lsq_unit_impl.hh (9936:f00546aff354) lsq_unit_impl.hh (9944:4ff1c5c6dcbc)
1
2/*
3 * Copyright (c) 2010-2012 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 * Korey Sewell
43 */
44
1
2/*
3 * Copyright (c) 2010-2012 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 * Korey Sewell
43 */
44
45#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
46#define __CPU_O3_LSQ_UNIT_IMPL_HH__
47
45#include "arch/generic/debugfaults.hh"
46#include "arch/locked_mem.hh"
47#include "base/str.hh"
48#include "config/the_isa.hh"
49#include "cpu/checker/cpu.hh"
50#include "cpu/o3/lsq.hh"
51#include "cpu/o3/lsq_unit.hh"
52#include "debug/Activity.hh"
53#include "debug/IEW.hh"
54#include "debug/LSQUnit.hh"
55#include "debug/O3PipeView.hh"
56#include "mem/packet.hh"
57#include "mem/request.hh"
58
59template<class Impl>
60LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
61 LSQUnit *lsq_ptr)
62 : Event(Default_Pri, AutoDelete),
63 inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
64{
65}
66
67template<class Impl>
68void
69LSQUnit<Impl>::WritebackEvent::process()
70{
71 assert(!lsqPtr->cpu->switchedOut());
72
73 lsqPtr->writeback(inst, pkt);
74
75 if (pkt->senderState)
76 delete pkt->senderState;
77
78 delete pkt->req;
79 delete pkt;
80}
81
82template<class Impl>
83const char *
84LSQUnit<Impl>::WritebackEvent::description() const
85{
86 return "Store writeback";
87}
88
89template<class Impl>
90void
91LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
92{
93 LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
94 DynInstPtr inst = state->inst;
95 DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
96 DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
97
98 //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
99
100 // If this is a split access, wait until all packets are received.
101 if (TheISA::HasUnalignedMemAcc && !state->complete()) {
102 delete pkt->req;
103 delete pkt;
104 return;
105 }
106
107 assert(!cpu->switchedOut());
108 if (inst->isSquashed()) {
109 iewStage->decrWb(inst->seqNum);
110 } else {
111 if (!state->noWB) {
112 if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
113 !state->isLoad) {
114 writeback(inst, pkt);
115 } else {
116 writeback(inst, state->mainPkt);
117 }
118 }
119
120 if (inst->isStore()) {
121 completeStore(state->idx);
122 }
123 }
124
125 if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
126 delete state->mainPkt->req;
127 delete state->mainPkt;
128 }
129 delete state;
130 delete pkt->req;
131 delete pkt;
132}
133
134template <class Impl>
135LSQUnit<Impl>::LSQUnit()
136 : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
137 isStoreBlocked(false), isLoadBlocked(false),
138 loadBlockedHandled(false), storeInFlight(false), hasPendingPkt(false)
139{
140}
141
142template<class Impl>
143void
144LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
145 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
146 unsigned id)
147{
148 cpu = cpu_ptr;
149 iewStage = iew_ptr;
150
151 DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
152
153 lsq = lsq_ptr;
154
155 lsqID = id;
156
157 // Add 1 for the sentinel entry (they are circular queues).
158 LQEntries = maxLQEntries + 1;
159 SQEntries = maxSQEntries + 1;
160
161 //Due to uint8_t index in LSQSenderState
162 assert(LQEntries <= 256);
163 assert(SQEntries <= 256);
164
165 loadQueue.resize(LQEntries);
166 storeQueue.resize(SQEntries);
167
168 depCheckShift = params->LSQDepCheckShift;
169 checkLoads = params->LSQCheckLoads;
170 cachePorts = params->cachePorts;
171 needsTSO = params->needsTSO;
172
173 resetState();
174}
175
176
177template<class Impl>
178void
179LSQUnit<Impl>::resetState()
180{
181 loads = stores = storesToWB = 0;
182
183 loadHead = loadTail = 0;
184
185 storeHead = storeWBIdx = storeTail = 0;
186
187 usedPorts = 0;
188
189 retryPkt = NULL;
190 memDepViolator = NULL;
191
192 blockedLoadSeqNum = 0;
193
194 stalled = false;
195 isLoadBlocked = false;
196 loadBlockedHandled = false;
197
198 cacheBlockMask = ~(cpu->cacheLineSize() - 1);
199}
200
201template<class Impl>
202std::string
203LSQUnit<Impl>::name() const
204{
205 if (Impl::MaxThreads == 1) {
206 return iewStage->name() + ".lsq";
207 } else {
208 return iewStage->name() + ".lsq.thread" + to_string(lsqID);
209 }
210}
211
212template<class Impl>
213void
214LSQUnit<Impl>::regStats()
215{
216 lsqForwLoads
217 .name(name() + ".forwLoads")
218 .desc("Number of loads that had data forwarded from stores");
219
220 invAddrLoads
221 .name(name() + ".invAddrLoads")
222 .desc("Number of loads ignored due to an invalid address");
223
224 lsqSquashedLoads
225 .name(name() + ".squashedLoads")
226 .desc("Number of loads squashed");
227
228 lsqIgnoredResponses
229 .name(name() + ".ignoredResponses")
230 .desc("Number of memory responses ignored because the instruction is squashed");
231
232 lsqMemOrderViolation
233 .name(name() + ".memOrderViolation")
234 .desc("Number of memory ordering violations");
235
236 lsqSquashedStores
237 .name(name() + ".squashedStores")
238 .desc("Number of stores squashed");
239
240 invAddrSwpfs
241 .name(name() + ".invAddrSwpfs")
242 .desc("Number of software prefetches ignored due to an invalid address");
243
244 lsqBlockedLoads
245 .name(name() + ".blockedLoads")
246 .desc("Number of blocked loads due to partial load-store forwarding");
247
248 lsqRescheduledLoads
249 .name(name() + ".rescheduledLoads")
250 .desc("Number of loads that were rescheduled");
251
252 lsqCacheBlocked
253 .name(name() + ".cacheBlocked")
254 .desc("Number of times an access to memory failed due to the cache being blocked");
255}
256
257template<class Impl>
258void
259LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
260{
261 dcachePort = dcache_port;
262}
263
264template<class Impl>
265void
266LSQUnit<Impl>::clearLQ()
267{
268 loadQueue.clear();
269}
270
271template<class Impl>
272void
273LSQUnit<Impl>::clearSQ()
274{
275 storeQueue.clear();
276}
277
278template<class Impl>
279void
280LSQUnit<Impl>::drainSanityCheck() const
281{
282 for (int i = 0; i < loadQueue.size(); ++i)
283 assert(!loadQueue[i]);
284
285 assert(storesToWB == 0);
286 assert(!retryPkt);
287}
288
289template<class Impl>
290void
291LSQUnit<Impl>::takeOverFrom()
292{
293 resetState();
294}
295
296template<class Impl>
297void
298LSQUnit<Impl>::resizeLQ(unsigned size)
299{
300 unsigned size_plus_sentinel = size + 1;
301 assert(size_plus_sentinel >= LQEntries);
302
303 if (size_plus_sentinel > LQEntries) {
304 while (size_plus_sentinel > loadQueue.size()) {
305 DynInstPtr dummy;
306 loadQueue.push_back(dummy);
307 LQEntries++;
308 }
309 } else {
310 LQEntries = size_plus_sentinel;
311 }
312
313 assert(LQEntries <= 256);
314}
315
316template<class Impl>
317void
318LSQUnit<Impl>::resizeSQ(unsigned size)
319{
320 unsigned size_plus_sentinel = size + 1;
321 if (size_plus_sentinel > SQEntries) {
322 while (size_plus_sentinel > storeQueue.size()) {
323 SQEntry dummy;
324 storeQueue.push_back(dummy);
325 SQEntries++;
326 }
327 } else {
328 SQEntries = size_plus_sentinel;
329 }
330
331 assert(SQEntries <= 256);
332}
333
334template <class Impl>
335void
336LSQUnit<Impl>::insert(DynInstPtr &inst)
337{
338 assert(inst->isMemRef());
339
340 assert(inst->isLoad() || inst->isStore());
341
342 if (inst->isLoad()) {
343 insertLoad(inst);
344 } else {
345 insertStore(inst);
346 }
347
348 inst->setInLSQ();
349}
350
351template <class Impl>
352void
353LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
354{
355 assert((loadTail + 1) % LQEntries != loadHead);
356 assert(loads < LQEntries);
357
358 DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
359 load_inst->pcState(), loadTail, load_inst->seqNum);
360
361 load_inst->lqIdx = loadTail;
362
363 if (stores == 0) {
364 load_inst->sqIdx = -1;
365 } else {
366 load_inst->sqIdx = storeTail;
367 }
368
369 loadQueue[loadTail] = load_inst;
370
371 incrLdIdx(loadTail);
372
373 ++loads;
374}
375
376template <class Impl>
377void
378LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
379{
380 // Make sure it is not full before inserting an instruction.
