lsq_unit_impl.hh (8232:b28d06a175be) lsq_unit_impl.hh (8247:acf4b902c02e)
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#include "arch/locked_mem.hh"
45#include "base/str.hh"
46#include "config/the_isa.hh"
47#include "config/use_checker.hh"
48#include "cpu/o3/lsq.hh"
49#include "cpu/o3/lsq_unit.hh"
50#include "debug/Activity.hh"
51#include "debug/IEW.hh"
52#include "debug/LSQUnit.hh"
53#include "mem/packet.hh"
54#include "mem/request.hh"
55
56#if USE_CHECKER
57#include "cpu/checker/cpu.hh"
58#endif
59
60template<class Impl>
61LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
62 LSQUnit *lsq_ptr)
63 : inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
64{
65 this->setFlags(Event::AutoDelete);
66}
67
68template<class Impl>
69void
70LSQUnit<Impl>::WritebackEvent::process()
71{
72 if (!lsqPtr->isSwitchedOut()) {
73 lsqPtr->writeback(inst, pkt);
74 }
75
76 if (pkt->senderState)
77 delete pkt->senderState;
78
79 delete pkt->req;
80 delete pkt;
81}
82
83template<class Impl>
84const char *
85LSQUnit<Impl>::WritebackEvent::description() const
86{
87 return "Store writeback";
88}
89
90template<class Impl>
91void
92LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
93{
94 LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
95 DynInstPtr inst = state->inst;
96 DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
97 DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
98
99 //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
100
101 assert(!pkt->wasNacked());
102
103 // If this is a split access, wait until all packets are received.
104 if (TheISA::HasUnalignedMemAcc && !state->complete()) {
105 delete pkt->req;
106 delete pkt;
107 return;
108 }
109
110 if (isSwitchedOut() || inst->isSquashed()) {
111 iewStage->decrWb(inst->seqNum);
112 } else {
113 if (!state->noWB) {
114 if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
115 !state->isLoad) {
116 writeback(inst, pkt);
117 } else {
118 writeback(inst, state->mainPkt);
119 }
120 }
121
122 if (inst->isStore()) {
123 completeStore(state->idx);
124 }
125 }
126
127 if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
128 delete state->mainPkt->req;
129 delete state->mainPkt;
130 }
131 delete state;
132 delete pkt->req;
133 delete pkt;
134}
135
136template <class Impl>
137LSQUnit<Impl>::LSQUnit()
138 : loads(0), stores(0), storesToWB(0), stalled(false),
139 isStoreBlocked(false), isLoadBlocked(false),
140 loadBlockedHandled(false), hasPendingPkt(false)
141{
142}
143
144template<class Impl>
145void
146LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
147 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
148 unsigned id)
149{
150 cpu = cpu_ptr;
151 iewStage = iew_ptr;
152
153 DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
154
155 switchedOut = false;
156
157 lsq = lsq_ptr;
158
159 lsqID = id;
160
161 // Add 1 for the sentinel entry (they are circular queues).
162 LQEntries = maxLQEntries + 1;
163 SQEntries = maxSQEntries + 1;
164
165 loadQueue.resize(LQEntries);
166 storeQueue.resize(SQEntries);
167
168 depCheckShift = params->LSQDepCheckShift;
169 checkLoads = params->LSQCheckLoads;
170
171 loadHead = loadTail = 0;
172
173 storeHead = storeWBIdx = storeTail = 0;
174
175 usedPorts = 0;
176 cachePorts = params->cachePorts;
177
178 retryPkt = NULL;
179 memDepViolator = NULL;
180
181 blockedLoadSeqNum = 0;
182}
183
184template<class Impl>
185std::string
186LSQUnit<Impl>::name() const
187{
188 if (Impl::MaxThreads == 1) {
189 return iewStage->name() + ".lsq";
190 } else {
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#include "arch/locked_mem.hh"
45#include "base/str.hh"
46#include "config/the_isa.hh"
47#include "config/use_checker.hh"
48#include "cpu/o3/lsq.hh"
49#include "cpu/o3/lsq_unit.hh"
50#include "debug/Activity.hh"
51#include "debug/IEW.hh"
52#include "debug/LSQUnit.hh"
53#include "mem/packet.hh"
54#include "mem/request.hh"
55
56#if USE_CHECKER
57#include "cpu/checker/cpu.hh"
58#endif
59
60template<class Impl>
61LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
62 LSQUnit *lsq_ptr)
63 : inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
64{
65 this->setFlags(Event::AutoDelete);
66}
67
68template<class Impl>
69void
70LSQUnit<Impl>::WritebackEvent::process()
71{
72 if (!lsqPtr->isSwitchedOut()) {
73 lsqPtr->writeback(inst, pkt);
74 }
75
76 if (pkt->senderState)
77 delete pkt->senderState;
78
79 delete pkt->req;
80 delete pkt;
81}
82
83template<class Impl>
84const char *
85LSQUnit<Impl>::WritebackEvent::description() const
86{
87 return "Store writeback";
88}
89
90template<class Impl>
91void
92LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
93{
94 LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
95 DynInstPtr inst = state->inst;
96 DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
97 DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
98
99 //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
100
101 assert(!pkt->wasNacked());
102
103 // If this is a split access, wait until all packets are received.
