impl>::calcFreeLSQEntries(ThreadID tid)
1106{
1107 int num_free = freeEntries[tid].lsqEntries -
1108 (instsInProgress[tid] - fromIEW->iewInfo[tid].dispatchedToLSQ);
1109
1110 //DPRINTF(Rename,"[tid:%i]: %i lsq free\n",tid,num_free);
1111
1112 return num_free;
1113}
1114
1115template <class Impl>
1116unsigned
1117DefaultRename<Impl>::validInsts()
1118{
1119 unsigned inst_count = 0;
1120
1121 for (int i=0; i<fromDecode->size; i++) {
1122 if (!fromDecode->insts[i]->isSquashed())
1123 inst_count++;
1124 }
1125
1126 return inst_count;
1127}
1128
1129template <class Impl>
1130void
1131DefaultRename<Impl>::readStallSignals(ThreadID tid)
1132{
1133 if (fromIEW->iewBlock[tid]) {
1134 stalls[tid].iew = true;
1135 }
1136
1137 if (fromIEW->iewUnblock[tid]) {
1138 assert(stalls[tid].iew);
1139 stalls[tid].iew = false;
1140 }
1141
1142 if (fromCommit->commitBlock[tid]) {
1143 stalls[tid].commit = true;
1144 }
1145
1146 if (fromCommit->commitUnblock[tid]) {
1147 assert(stalls[tid].commit);
1148 stalls[tid].commit = false;
1149 }
1150}
1151
1152template <class Impl>
1153bool
1154DefaultRename<Impl>::checkStall(ThreadID tid)
1155{
1156 bool ret_val = false;
1157
1158 if (stalls[tid].iew) {
1159 DPRINTF(Rename,"[tid:%i]: Stall from IEW stage detected.\n", tid);
1160 ret_val = true;
1161 } else if (stalls[tid].commit) {
1162 DPRINTF(Rename,"[tid:%i]: Stall from Commit stage detected.\n", tid);
1163 ret_val = true;
1164 } else if (calcFreeROBEntries(tid) <= 0) {
1165 DPRINTF(Rename,"[tid:%i]: Stall: ROB has 0 free entries.\n", tid);
1166 ret_val = true;
1167 } else if (calcFreeIQEntries(tid) <= 0) {
1168 DPRINTF(Rename,"[tid:%i]: Stall: IQ has 0 free entries.\n", tid);
1169 ret_val = true;
1170 } else if (calcFreeLSQEntries(tid) <= 0) {
1171 DPRINTF(Rename,"[tid:%i]: Stall: LSQ has 0 free entries.\n", tid);
1172 ret_val = true;
1173 } else if (renameMap[tid]->numFreeEntries() <= 0) {
1174 DPRINTF(Rename,"[tid:%i]: Stall: RenameMap has 0 free entries.\n", tid);
1175 ret_val = true;
1176 } else if (renameStatus[tid] == SerializeStall &&
1177 (!emptyROB[tid] || instsInProgress[tid])) {
1178 DPRINTF(Rename,"[tid:%i]: Stall: Serialize stall and ROB is not "
1179 "empty.\n",
1180 tid);
1181 ret_val = true;
1182 }
1183
1184 return ret_val;
1185}
1186
1187template <class Impl>
1188void
1189DefaultRename<Impl>::readFreeEntries(ThreadID tid)
1190{
1191 if (fromIEW->iewInfo[tid].usedIQ)
1192 freeEntries[tid].iqEntries = fromIEW->iewInfo[tid].freeIQEntries;
1193
1194 if (fromIEW->iewInfo[tid].usedLSQ)
1195 freeEntries[tid].lsqEntries = fromIEW->iewInfo[tid].freeLSQEntries;
1196
1197 if (fromCommit->commitInfo[tid].usedROB) {
1198 freeEntries[tid].robEntries =
1199 fromCommit->commitInfo[tid].freeROBEntries;
1200 emptyROB[tid] = fromCommit->commitInfo[tid].emptyROB;
1201 }
1202
1203 DPRINTF(Rename, "[tid:%i]: Free IQ: %i, Free ROB: %i, Free LSQ: %i\n",
1204 tid,
1205 freeEntries[tid].iqEntries,
1206 freeEntries[tid].robEntries,
1207 freeEntries[tid].lsqEntries);
1208
1209 DPRINTF(Rename, "[tid:%i]: %i instructions not yet in ROB\n",
1210 tid, instsInProgress[tid]);
1211}
1212
1213template <class Impl>
1214bool
1215DefaultRename<Impl>::checkSignalsAndUpdate(ThreadID tid)
1216{
1217 // Check if there's a squash signal, squash if there is
1218 // Check stall signals, block if necessary.
1219 // If status was blocked
1220 // check if stall conditions have passed
1221 // if so then go to unblocking
1222 // If status was Squashing
1223 // check if squashing is not high. Switch to running this cycle.