381 assert((storeTail + 1) % SQEntries != storeHead);
382 assert(stores < SQEntries);
383
384 DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
385 store_inst->pcState(), storeTail, store_inst->seqNum);
386
387 store_inst->sqIdx = storeTail;
388 store_inst->lqIdx = loadTail;
389
390 storeQueue[storeTail] = SQEntry(store_inst);
391
392 incrStIdx(storeTail);
393
394 ++stores;
395}
396
397template <class Impl>
398typename Impl::DynInstPtr
399LSQUnit<Impl>::getMemDepViolator()
400{
401 DynInstPtr temp = memDepViolator;
402
403 memDepViolator = NULL;
404
405 return temp;
406}
407
408template <class Impl>
409unsigned
410LSQUnit<Impl>::numFreeEntries()
411{
412 unsigned free_lq_entries = LQEntries - loads;
413 unsigned free_sq_entries = SQEntries - stores;
414
415 // Both the LQ and SQ entries have an extra dummy entry to differentiate
416 // empty/full conditions. Subtract 1 from the free entries.
417 if (free_lq_entries < free_sq_entries) {
418 return free_lq_entries - 1;
419 } else {
420 return free_sq_entries - 1;
421 }
422}
423
424template <class Impl>
425void
426LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
427{
428 int load_idx = loadHead;
429
430 // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
431 // address. The CPU can speculatively execute a LL operation after a pending
432 // SC operation in the pipeline and that can make the cache monitor the CPU
433 // is connected to valid while it really shouldn't be.
434 for (int x = 0; x < cpu->numActiveThreads(); x++) {
435 ThreadContext *tc = cpu->getContext(x);
436 bool no_squash = cpu->thread[x]->noSquashFromTC;
437 cpu->thread[x]->noSquashFromTC = true;
438 TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
439 cpu->thread[x]->noSquashFromTC = no_squash;
440 }
441
442 // If this is the only load in the LSQ we don't care
443 if (load_idx == loadTail)
444 return;
445 incrLdIdx(load_idx);
446
447 DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
448 Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
449 while (load_idx != loadTail) {
450 DynInstPtr ld_inst = loadQueue[load_idx];
451
452 if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
453 incrLdIdx(load_idx);
454 continue;
455 }
456
457 Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
458 DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
459 ld_inst->seqNum, load_addr, invalidate_addr);
460
461 if (load_addr == invalidate_addr) {
462 if (ld_inst->possibleLoadViolation()) {
463 DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
464 ld_inst->physEffAddr, pkt->getAddr(), ld_inst->seqNum);
465
466 // Mark the load for re-execution
467 ld_inst->fault = new ReExec;
468 } else {
469 // If a older load checks this and it's true
470 // then we might have missed the snoop
471 // in which case we need to invalidate to be sure
472 ld_inst->hitExternalSnoop(true);
473 }
474 }
475 incrLdIdx(load_idx);
476 }
477 return;
478}
479
480template <class Impl>
481Fault
482LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
483{
484 Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
485 Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
486
487 /** @todo in theory you only need to check an instruction that has executed
488 * however, there isn't a good way in the pipeline at the moment to check
489 * all instructions that will execute before the store writes back. Thus,
490 * like the implementation that came before it, we're overly conservative.
491 */
492 while (load_idx != loadTail) {
493 DynInstPtr ld_inst = loadQueue[load_idx];
494 if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
495 incrLdIdx(load_idx);
496 continue;
497 }
498
499 Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
500 Addr ld_eff_addr2 =
501 (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
502
503 if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
504 if (inst->isLoad()) {
505 // If this load is to the same block as an external snoop
506 // invalidate that we've observed then the load needs to be
507 // squashed as it could have newer data
508 if (ld_inst->hitExternalSnoop()) {
509 if (!memDepViolator ||
510 ld_inst->seqNum < memDepViolator->seqNum) {
511 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
512 "and [sn:%lli] at address %#x\n",
513 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
514 memDepViolator = ld_inst;
515
516 ++lsqMemOrderViolation;
517
518 return new GenericISA::M5PanicFault(
519 "Detected fault with inst [sn:%lli] and "
520 "[sn:%lli] at address %#x\n",
521 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
522 }
523 }
524
525 // Otherwise, mark the load has a possible load violation
526 // and if we see a snoop before it's commited, we need to squash
527 ld_inst->possibleLoadViolation(true);
528 DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
529 " between instructions [sn:%lli] and [sn:%lli]\n",
530 inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
531 } else {
532 // A load/store incorrectly passed this store.
533 // Check if we already have a violator, or if it's newer
534 // squash and refetch.
535 if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
536 break;
537
538 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
539 "[sn:%lli] at address %#x\n",
540 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
541 memDepViolator = ld_inst;
542
543 ++lsqMemOrderViolation;
544
545 return new GenericISA::M5PanicFault("Detected fault with "
546 "inst [sn:%lli] and [sn:%lli] at address %#x\n",
547 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
548 }
549 }
550
551 incrLdIdx(load_idx);
552 }
553 return NoFault;
554}
555
556
557
558
559template <class Impl>
560Fault
561LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
562{
563 using namespace TheISA;
564 // Execute a specific load.
565 Fault load_fault = NoFault;
566
567 DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
568 inst->pcState(), inst->seqNum);
569
570 assert(!inst->isSquashed());
571
572 load_fault = inst->initiateAcc();
573
574 if (inst->isTranslationDelayed() &&
575 load_fault == NoFault)
576 return load_fault;
577
578 // If the instruction faulted or predicated false, then we need to send it
579 // along to commit without the instruction completing.
580 if (load_fault != NoFault || inst->readPredicate() == false) {
581 // Send this instruction to commit, also make sure iew stage
582 // realizes there is activity.
583 // Mark it as executed unless it is an uncached load that
584 // needs to hit the head of commit.
585 if (inst->readPredicate() == false)
586 inst->forwardOldRegs();
587 DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
588 inst->seqNum,
589 (load_fault != NoFault ? "fault" : "predication"));
590 if (!(inst->hasRequest() && inst->uncacheable()) ||
591 inst->isAtCommit()) {
592 inst->setExecuted();
593 }
594 iewStage->instToCommit(inst);
595 iewStage->activityThisCycle();
596 } else if (!loadBlocked()) {
597 assert(inst->effAddrValid());
598 int load_idx = inst->lqIdx;
599 incrLdIdx(load_idx);
600
601 if (checkLoads)
602 return checkViolations(load_idx, inst);
603 }
604
605 return load_fault;
606}
607
608template <class Impl>
609Fault
610LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
611{
612 using namespace TheISA;
613 // Make sure that a store exists.
614 assert(stores != 0);
615
616 int store_idx = store_inst->sqIdx;
617
618 DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
619 store_inst->pcState(), store_inst->seqNum);
620
621 assert(!store_inst->isSquashed());
622
623 // Check the recently completed loads to see if any match this store's
624 // address. If so, then we have a memory ordering violation.
625 int load_idx = store_inst->lqIdx;
626
627 Fault store_fault = store_inst->initiateAcc();
628
629 if (store_inst->isTranslationDelayed() &&
630 store_fault == NoFault)
631 return store_fault;
632
633 if (store_inst->readPredicate() == false)
634 store_inst->forwardOldRegs();
635
636 if (storeQueue[store_idx].size == 0) {
637 DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
638 store_inst->pcState(), store_inst->seqNum);
639
640 return store_fault;
641 } else if (store_inst->readPredicate() == false) {
642 DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
643 store_inst->seqNum);
644 return store_fault;
645 }
646
647 assert(store_fault == NoFault);
648
649 if (store_inst->isStoreConditional()) {
650 // Store conditionals need to set themselves as able to
651 // writeback if we haven't had a fault by here.
652 storeQueue[store_idx].canWB = true;
653
654 ++storesToWB;
655 }
656
657 return checkViolations(load_idx, store_inst);
658
659}
660
661template <class Impl>
662void
663LSQUnit<Impl>::commitLoad()
664{
665 assert(loadQueue[loadHead]);
666
667 DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
668 loadQueue[loadHead]->pcState());
669
670 loadQueue[loadHead] = NULL;
671
672 incrLdIdx(loadHead);
673
674 --loads;
675}
676
677template <class Impl>
678void
679LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
680{
681 assert(loads == 0 || loadQueue[loadHead]);
682
683 while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
684 commitLoad();
685 }
686}
687
688template <class Impl>
689void
690LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
691{
692 assert(stores == 0 || storeQueue[storeHead].inst);
693
694 int store_idx = storeHead;
695
696 while (store_idx != storeTail) {
697 assert(storeQueue[store_idx].inst);
698 // Mark any stores that are now committed and have not yet
699 // been marked as able to write back.