104 if (TheISA::HasUnalignedMemAcc && !state->complete()) {
105 delete pkt->req;
106 delete pkt;
107 return;
108 }
109
110 if (isSwitchedOut() || inst->isSquashed()) {
111 iewStage->decrWb(inst->seqNum);
112 } else {
113 if (!state->noWB) {
114 if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
115 !state->isLoad) {
116 writeback(inst, pkt);
117 } else {
118 writeback(inst, state->mainPkt);
119 }
120 }
121
122 if (inst->isStore()) {
123 completeStore(state->idx);
124 }
125 }
126
127 if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
128 delete state->mainPkt->req;
129 delete state->mainPkt;
130 }
131 delete state;
132 delete pkt->req;
133 delete pkt;
134}
135
136template <class Impl>
137LSQUnit<Impl>::LSQUnit()
138 : loads(0), stores(0), storesToWB(0), stalled(false),
139 isStoreBlocked(false), isLoadBlocked(false),
140 loadBlockedHandled(false), hasPendingPkt(false)
141{
142}
143
144template<class Impl>
145void
146LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
147 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
148 unsigned id)
149{
150 cpu = cpu_ptr;
151 iewStage = iew_ptr;
152
153 DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
154
155 switchedOut = false;
156
157 lsq = lsq_ptr;
158
159 lsqID = id;
160
161 // Add 1 for the sentinel entry (they are circular queues).
162 LQEntries = maxLQEntries + 1;
163 SQEntries = maxSQEntries + 1;
164
165 loadQueue.resize(LQEntries);
166 storeQueue.resize(SQEntries);
167
168 depCheckShift = params->LSQDepCheckShift;
169 checkLoads = params->LSQCheckLoads;
170
171 loadHead = loadTail = 0;
172
173 storeHead = storeWBIdx = storeTail = 0;
174
175 usedPorts = 0;
176 cachePorts = params->cachePorts;
177
178 retryPkt = NULL;
179 memDepViolator = NULL;
180
181 blockedLoadSeqNum = 0;
182}
183
184template<class Impl>
185std::string
186LSQUnit<Impl>::name() const
187{
188 if (Impl::MaxThreads == 1) {
189 return iewStage->name() + ".lsq";
190 } else {
191 return iewStage->name() + ".lsq.thread." + to_string(lsqID);
191 return iewStage->name() + ".lsq.thread" + to_string(lsqID);
192 }
193}
194
195template<class Impl>
196void
197LSQUnit<Impl>::regStats()
198{
199 lsqForwLoads
200 .name(name() + ".forwLoads")
201 .desc("Number of loads that had data forwarded from stores");
202
203 invAddrLoads
204 .name(name() + ".invAddrLoads")
205 .desc("Number of loads ignored due to an invalid address");
206
207 lsqSquashedLoads
208 .name(name() + ".squashedLoads")
209 .desc("Number of loads squashed");
210
211 lsqIgnoredResponses
212 .name(name() + ".ignoredResponses")
213 .desc("Number of memory responses ignored because the instruction is squashed");
214
215 lsqMemOrderViolation
216 .name(name() + ".memOrderViolation")
217 .desc("Number of memory ordering violations");
218
219 lsqSquashedStores
220 .name(name() + ".squashedStores")
221 .desc("Number of stores squashed");
222
223 invAddrSwpfs
224 .name(name() + ".invAddrSwpfs")
225 .desc("Number of software prefetches ignored due to an invalid address");
226
227 lsqBlockedLoads
228 .name(name() + ".blockedLoads")
229 .desc("Number of blocked loads due to partial load-store forwarding");
230
231 lsqRescheduledLoads
232 .name(name() + ".rescheduledLoads")
233 .desc("Number of loads that were rescheduled");
234
235 lsqCacheBlocked
236 .name(name() + ".cacheBlocked")
237 .desc("Number of times an access to memory failed due to the cache being blocked");
238}
239
240template<class Impl>
241void
242LSQUnit<Impl>::setDcachePort(Port *dcache_port)
243{
244 dcachePort = dcache_port;
245
246#if USE_CHECKER
247 if (cpu->checker) {
248 cpu->checker->setDcachePort(dcachePort);
249 }
250#endif
251}
252
253template<class Impl>
254void
255LSQUnit<Impl>::clearLQ()
256{
257 loadQueue.clear();
258}
259
260template<class Impl>
261void
262LSQUnit<Impl>::clearSQ()
263{
264 storeQueue.clear();
265}
266
267template<class Impl>
268void
269LSQUnit<Impl>::switchOut()
270{
271 switchedOut = true;
272 for (int i = 0; i < loadQueue.size(); ++i) {
273 assert(!loadQueue[i]);
274 loadQueue[i] = NULL;
275 }
276
277 assert(storesToWB == 0);
278}
279
280template<class Impl>