1224 // If status was serialize stall
1225 // check if ROB is empty and no insts are in flight to the ROB
1226
1227 readFreeEntries(tid);
1228 readStallSignals(tid);
1229
1230 if (fromCommit->commitInfo[tid].squash) {
1231 DPRINTF(Rename, "[tid:%u]: Squashing instructions due to squash from "
1232 "commit.\n", tid);
1233
1234 squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
1235
1236 return true;
1237 }
1238
1239 if (fromCommit->commitInfo[tid].robSquashing) {
1240 DPRINTF(Rename, "[tid:%u]: ROB is still squashing.\n", tid);
1241
1242 renameStatus[tid] = Squashing;
1243
1244 return true;
1245 }
1246
1247 if (checkStall(tid)) {
1248 return block(tid);
1249 }
1250
1251 if (renameStatus[tid] == Blocked) {
1252 DPRINTF(Rename, "[tid:%u]: Done blocking, switching to unblocking.\n",
1253 tid);
1254
1255 renameStatus[tid] = Unblocking;
1256
1257 unblock(tid);
1258
1259 return true;
1260 }
1261
1262 if (renameStatus[tid] == Squashing) {
1263 // Switch status to running if rename isn't being told to block or
1264 // squash this cycle.
1265 if (resumeSerialize) {
1266 DPRINTF(Rename, "[tid:%u]: Done squashing, switching to serialize.\n",
1267 tid);
1268
1269 renameStatus[tid] = SerializeStall;
1270 return true;
1271 } else if (resumeUnblocking) {
1272 DPRINTF(Rename, "[tid:%u]: Done squashing, switching to unblocking.\n",
1273 tid);
1274 renameStatus[tid] = Unblocking;
1275 return true;
1276 } else {
1277 DPRINTF(Rename, "[tid:%u]: Done squashing, switching to running.\n",
1278 tid);
1279
1280 renameStatus[tid] = Running;
1281 return false;
1282 }
1283 }
1284
1285 if (renameStatus[tid] == SerializeStall) {
1286 // Stall ends once the ROB is free.
1287 DPRINTF(Rename, "[tid:%u]: Done with serialize stall, switching to "
1288 "unblocking.\n", tid);
1289
1290 DynInstPtr serial_inst = serializeInst[tid];
1291
1292 renameStatus[tid] = Unblocking;
1293
1294 unblock(tid);
1295
1296 DPRINTF(Rename, "[tid:%u]: Processing instruction [%lli] with "
1297 "PC %s.\n", tid, serial_inst->seqNum, serial_inst->pcState());
1298
1299 // Put instruction into queue here.
1300 serial_inst->clearSerializeBefore();
1301
1302 if (!skidBuffer[tid].empty()) {
1303 skidBuffer[tid].push_front(serial_inst);
1304 } else {
1305 insts[tid].push_front(serial_inst);
1306 }
1307
1308 DPRINTF(Rename, "[tid:%u]: Instruction must be processed by rename."
1309 " Adding to front of list.\n", tid);
1310
1311 serializeInst[tid] = NULL;
1312
1313 return true;
1314 }
1315
1316 // If we've reached this point, we have not gotten any signals that
1317 // cause rename to change its status. Rename remains the same as before.
1318 return false;
1319}
1320
1321template<class Impl>
1322void
1323DefaultRename<Impl>::serializeAfter(InstQueue &inst_list, ThreadID tid)
1324{
1325 if (inst_list.empty()) {
1326 // Mark a bit to say that I must serialize on the next instruction.
1327 serializeOnNextInst[tid] = true;
1328 return;
1329 }
1330
1331 // Set the next instruction as serializing.
1332 inst_list.front()->setSerializeBefore();
1333}
1334
1335template <class Impl>
1336inline void
1337DefaultRename<Impl>::incrFullStat(const FullSource &source)
1338{
1339 switch (source) {
1340 case ROB:
1341 ++renameROBFullEvents;
1342 break;
1343 case IQ:
1344 ++renameIQFullEvents;
1345 break;
1346 case LSQ:
1347 ++renameLSQFullEvents;
1348 break;
1349 default:
1350 panic("Rename full stall stat should be incremented for a reason!");
1351 break;
1352 }
1353}
1354
1355template <class Impl>
1356void
1357DefaultRename<Impl>::dumpHistory()
1358{
1359 typename std::list<RenameHistory>::iterator buf_it;
1360
1361 for (ThreadID tid = 0; tid < numThreads; tid++) {
1362
1363 buf_it = historyBuffer[tid].begin();
1364
1365 while (buf_it != historyBuffer[tid].end()) {
1366 cprintf("Seq num: %i\nArch reg: %i New phys reg: %i Old phys "
1367 "reg: %i\n", (*buf_it).instSeqNum, (int)(*buf_it).archReg,
1368 (int)(*buf_it).newPhysReg, (int)(*buf_it).prevPhysReg);
1369
1370 buf_it++;
1371 }
1372 }
1373}