700 if (!storeQueue[store_idx].canWB) {
701 if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
702 break;
703 }
704 DPRINTF(LSQUnit, "Marking store as able to write back, PC "
705 "%s [sn:%lli]\n",
706 storeQueue[store_idx].inst->pcState(),
707 storeQueue[store_idx].inst->seqNum);
708
709 storeQueue[store_idx].canWB = true;
710
711 ++storesToWB;
712 }
713
714 incrStIdx(store_idx);
715 }
716}
717
718template <class Impl>
719void
720LSQUnit<Impl>::writebackPendingStore()
721{
722 if (hasPendingPkt) {
723 assert(pendingPkt != NULL);
724
725 // If the cache is blocked, this will store the packet for retry.
726 if (sendStore(pendingPkt)) {
727 storePostSend(pendingPkt);
728 }
729 pendingPkt = NULL;
730 hasPendingPkt = false;
731 }
732}
733
734template <class Impl>
735void
736LSQUnit<Impl>::writebackStores()
737{
738 // First writeback the second packet from any split store that didn't
739 // complete last cycle because there weren't enough cache ports available.
740 if (TheISA::HasUnalignedMemAcc) {
741 writebackPendingStore();
742 }
743
744 while (storesToWB > 0 &&
745 storeWBIdx != storeTail &&
746 storeQueue[storeWBIdx].inst &&
747 storeQueue[storeWBIdx].canWB &&
748 ((!needsTSO) || (!storeInFlight)) &&
749 usedPorts < cachePorts) {
750
751 if (isStoreBlocked || lsq->cacheBlocked()) {
752 DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
753 " is blocked!\n");
754 break;
755 }
756
757 // Store didn't write any data so no need to write it back to
758 // memory.
759 if (storeQueue[storeWBIdx].size == 0) {
760 completeStore(storeWBIdx);
761
762 incrStIdx(storeWBIdx);
763
764 continue;
765 }
766
767 ++usedPorts;
768
769 if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
770 incrStIdx(storeWBIdx);
771
772 continue;
773 }
774
775 assert(storeQueue[storeWBIdx].req);
776 assert(!storeQueue[storeWBIdx].committed);
777
778 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
779 assert(storeQueue[storeWBIdx].sreqLow);
780 assert(storeQueue[storeWBIdx].sreqHigh);
781 }
782
783 DynInstPtr inst = storeQueue[storeWBIdx].inst;
784
785 Request *req = storeQueue[storeWBIdx].req;
786 RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
787 RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
788
789 storeQueue[storeWBIdx].committed = true;
790
791 assert(!inst->memData);
792 inst->memData = new uint8_t[64];
793
794 memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
795
796 MemCmd command =
797 req->isSwap() ? MemCmd::SwapReq :
798 (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
799 PacketPtr data_pkt;
800 PacketPtr snd_data_pkt = NULL;
801
802 LSQSenderState *state = new LSQSenderState;
803 state->isLoad = false;
804 state->idx = storeWBIdx;
805 state->inst = inst;
806
807 if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
808
809 // Build a single data packet if the store isn't split.
810 data_pkt = new Packet(req, command);
811 data_pkt->dataStatic(inst->memData);
812 data_pkt->senderState = state;
813 } else {
814 // Create two packets if the store is split in two.
815 data_pkt = new Packet(sreqLow, command);
816 snd_data_pkt = new Packet(sreqHigh, command);
817
818 data_pkt->dataStatic(inst->memData);
819 snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
820
821 data_pkt->senderState = state;
822 snd_data_pkt->senderState = state;
823
824 state->isSplit = true;
825 state->outstanding = 2;
826
827 // Can delete the main request now.
828 delete req;
829 req = sreqLow;
830 }
831
832 DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
833 "to Addr:%#x, data:%#x [sn:%lli]\n",
834 storeWBIdx, inst->pcState(),
835 req->getPaddr(), (int)*(inst->memData),
836 inst->seqNum);
837
838 // @todo: Remove this SC hack once the memory system handles it.
839 if (inst->isStoreConditional()) {
840 assert(!storeQueue[storeWBIdx].isSplit);
841 // Disable recording the result temporarily. Writing to
842 // misc regs normally updates the result, but this is not
843 // the desired behavior when handling store conditionals.
844 inst->recordResult(false);
845 bool success = TheISA::handleLockedWrite(inst.get(), req);
846 inst->recordResult(true);
847
848 if (!success) {
849 // Instantly complete this store.
850 DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. "
851 "Instantly completing it.\n",
852 inst->seqNum);
853 WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
854 cpu->schedule(wb, curTick() + 1);
855 if (cpu->checker) {
856 // Make sure to set the LLSC data for verification
857 // if checker is loaded
858 inst->reqToVerify->setExtraData(0);
859 inst->completeAcc(data_pkt);
860 }
861 completeStore(storeWBIdx);
862 incrStIdx(storeWBIdx);
863 continue;
864 }
865 } else {
866 // Non-store conditionals do not need a writeback.
867 state->noWB = true;
868 }
869
870 bool split =
871 TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
872
873 ThreadContext *thread = cpu->tcBase(lsqID);
874
875 if (req->isMmappedIpr()) {
876 assert(!inst->isStoreConditional());
877 TheISA::handleIprWrite(thread, data_pkt);
878 delete data_pkt;
879 if (split) {
880 assert(snd_data_pkt->req->isMmappedIpr());
881 TheISA::handleIprWrite(thread, snd_data_pkt);
882 delete snd_data_pkt;
883 delete sreqLow;
884 delete sreqHigh;
885 }
886 delete state;
887 delete req;
888 completeStore(storeWBIdx);
889 incrStIdx(storeWBIdx);
890 } else if (!sendStore(data_pkt)) {
891 DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
892 "retry later\n",
893 inst->seqNum);
894
895 // Need to store the second packet, if split.
896 if (split) {
897 state->pktToSend = true;
898 state->pendingPacket = snd_data_pkt;
899 }
900 } else {
901
902 // If split, try to send the second packet too
903 if (split) {
904 assert(snd_data_pkt);
905
906 // Ensure there are enough ports to use.
907 if (usedPorts < cachePorts) {
908 ++usedPorts;
909 if (sendStore(snd_data_pkt)) {
910 storePostSend(snd_data_pkt);
911 } else {
912 DPRINTF(IEW, "D-Cache became blocked when writing"
913 " [sn:%lli] second packet, will retry later\n",
914 inst->seqNum);
915 }
916 } else {
917
918 // Store the packet for when there's free ports.
919 assert(pendingPkt == NULL);
920 pendingPkt = snd_data_pkt;
921 hasPendingPkt = true;
922 }
923 } else {
924
925 // Not a split store.
926 storePostSend(data_pkt);
927 }
928 }
929 }
930
931 // Not sure this should set it to 0.
932 usedPorts = 0;
933
934 assert(stores >= 0 && storesToWB >= 0);
935}
936
937/*template <class Impl>
938void
939LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
940{
941 list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
942 mshrSeqNums.end(),
943 seqNum);
944
945 if (mshr_it != mshrSeqNums.end()) {
946 mshrSeqNums.erase(mshr_it);
947 DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
948 }
949}*/
950
951template <class Impl>
952void
953LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
954{
955 DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
956 "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
957
958 int load_idx = loadTail;
959 decrLdIdx(load_idx);
960
961 while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
962 DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
963 "[sn:%lli]\n",
964 loadQueue[load_idx]->pcState(),
965 loadQueue[load_idx]->seqNum);
966
967 if (isStalled() && load_idx == stallingLoadIdx) {
968 stalled = false;
969 stallingStoreIsn = 0;
970 stallingLoadIdx = 0;
971 }
972
973 // Clear the smart pointer to make sure it is decremented.
974 loadQueue[load_idx]->setSquashed();
975 loadQueue[load_idx] = NULL;
976 --loads;
977
978 // Inefficient!
979 loadTail = load_idx;
980
981 decrLdIdx(load_idx);
982 ++lsqSquashedLoads;
983 }
984
985 if (isLoadBlocked) {
986 if (squashed_num < blockedLoadSeqNum) {
987 isLoadBlocked = false;
988 loadBlockedHandled = false;
989 blockedLoadSeqNum = 0;
990 }
991 }
992
993 if (memDepViolator && squashed_num < memDepViolator->seqNum) {
994 memDepViolator = NULL;
995 }
996
997 int store_idx = storeTail;
998 decrStIdx(store_idx);
999
1000 while (stores != 0 &&
1001 storeQueue[store_idx].inst->seqNum > squashed_num) {
1002 // Instructions marked as can WB are already committed.
1003 if (storeQueue[store_idx].canWB) {
1004 break;
1005 }
1006
1007 DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1008 "idx:%i [sn:%lli]\n",
1009 storeQueue[store_idx].inst->pcState(),
1010 store_idx, storeQueue[store_idx].inst->seqNum);
1011
1012 // I don't think this can happen. It should have been cleared
1013 // by the stalling load.
1014 if (isStalled() &&
1015 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1016 panic("Is stalled should have been cleared by stalling load!\n");
1017 stalled = false;
1018 stallingStoreIsn = 0;
1019 }
1020
1021 // Clear the smart pointer to make sure it is decremented.
1022 storeQueue[store_idx].inst->setSquashed();
1023 storeQueue[store_idx].inst = NULL;
1024 storeQueue[store_idx].canWB = 0;
1025
1026 // Must delete request now that it wasn't handed off to
1027 // memory. This is quite ugly. @todo: Figure out the proper
1028 // place to really handle request deletes.
1029 delete storeQueue[store_idx].req;
1030 if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1031 delete storeQueue[store_idx].sreqLow;
1032 delete storeQueue[store_idx].sreqHigh;
1033
1034 storeQueue[store_idx].sreqLow = NULL;
1035 storeQueue[store_idx].sreqHigh = NULL;
1036 }
1037
1038 storeQueue[store_idx].req = NULL;
1039 --stores;
1040
1041 // Inefficient!
1042 storeTail = store_idx;
1043
1044 decrStIdx(store_idx);
1045 ++lsqSquashedStores;
1046 }
1047}
1048
1049template <class Impl>
1050void
1051LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1052{
1053 if (isStalled() &&
1054 storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1055 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1056 "load idx:%i\n",
1057 stallingStoreIsn, stallingLoadIdx);
1058 stalled = false;
1059 stallingStoreIsn = 0;
1060 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1061 }
1062
1063 if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1064 // The store is basically completed at this time. This
1065 // only works so long as the checker doesn't try to
1066 // verify the value in memory for stores.
1067 storeQueue[storeWBIdx].inst->setCompleted();
1068
1069 if (cpu->checker) {
1070 cpu->checker->verify(storeQueue[storeWBIdx].inst);
1071 }
1072 }
1073
1074 if (needsTSO) {
1075 storeInFlight = true;
1076 }
1077
1078 incrStIdx(storeWBIdx);
1079}
1080
1081template <class Impl>
1082void
1083LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1084{
1085 iewStage->wakeCPU();
1086
1087 // Squashed instructions do not need to complete their access.
1088 if (inst->isSquashed()) {
1089 iewStage->decrWb(inst->seqNum);
1090 assert(!inst->isStore());
1091 ++lsqIgnoredResponses;
1092 return;
1093 }
1094
1095 if (!inst->isExecuted()) {
1096 inst->setExecuted();
1097
1098 // Complete access to copy data to proper place.
1099 inst->completeAcc(pkt);
1100 }
1101
1102 // Need to insert instruction into queue to commit
1103 iewStage->instToCommit(inst);
1104
1105 iewStage->activityThisCycle();
1106
1107 // see if this load changed the PC
1108 iewStage->checkMisprediction(inst);
1109}
1110
1111template <class Impl>
1112void
1113LSQUnit<Impl>::completeStore(int store_idx)
1114{
1115 assert(storeQueue[store_idx].inst);
1116 storeQueue[store_idx].completed = true;
1117 --storesToWB;
1118 // A bit conservative because a store completion may not free up entries,
1119 // but hopefully avoids two store completions in one cycle from making
1120 // the CPU tick twice.
1121 cpu->wakeCPU();
1122 cpu->activityThisCycle();
1123
1124 if (store_idx == storeHead) {
1125 do {
1126 incrStIdx(storeHead);
1127
1128 --stores;
1129 } while (storeQueue[storeHead].completed &&
1130 storeHead != storeTail);
1131
1132 iewStage->updateLSQNextCycle = true;
1133 }
1134
1135 DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1136 "idx:%i\n",
1137 storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1138
1139#if TRACING_ON
1140 if (DTRACE(O3PipeView)) {
1141 storeQueue[store_idx].inst->storeTick =
1142 curTick() - storeQueue[store_idx].inst->fetchTick;
1143 }
1144#endif
1145
1146 if (isStalled() &&
1147 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1148 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1149 "load idx:%i\n",
1150 stallingStoreIsn, stallingLoadIdx);
1151 stalled = false;
1152 stallingStoreIsn = 0;
1153 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1154 }
1155
1156 storeQueue[store_idx].inst->setCompleted();
1157
1158 if (needsTSO) {
1159 storeInFlight = false;
1160 }
1161
1162 // Tell the checker we've completed this instruction. Some stores
1163 // may get reported twice to the checker, but the checker can
1164 // handle that case.
1165 if (cpu->checker) {
1166 cpu->checker->verify(storeQueue[store_idx].inst);
1167 }
1168}
1169
1170template <class Impl>
1171bool
1172LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1173{
1174 if (!dcachePort->sendTimingReq(data_pkt)) {
1175 // Need to handle becoming blocked on a store.
1176 isStoreBlocked = true;
1177 ++lsqCacheBlocked;
1178 assert(retryPkt == NULL);
1179 retryPkt = data_pkt;
1180 lsq->setRetryTid(lsqID);
1181 return false;
1182 }
1183 return true;
1184}
1185
1186template <class Impl>
1187void
1188LSQUnit<Impl>::recvRetry()
1189{
1190 if (isStoreBlocked) {
1191 DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1192 assert(retryPkt != NULL);
1193
1194 LSQSenderState *state =
1195 dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1196
1197 if (dcachePort->sendTimingReq(retryPkt)) {
1198 // Don't finish the store unless this is the last packet.
1199 if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1200 state->pendingPacket == retryPkt) {
1201 state->pktToSend = false;
1202 storePostSend(retryPkt);
1203 }
1204 retryPkt = NULL;
1205 isStoreBlocked = false;
1206 lsq->setRetryTid(InvalidThreadID);
1207
1208 // Send any outstanding packet.
1209 if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1210 assert(state->pendingPacket);
1211 if (sendStore(state->pendingPacket)) {
1212 storePostSend(state->pendingPacket);
1213 }
1214 }
1215 } else {
1216 // Still blocked!
1217 ++lsqCacheBlocked;
1218 lsq->setRetryTid(lsqID);
1219 }
1220 } else if (isLoadBlocked) {
1221 DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1222 "no need to resend packet.\n");
1223 } else {
1224 DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1225 }
1226}
1227
1228template <class Impl>
1229inline void
1230LSQUnit<Impl>::incrStIdx(int &store_idx) const
1231{
1232 if (++store_idx >= SQEntries)
1233 store_idx = 0;
1234}
1235
1236template <class Impl>
1237inline void
1238LSQUnit<Impl>::decrStIdx(int &store_idx) const
1239{
1240 if (--store_idx < 0)
1241 store_idx += SQEntries;
1242}
1243
1244template <class Impl>
1245inline void
1246LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1247{
1248 if (++load_idx >= LQEntries)
1249 load_idx = 0;
1250}
1251
1252template <class Impl>
1253inline void
1254LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1255{
1256 if (--load_idx < 0)
1257 load_idx += LQEntries;
1258}
1259
1260template <class Impl>
1261void
1262LSQUnit<Impl>::dumpInsts() const
1263{
1264 cprintf("Load store queue: Dumping instructions.\n");
1265 cprintf("Load queue size: %i\n", loads);
1266 cprintf("Load queue: ");
1267
1268 int load_idx = loadHead;
1269
1270 while (load_idx != loadTail && loadQueue[load_idx]) {
1271 const DynInstPtr &inst(loadQueue[load_idx]);
1272 cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1273
1274 incrLdIdx(load_idx);
1275 }
1276 cprintf("\n");
1277
1278 cprintf("Store queue size: %i\n", stores);
1279 cprintf("Store queue: ");
1280
1281 int store_idx = storeHead;
1282
1283 while (store_idx != storeTail && storeQueue[store_idx].inst) {
1284 const DynInstPtr &inst(storeQueue[store_idx].inst);
1285 cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1286
1287 incrStIdx(store_idx);
1288 }
1289
1290 cprintf("\n");
1291}
48#include "arch/generic/debugfaults.hh"
49#include "arch/locked_mem.hh"
50#include "base/str.hh"
51#include "config/the_isa.hh"
52#include "cpu/checker/cpu.hh"
53#include "cpu/o3/lsq.hh"
54#include "cpu/o3/lsq_unit.hh"
55#include "debug/Activity.hh"
56#include "debug/IEW.hh"
57#include "debug/LSQUnit.hh"
58#include "debug/O3PipeView.hh"
59#include "mem/packet.hh"
60#include "mem/request.hh"
61
62template<class Impl>
63LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
64 LSQUnit *lsq_ptr)
65 : Event(Default_Pri, AutoDelete),
66 inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
67{
68}
69
70template<class Impl>
71void
72LSQUnit<Impl>::WritebackEvent::process()
73{
74 assert(!lsqPtr->cpu->switchedOut());
75
76 lsqPtr->writeback(inst, pkt);
77
78 if (pkt->senderState)
79 delete pkt->senderState;
80
81 delete pkt->req;
82 delete pkt;
83}
84
85template<class Impl>
86const char *
87LSQUnit<Impl>::WritebackEvent::description() const
88{
89 return "Store writeback";
90}
91
92template<class Impl>
93void
94LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
95{
96 LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
97 DynInstPtr inst = state->inst;
98 DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
99 DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
100
101 //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
102
103 // If this is a split access, wait until all packets are received.
104 if (TheISA::HasUnalignedMemAcc && !state->complete()) {
105 delete pkt->req;
106 delete pkt;
107 return;
108 }
109
110 assert(!cpu->switchedOut());
111 if (inst->isSquashed()) {
112 iewStage->decrWb(inst->seqNum);
113 } else {
114 if (!state->noWB) {
115 if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
116 !state->isLoad) {
117 writeback(inst, pkt);
118 } else {
119 writeback(inst, state->mainPkt);
120 }
121 }
122
123 if (inst->isStore()) {
124 completeStore(state->idx);
125 }
126 }
127
128 if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
129 delete state->mainPkt->req;
130 delete state->mainPkt;
131 }
132 delete state;
133 delete pkt->req;
134 delete pkt;
135}
136
137template <class Impl>
138LSQUnit<Impl>::LSQUnit()
139 : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
140 isStoreBlocked(false), isLoadBlocked(false),
141 loadBlockedHandled(false), storeInFlight(false), hasPendingPkt(false)
142{
143}
144
145template<class Impl>
146void
147LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
148 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
149 unsigned id)
150{
151 cpu = cpu_ptr;
152 iewStage = iew_ptr;
153
154 DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
155
156 lsq = lsq_ptr;
157
158 lsqID = id;
159
160 // Add 1 for the sentinel entry (they are circular queues).
161 LQEntries = maxLQEntries + 1;
162 SQEntries = maxSQEntries + 1;
163
164 //Due to uint8_t index in LSQSenderState
165 assert(LQEntries <= 256);
166 assert(SQEntries <= 256);
167
168 loadQueue.resize(LQEntries);
169 storeQueue.resize(SQEntries);
170
171 depCheckShift = params->LSQDepCheckShift;
172 checkLoads = params->LSQCheckLoads;
173 cachePorts = params->cachePorts;
174 needsTSO = params->needsTSO;
175
176 resetState();
177}
178
179
180template<class Impl>
181void
182LSQUnit<Impl>::resetState()
183{
184 loads = stores = storesToWB = 0;
185
186 loadHead = loadTail = 0;
187
188 storeHead = storeWBIdx = storeTail = 0;
189
190 usedPorts = 0;
191
192 retryPkt = NULL;
193 memDepViolator = NULL;
194
195 blockedLoadSeqNum = 0;
196
197 stalled = false;
198 isLoadBlocked = false;
199 loadBlockedHandled = false;
200
201 cacheBlockMask = ~(cpu->cacheLineSize() - 1);
202}
203
204template<class Impl>
205std::string
206LSQUnit<Impl>::name() const
207{
208 if (Impl::MaxThreads == 1) {
209 return iewStage->name() + ".lsq";
210 } else {
211 return iewStage->name() + ".lsq.thread" + to_string(lsqID);
212 }
213}
214
215template<class Impl>
216void
217LSQUnit<Impl>::regStats()
218{
219 lsqForwLoads
220 .name(name() + ".forwLoads")
221 .desc("Number of loads that had data forwarded from stores");
222
223 invAddrLoads
224 .name(name() + ".invAddrLoads")
225 .desc("Number of loads ignored due to an invalid address");
226
227 lsqSquashedLoads
228 .name(name() + ".squashedLoads")
229 .desc("Number of loads squashed");
230
231 lsqIgnoredResponses
232 .name(name() + ".ignoredResponses")
233 .desc("Number of memory responses ignored because the instruction is squashed");
234
235 lsqMemOrderViolation
236 .name(name() + ".memOrderViolation")
237 .desc("Number of memory ordering violations");
238
239 lsqSquashedStores
240 .name(name() + ".squashedStores")
241 .desc("Number of stores squashed");
242
243 invAddrSwpfs
244 .name(name() + ".invAddrSwpfs")
245 .desc("Number of software prefetches ignored due to an invalid address");
246
247 lsqBlockedLoads
248 .name(name() + ".blockedLoads")
249 .desc("Number of blocked loads due to partial load-store forwarding");
250
251 lsqRescheduledLoads
252 .name(name() + ".rescheduledLoads")
253 .desc("Number of loads that were rescheduled");
254
255 lsqCacheBlocked
256 .name(name() + ".cacheBlocked")
257 .desc("Number of times an access to memory failed due to the cache being blocked");
258}
259
260template<class Impl>
261void
262LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
263{
264 dcachePort = dcache_port;
265}
266
267template<class Impl>
268void
269LSQUnit<Impl>::clearLQ()
270{
271 loadQueue.clear();
272}
273
274template<class Impl>
275void
276LSQUnit<Impl>::clearSQ()
277{
278 storeQueue.clear();
279}
280
281template<class Impl>
282void
283LSQUnit<Impl>::drainSanityCheck() const
284{
285 for (int i = 0; i < loadQueue.size(); ++i)
286 assert(!loadQueue[i]);
287
288 assert(storesToWB == 0);
289 assert(!retryPkt);
290}
291
292template<class Impl>
293void
294LSQUnit<Impl>::takeOverFrom()
295{
296 resetState();
297}
298
299template<class Impl>
300void
301LSQUnit<Impl>::resizeLQ(unsigned size)
302{
303 unsigned size_plus_sentinel = size + 1;
304 assert(size_plus_sentinel >= LQEntries);
305
306 if (size_plus_sentinel > LQEntries) {
307 while (size_plus_sentinel > loadQueue.size()) {
308 DynInstPtr dummy;
309 loadQueue.push_back(dummy);
310 LQEntries++;
311 }
312 } else {
313 LQEntries = size_plus_sentinel;
314 }
315
316 assert(LQEntries <= 256);
317}
318
319template<class Impl>
320void
321LSQUnit<Impl>::resizeSQ(unsigned size)
322{
323 unsigned size_plus_sentinel = size + 1;
324 if (size_plus_sentinel > SQEntries) {
325 while (size_plus_sentinel > storeQueue.size()) {
326 SQEntry dummy;
327 storeQueue.push_back(dummy);
328 SQEntries++;
329 }
330 } else {
331 SQEntries = size_plus_sentinel;
332 }
333
334 assert(SQEntries <= 256);
335}
336
337template <class Impl>
338void
339LSQUnit<Impl>::insert(DynInstPtr &inst)
340{
341 assert(inst->isMemRef());
342
343 assert(inst->isLoad() || inst->isStore());
344
345 if (inst->isLoad()) {
346 insertLoad(inst);
347 } else {
348 insertStore(inst);
349 }
350
351 inst->setInLSQ();
352}
353
354template <class Impl>
355void
356LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
357{
358 assert((loadTail + 1) % LQEntries != loadHead);
359 assert(loads < LQEntries);
360
361 DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
362 load_inst->pcState(), loadTail, load_inst->seqNum);
363
364 load_inst->lqIdx = loadTail;
365
366 if (stores == 0) {
367 load_inst->sqIdx = -1;
368 } else {
369 load_inst->sqIdx = storeTail;
370 }
371
372 loadQueue[loadTail] = load_inst;
373
374 incrLdIdx(loadTail);
375
376 ++loads;
377}
378
379template <class Impl>
380void
381LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
382{
383 // Make sure it is not full before inserting an instruction.
384 assert((storeTail + 1) % SQEntries != storeHead);
385 assert(stores < SQEntries);
386
387 DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
388 store_inst->pcState(), storeTail, store_inst->seqNum);
389
390 store_inst->sqIdx = storeTail;
391 store_inst->lqIdx = loadTail;
392
393 storeQueue[storeTail] = SQEntry(store_inst);
394
395 incrStIdx(storeTail);
396
397 ++stores;
398}
399
400template <class Impl>
401typename Impl::DynInstPtr
402LSQUnit<Impl>::getMemDepViolator()
403{
404 DynInstPtr temp = memDepViolator;
405
406 memDepViolator = NULL;
407
408 return temp;
409}
410
411template <class Impl>
412unsigned
413LSQUnit<Impl>::numFreeEntries()
414{
415 unsigned free_lq_entries = LQEntries - loads;
416 unsigned free_sq_entries = SQEntries - stores;
417
418 // Both the LQ and SQ entries have an extra dummy entry to differentiate
419 // empty/full conditions. Subtract 1 from the free entries.
420 if (free_lq_entries < free_sq_entries) {
421 return free_lq_entries - 1;
422 } else {
423 return free_sq_entries - 1;
424 }
425}
426
427template <class Impl>
428void
429LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
430{
431 int load_idx = loadHead;
432
433 // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
434 // address. The CPU can speculatively execute a LL operation after a pending
435 // SC operation in the pipeline and that can make the cache monitor the CPU
436 // is connected to valid while it really shouldn't be.
437 for (int x = 0; x < cpu->numActiveThreads(); x++) {
438 ThreadContext *tc = cpu->getContext(x);
439 bool no_squash = cpu->thread[x]->noSquashFromTC;
440 cpu->thread[x]->noSquashFromTC = true;
441 TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
442 cpu->thread[x]->noSquashFromTC = no_squash;
443 }
444
445 // If this is the only load in the LSQ we don't care
446 if (load_idx == loadTail)
447 return;
448 incrLdIdx(load_idx);
449
450 DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
451 Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
452 while (load_idx != loadTail) {
453 DynInstPtr ld_inst = loadQueue[load_idx];
454
455 if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
456 incrLdIdx(load_idx);
457 continue;
458 }
459
460 Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
461 DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
462 ld_inst->seqNum, load_addr, invalidate_addr);
463
464 if (load_addr == invalidate_addr) {
465 if (ld_inst->possibleLoadViolation()) {
466 DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
467 ld_inst->physEffAddr, pkt->getAddr(), ld_inst->seqNum);
468
469 // Mark the load for re-execution
470 ld_inst->fault = new ReExec;
471 } else {
472 // If a older load checks this and it's true
473 // then we might have missed the snoop
474 // in which case we need to invalidate to be sure
475 ld_inst->hitExternalSnoop(true);
476 }
477 }
478 incrLdIdx(load_idx);
479 }
480 return;
481}
482
483template <class Impl>
484Fault
485LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
486{
487 Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
488 Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
489
490 /** @todo in theory you only need to check an instruction that has executed
491 * however, there isn't a good way in the pipeline at the moment to check
492 * all instructions that will execute before the store writes back. Thus,
493 * like the implementation that came before it, we're overly conservative.
494 */
495 while (load_idx != loadTail) {
496 DynInstPtr ld_inst = loadQueue[load_idx];
497 if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
498 incrLdIdx(load_idx);
499 continue;
500 }
501
502 Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
503 Addr ld_eff_addr2 =
504 (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
505
506 if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
507 if (inst->isLoad()) {
508 // If this load is to the same block as an external snoop
509 // invalidate that we've observed then the load needs to be
510 // squashed as it could have newer data
511 if (ld_inst->hitExternalSnoop()) {
512 if (!memDepViolator ||
513 ld_inst->seqNum < memDepViolator->seqNum) {
514 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
515 "and [sn:%lli] at address %#x\n",
516 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
517 memDepViolator = ld_inst;
518
519 ++lsqMemOrderViolation;
520
521 return new GenericISA::M5PanicFault(
522 "Detected fault with inst [sn:%lli] and "
523 "[sn:%lli] at address %#x\n",
524 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
525 }
526 }
527
528 // Otherwise, mark the load has a possible load violation
529 // and if we see a snoop before it's commited, we need to squash
530 ld_inst->possibleLoadViolation(true);
531 DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
532 " between instructions [sn:%lli] and [sn:%lli]\n",
533 inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
534 } else {
535 // A load/store incorrectly passed this store.
536 // Check if we already have a violator, or if it's newer
537 // squash and refetch.
538 if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
539 break;
540
541 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
542 "[sn:%lli] at address %#x\n",
543 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
544 memDepViolator = ld_inst;
545
546 ++lsqMemOrderViolation;
547
548 return new GenericISA::M5PanicFault("Detected fault with "
549 "inst [sn:%lli] and [sn:%lli] at address %#x\n",
550 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
551 }
552 }
553
554 incrLdIdx(load_idx);
555 }
556 return NoFault;
557}
558
559
560
561
562template <class Impl>
563Fault
564LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
565{
566 using namespace TheISA;
567 // Execute a specific load.
568 Fault load_fault = NoFault;
569
570 DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
571 inst->pcState(), inst->seqNum);
572
573 assert(!inst->isSquashed());
574
575 load_fault = inst->initiateAcc();
576
577 if (inst->isTranslationDelayed() &&
578 load_fault == NoFault)
579 return load_fault;
580
581 // If the instruction faulted or predicated false, then we need to send it
582 // along to commit without the instruction completing.
583 if (load_fault != NoFault || inst->readPredicate() == false) {
584 // Send this instruction to commit, also make sure iew stage
585 // realizes there is activity.
586 // Mark it as executed unless it is an uncached load that
587 // needs to hit the head of commit.
588 if (inst->readPredicate() == false)
589 inst->forwardOldRegs();
590 DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
591 inst->seqNum,
592 (load_fault != NoFault ? "fault" : "predication"));
593 if (!(inst->hasRequest() && inst->uncacheable()) ||
594 inst->isAtCommit()) {
595 inst->setExecuted();
596 }
597 iewStage->instToCommit(inst);
598 iewStage->activityThisCycle();
599 } else if (!loadBlocked()) {
600 assert(inst->effAddrValid());
601 int load_idx = inst->lqIdx;
602 incrLdIdx(load_idx);
603
604 if (checkLoads)
605 return checkViolations(load_idx, inst);
606 }
607
608 return load_fault;
609}
610
611template <class Impl>
612Fault
613LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
614{
615 using namespace TheISA;
616 // Make sure that a store exists.
617 assert(stores != 0);
618
619 int store_idx = store_inst->sqIdx;
620
621 DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
622 store_inst->pcState(), store_inst->seqNum);
623
624 assert(!store_inst->isSquashed());
625
626 // Check the recently completed loads to see if any match this store's
627 // address. If so, then we have a memory ordering violation.
628 int load_idx = store_inst->lqIdx;
629
630 Fault store_fault = store_inst->initiateAcc();
631
632 if (store_inst->isTranslationDelayed() &&
633 store_fault == NoFault)
634 return store_fault;
635
636 if (store_inst->readPredicate() == false)
637 store_inst->forwardOldRegs();
638
639 if (storeQueue[store_idx].size == 0) {
640 DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
641 store_inst->pcState(), store_inst->seqNum);
642
643 return store_fault;
644 } else if (store_inst->readPredicate() == false) {
645 DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
646 store_inst->seqNum);
647 return store_fault;
648 }
649
650 assert(store_fault == NoFault);
651
652 if (store_inst->isStoreConditional()) {
653 // Store conditionals need to set themselves as able to
654 // writeback if we haven't had a fault by here.
655 storeQueue[store_idx].canWB = true;
656
657 ++storesToWB;
658 }
659
660 return checkViolations(load_idx, store_inst);
661
662}
663
664template <class Impl>
665void
666LSQUnit<Impl>::commitLoad()
667{
668 assert(loadQueue[loadHead]);
669
670 DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
671 loadQueue[loadHead]->pcState());
672
673 loadQueue[loadHead] = NULL;
674
675 incrLdIdx(loadHead);
676
677 --loads;
678}
679
680template <class Impl>
681void
682LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
683{
684 assert(loads == 0 || loadQueue[loadHead]);
685
686 while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
687 commitLoad();
688 }
689}
690
691template <class Impl>
692void
693LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
694{
695 assert(stores == 0 || storeQueue[storeHead].inst);
696
697 int store_idx = storeHead;
698
699 while (store_idx != storeTail) {
700 assert(storeQueue[store_idx].inst);
701 // Mark any stores that are now committed and have not yet
702 // been marked as able to write back.
703 if (!storeQueue[store_idx].canWB) {
704 if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
705 break;
706 }
707 DPRINTF(LSQUnit, "Marking store as able to write back, PC "
708 "%s [sn:%lli]\n",
709 storeQueue[store_idx].inst->pcState(),
710 storeQueue[store_idx].inst->seqNum);
711
712 storeQueue[store_idx].canWB = true;
713
714 ++storesToWB;
715 }
716
717 incrStIdx(store_idx);
718 }
719}
720
721template <class Impl>
722void
723LSQUnit<Impl>::writebackPendingStore()
724{
725 if (hasPendingPkt) {
726 assert(pendingPkt != NULL);
727
728 // If the cache is blocked, this will store the packet for retry.
729 if (sendStore(pendingPkt)) {
730 storePostSend(pendingPkt);
731 }
732 pendingPkt = NULL;
733 hasPendingPkt = false;
734 }
735}
736
737template <class Impl>
738void
739LSQUnit<Impl>::writebackStores()
740{
741 // First writeback the second packet from any split store that didn't
742 // complete last cycle because there weren't enough cache ports available.
743 if (TheISA::HasUnalignedMemAcc) {
744 writebackPendingStore();
745 }
746
747 while (storesToWB > 0 &&
748 storeWBIdx != storeTail &&
749 storeQueue[storeWBIdx].inst &&
750 storeQueue[storeWBIdx].canWB &&
751 ((!needsTSO) || (!storeInFlight)) &&
752 usedPorts < cachePorts) {
753
754 if (isStoreBlocked || lsq->cacheBlocked()) {
755 DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
756 " is blocked!\n");
757 break;
758 }
759
760 // Store didn't write any data so no need to write it back to
761 // memory.
762 if (storeQueue[storeWBIdx].size == 0) {
763 completeStore(storeWBIdx);
764
765 incrStIdx(storeWBIdx);
766
767 continue;
768 }
769
770 ++usedPorts;
771
772 if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
773 incrStIdx(storeWBIdx);
774
775 continue;
776 }
777
778 assert(storeQueue[storeWBIdx].req);
779 assert(!storeQueue[storeWBIdx].committed);
780
781 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
782 assert(storeQueue[storeWBIdx].sreqLow);
783 assert(storeQueue[storeWBIdx].sreqHigh);
784 }
785
786 DynInstPtr inst = storeQueue[storeWBIdx].inst;
787
788 Request *req = storeQueue[storeWBIdx].req;
789 RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
790 RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
791
792 storeQueue[storeWBIdx].committed = true;
793
794 assert(!inst->memData);
795 inst->memData = new uint8_t[64];
796
797 memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
798
799 MemCmd command =
800 req->isSwap() ? MemCmd::SwapReq :
801 (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
802 PacketPtr data_pkt;
803 PacketPtr snd_data_pkt = NULL;
804
805 LSQSenderState *state = new LSQSenderState;
806 state->isLoad = false;
807 state->idx = storeWBIdx;
808 state->inst = inst;
809
810 if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
811
812 // Build a single data packet if the store isn't split.
813 data_pkt = new Packet(req, command);
814 data_pkt->dataStatic(inst->memData);
815 data_pkt->senderState = state;
816 } else {
817 // Create two packets if the store is split in two.
818 data_pkt = new Packet(sreqLow, command);
819 snd_data_pkt = new Packet(sreqHigh, command);
820
821 data_pkt->dataStatic(inst->memData);
822 snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
823
824 data_pkt->senderState = state;
825 snd_data_pkt->senderState = state;
826
827 state->isSplit = true;
828 state->outstanding = 2;
829
830 // Can delete the main request now.
831 delete req;
832 req = sreqLow;
833 }
834
835 DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
836 "to Addr:%#x, data:%#x [sn:%lli]\n",
837 storeWBIdx, inst->pcState(),
838 req->getPaddr(), (int)*(inst->memData),
839 inst->seqNum);
840
841 // @todo: Remove this SC hack once the memory system handles it.
842 if (inst->isStoreConditional()) {
843 assert(!storeQueue[storeWBIdx].isSplit);
844 // Disable recording the result temporarily. Writing to
845 // misc regs normally updates the result, but this is not
846 // the desired behavior when handling store conditionals.
847 inst->recordResult(false);
848 bool success = TheISA::handleLockedWrite(inst.get(), req);
849 inst->recordResult(true);
850
851 if (!success) {
852 // Instantly complete this store.
853 DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. "
854 "Instantly completing it.\n",
855 inst->seqNum);
856 WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
857 cpu->schedule(wb, curTick() + 1);
858 if (cpu->checker) {
859 // Make sure to set the LLSC data for verification
860 // if checker is loaded
861 inst->reqToVerify->setExtraData(0);
862 inst->completeAcc(data_pkt);
863 }
864 completeStore(storeWBIdx);
865 incrStIdx(storeWBIdx);
866 continue;
867 }
868 } else {
869 // Non-store conditionals do not need a writeback.
870 state->noWB = true;
871 }
872
873 bool split =
874 TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
875
876 ThreadContext *thread = cpu->tcBase(lsqID);
877
878 if (req->isMmappedIpr()) {
879 assert(!inst->isStoreConditional());
880 TheISA::handleIprWrite(thread, data_pkt);
881 delete data_pkt;
882 if (split) {
883 assert(snd_data_pkt->req->isMmappedIpr());
884 TheISA::handleIprWrite(thread, snd_data_pkt);
885 delete snd_data_pkt;
886 delete sreqLow;
887 delete sreqHigh;
888 }
889 delete state;
890 delete req;
891 completeStore(storeWBIdx);
892 incrStIdx(storeWBIdx);
893 } else if (!sendStore(data_pkt)) {
894 DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
895 "retry later\n",
896 inst->seqNum);
897
898 // Need to store the second packet, if split.
899 if (split) {
900 state->pktToSend = true;
901 state->pendingPacket = snd_data_pkt;
902 }
903 } else {
904
905 // If split, try to send the second packet too
906 if (split) {
907 assert(snd_data_pkt);
908
909 // Ensure there are enough ports to use.
910 if (usedPorts < cachePorts) {
911 ++usedPorts;
912 if (sendStore(snd_data_pkt)) {
913 storePostSend(snd_data_pkt);
914 } else {
915 DPRINTF(IEW, "D-Cache became blocked when writing"
916 " [sn:%lli] second packet, will retry later\n",
917 inst->seqNum);
918 }
919 } else {
920
921 // Store the packet for when there's free ports.
922 assert(pendingPkt == NULL);
923 pendingPkt = snd_data_pkt;
924 hasPendingPkt = true;
925 }
926 } else {
927
928 // Not a split store.
929 storePostSend(data_pkt);
930 }
931 }
932 }
933
934 // Not sure this should set it to 0.
935 usedPorts = 0;
936
937 assert(stores >= 0 && storesToWB >= 0);
938}
939
940/*template <class Impl>
941void
942LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
943{
944 list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
945 mshrSeqNums.end(),
946 seqNum);
947
948 if (mshr_it != mshrSeqNums.end()) {
949 mshrSeqNums.erase(mshr_it);
950 DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
951 }
952}*/
953
954template <class Impl>
955void
956LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
957{
958 DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
959 "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
960
961 int load_idx = loadTail;
962 decrLdIdx(load_idx);
963
964 while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
965 DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
966 "[sn:%lli]\n",
967 loadQueue[load_idx]->pcState(),
968 loadQueue[load_idx]->seqNum);
969
970 if (isStalled() && load_idx == stallingLoadIdx) {
971 stalled = false;
972 stallingStoreIsn = 0;
973 stallingLoadIdx = 0;
974 }
975
976 // Clear the smart pointer to make sure it is decremented.
977 loadQueue[load_idx]->setSquashed();
978 loadQueue[load_idx] = NULL;
979 --loads;
980
981 // Inefficient!
982 loadTail = load_idx;
983
984 decrLdIdx(load_idx);
985 ++lsqSquashedLoads;
986 }
987
988 if (isLoadBlocked) {
989 if (squashed_num < blockedLoadSeqNum) {
990 isLoadBlocked = false;
991 loadBlockedHandled = false;
992 blockedLoadSeqNum = 0;
993 }
994 }
995
996 if (memDepViolator && squashed_num < memDepViolator->seqNum) {
997 memDepViolator = NULL;
998 }
999
1000 int store_idx = storeTail;
1001 decrStIdx(store_idx);
1002
1003 while (stores != 0 &&
1004 storeQueue[store_idx].inst->seqNum > squashed_num) {
1005 // Instructions marked as can WB are already committed.
1006 if (storeQueue[store_idx].canWB) {
1007 break;
1008 }
1009
1010 DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1011 "idx:%i [sn:%lli]\n",
1012 storeQueue[store_idx].inst->pcState(),
1013 store_idx, storeQueue[store_idx].inst->seqNum);
1014
1015 // I don't think this can happen. It should have been cleared
1016 // by the stalling load.
1017 if (isStalled() &&
1018 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1019 panic("Is stalled should have been cleared by stalling load!\n");
1020 stalled = false;
1021 stallingStoreIsn = 0;
1022 }
1023
1024 // Clear the smart pointer to make sure it is decremented.
1025 storeQueue[store_idx].inst->setSquashed();
1026 storeQueue[store_idx].inst = NULL;
1027 storeQueue[store_idx].canWB = 0;
1028
1029 // Must delete request now that it wasn't handed off to
1030 // memory. This is quite ugly. @todo: Figure out the proper
1031 // place to really handle request deletes.
1032 delete storeQueue[store_idx].req;
1033 if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1034 delete storeQueue[store_idx].sreqLow;
1035 delete storeQueue[store_idx].sreqHigh;
1036
1037 storeQueue[store_idx].sreqLow = NULL;
1038 storeQueue[store_idx].sreqHigh = NULL;
1039 }
1040
1041 storeQueue[store_idx].req = NULL;
1042 --stores;
1043
1044 // Inefficient!
1045 storeTail = store_idx;
1046
1047 decrStIdx(store_idx);
1048 ++lsqSquashedStores;
1049 }
1050}
1051
1052template <class Impl>
1053void
1054LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1055{
1056 if (isStalled() &&
1057 storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1058 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1059 "load idx:%i\n",
1060 stallingStoreIsn, stallingLoadIdx);
1061 stalled = false;
1062 stallingStoreIsn = 0;
1063 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1064 }
1065
1066 if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1067 // The store is basically completed at this time. This
1068 // only works so long as the checker doesn't try to
1069 // verify the value in memory for stores.
1070 storeQueue[storeWBIdx].inst->setCompleted();
1071
1072 if (cpu->checker) {
1073 cpu->checker->verify(storeQueue[storeWBIdx].inst);
1074 }
1075 }
1076
1077 if (needsTSO) {
1078 storeInFlight = true;
1079 }
1080
1081 incrStIdx(storeWBIdx);
1082}
1083
1084template <class Impl>
1085void
1086LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1087{
1088 iewStage->wakeCPU();
1089
1090 // Squashed instructions do not need to complete their access.
1091 if (inst->isSquashed()) {
1092 iewStage->decrWb(inst->seqNum);
1093 assert(!inst->isStore());
1094 ++lsqIgnoredResponses;
1095 return;
1096 }
1097
1098 if (!inst->isExecuted()) {
1099 inst->setExecuted();
1100
1101 // Complete access to copy data to proper place.
1102 inst->completeAcc(pkt);
1103 }
1104
1105 // Need to insert instruction into queue to commit
1106 iewStage->instToCommit(inst);
1107
1108 iewStage->activityThisCycle();
1109
1110 // see if this load changed the PC
1111 iewStage->checkMisprediction(inst);
1112}
1113
1114template <class Impl>
1115void
1116LSQUnit<Impl>::completeStore(int store_idx)
1117{
1118 assert(storeQueue[store_idx].inst);
1119 storeQueue[store_idx].completed = true;
1120 --storesToWB;
1121 // A bit conservative because a store completion may not free up entries,
1122 // but hopefully avoids two store completions in one cycle from making
1123 // the CPU tick twice.
1124 cpu->wakeCPU();
1125 cpu->activityThisCycle();
1126
1127 if (store_idx == storeHead) {
1128 do {
1129 incrStIdx(storeHead);
1130
1131 --stores;
1132 } while (storeQueue[storeHead].completed &&
1133 storeHead != storeTail);
1134
1135 iewStage->updateLSQNextCycle = true;
1136 }
1137
1138 DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1139 "idx:%i\n",
1140 storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1141
1142#if TRACING_ON
1143 if (DTRACE(O3PipeView)) {
1144 storeQueue[store_idx].inst->storeTick =
1145 curTick() - storeQueue[store_idx].inst->fetchTick;
1146 }
1147#endif
1148
1149 if (isStalled() &&
1150 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1151 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1152 "load idx:%i\n",
1153 stallingStoreIsn, stallingLoadIdx);
1154 stalled = false;
1155 stallingStoreIsn = 0;
1156 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1157 }
1158
1159 storeQueue[store_idx].inst->setCompleted();
1160
1161 if (needsTSO) {
1162 storeInFlight = false;
1163 }
1164
1165 // Tell the checker we've completed this instruction. Some stores
1166 // may get reported twice to the checker, but the checker can
1167 // handle that case.
1168 if (cpu->checker) {
1169 cpu->checker->verify(storeQueue[store_idx].inst);
1170 }
1171}
1172
1173template <class Impl>
1174bool
1175LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1176{
1177 if (!dcachePort->sendTimingReq(data_pkt)) {
1178 // Need to handle becoming blocked on a store.
1179 isStoreBlocked = true;
1180 ++lsqCacheBlocked;
1181 assert(retryPkt == NULL);
1182 retryPkt = data_pkt;
1183 lsq->setRetryTid(lsqID);
1184 return false;
1185 }
1186 return true;
1187}
1188
1189template <class Impl>
1190void
1191LSQUnit<Impl>::recvRetry()
1192{
1193 if (isStoreBlocked) {
1194 DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1195 assert(retryPkt != NULL);
1196
1197 LSQSenderState *state =
1198 dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1199
1200 if (dcachePort->sendTimingReq(retryPkt)) {
1201 // Don't finish the store unless this is the last packet.
1202 if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1203 state->pendingPacket == retryPkt) {
1204 state->pktToSend = false;
1205 storePostSend(retryPkt);
1206 }
1207 retryPkt = NULL;
1208 isStoreBlocked = false;
1209 lsq->setRetryTid(InvalidThreadID);
1210
1211 // Send any outstanding packet.
1212 if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1213 assert(state->pendingPacket);
1214 if (sendStore(state->pendingPacket)) {
1215 storePostSend(state->pendingPacket);
1216 }
1217 }
1218 } else {
1219 // Still blocked!
1220 ++lsqCacheBlocked;
1221 lsq->setRetryTid(lsqID);
1222 }
1223 } else if (isLoadBlocked) {
1224 DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1225 "no need to resend packet.\n");
1226 } else {
1227 DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1228 }
1229}
1230
1231template <class Impl>
1232inline void
1233LSQUnit<Impl>::incrStIdx(int &store_idx) const
1234{
1235 if (++store_idx >= SQEntries)
1236 store_idx = 0;
1237}
1238
1239template <class Impl>
1240inline void
1241LSQUnit<Impl>::decrStIdx(int &store_idx) const
1242{
1243 if (--store_idx < 0)
1244 store_idx += SQEntries;
1245}
1246
1247template <class Impl>
1248inline void
1249LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1250{
1251 if (++load_idx >= LQEntries)
1252 load_idx = 0;
1253}
1254
1255template <class Impl>
1256inline void
1257LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1258{
1259 if (--load_idx < 0)
1260 load_idx += LQEntries;
1261}
1262
1263template <class Impl>
1264void
1265LSQUnit<Impl>::dumpInsts() const
1266{
1267 cprintf("Load store queue: Dumping instructions.\n");
1268 cprintf("Load queue size: %i\n", loads);
1269 cprintf("Load queue: ");
1270
1271 int load_idx = loadHead;
1272
1273 while (load_idx != loadTail && loadQueue[load_idx]) {
1274 const DynInstPtr &inst(loadQueue[load_idx]);
1275 cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1276
1277 incrLdIdx(load_idx);
1278 }
1279 cprintf("\n");
1280
1281 cprintf("Store queue size: %i\n", stores);
1282 cprintf("Store queue: ");
1283
1284 int store_idx = storeHead;
1285
1286 while (store_idx != storeTail && storeQueue[store_idx].inst) {
1287 const DynInstPtr &inst(storeQueue[store_idx].inst);
1288 cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1289
1290 incrStIdx(store_idx);
1291 }
1292
1293 cprintf("\n");
1294}
1295
1296#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__