281void
282LSQUnit<Impl>::takeOverFrom()
283{
284 switchedOut = false;
285 loads = stores = storesToWB = 0;
286
287 loadHead = loadTail = 0;
288
289 storeHead = storeWBIdx = storeTail = 0;
290
291 usedPorts = 0;
292
293 memDepViolator = NULL;
294
295 blockedLoadSeqNum = 0;
296
297 stalled = false;
298 isLoadBlocked = false;
299 loadBlockedHandled = false;
300}
301
302template<class Impl>
303void
304LSQUnit<Impl>::resizeLQ(unsigned size)
305{
306 unsigned size_plus_sentinel = size + 1;
307 assert(size_plus_sentinel >= LQEntries);
308
309 if (size_plus_sentinel > LQEntries) {
310 while (size_plus_sentinel > loadQueue.size()) {
311 DynInstPtr dummy;
312 loadQueue.push_back(dummy);
313 LQEntries++;
314 }
315 } else {
316 LQEntries = size_plus_sentinel;
317 }
318
319}
320
321template<class Impl>
322void
323LSQUnit<Impl>::resizeSQ(unsigned size)
324{
325 unsigned size_plus_sentinel = size + 1;
326 if (size_plus_sentinel > SQEntries) {
327 while (size_plus_sentinel > storeQueue.size()) {
328 SQEntry dummy;
329 storeQueue.push_back(dummy);
330 SQEntries++;
331 }
332 } else {
333 SQEntries = size_plus_sentinel;
334 }
335}
336
337template <class Impl>
338void
339LSQUnit<Impl>::insert(DynInstPtr &inst)
340{
341 assert(inst->isMemRef());
342
343 assert(inst->isLoad() || inst->isStore());
344
345 if (inst->isLoad()) {
346 insertLoad(inst);
347 } else {
348 insertStore(inst);
349 }
350
351 inst->setInLSQ();
352}
353
354template <class Impl>
355void
356LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
357{
358 assert((loadTail + 1) % LQEntries != loadHead);
359 assert(loads < LQEntries);
360
361 DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
362 load_inst->pcState(), loadTail, load_inst->seqNum);
363
364 load_inst->lqIdx = loadTail;
365
366 if (stores == 0) {
367 load_inst->sqIdx = -1;
368 } else {
369 load_inst->sqIdx = storeTail;
370 }
371
372 loadQueue[loadTail] = load_inst;
373
374 incrLdIdx(loadTail);
375
376 ++loads;
377}
378
379template <class Impl>
380void
381LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
382{
383 // Make sure it is not full before inserting an instruction.
384 assert((storeTail + 1) % SQEntries != storeHead);
385 assert(stores < SQEntries);
386
387 DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
388 store_inst->pcState(), storeTail, store_inst->seqNum);
389
390 store_inst->sqIdx = storeTail;
391 store_inst->lqIdx = loadTail;
392
393 storeQueue[storeTail] = SQEntry(store_inst);
394
395 incrStIdx(storeTail);
396
397 ++stores;
398}
399
400template <class Impl>
401typename Impl::DynInstPtr
402LSQUnit<Impl>::getMemDepViolator()
403{
404 DynInstPtr temp = memDepViolator;
405
406 memDepViolator = NULL;
407
408 return temp;
409}
410
411template <class Impl>
412unsigned
413LSQUnit<Impl>::numFreeEntries()
414{
415 unsigned free_lq_entries = LQEntries - loads;
416 unsigned free_sq_entries = SQEntries - stores;
417
418 // Both the LQ and SQ entries have an extra dummy entry to differentiate
419 // empty/full conditions. Subtract 1 from the free entries.
420 if (free_lq_entries < free_sq_entries) {
421 return free_lq_entries - 1;
422 } else {
423 return free_sq_entries - 1;
424 }
425}
426
427template <class Impl>
428int
429LSQUnit<Impl>::numLoadsReady()
430{
431 int load_idx = loadHead;
432 int retval = 0;
433
434 while (load_idx != loadTail) {
435 assert(loadQueue[load_idx]);
436
437 if (loadQueue[load_idx]->readyToIssue()) {
438 ++retval;
439 }
440 }
441
442 return retval;
443}
444
445template <class Impl>
446Fault
447LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
448{
449 Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
450 Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
451
452 /** @todo in theory you only need to check an instruction that has executed
453 * however, there isn't a good way in the pipeline at the moment to check
454 * all instructions that will execute before the store writes back. Thus,
455 * like the implementation that came before it, we're overly conservative.
456 */
457 while (load_idx != loadTail) {
458 DynInstPtr ld_inst = loadQueue[load_idx];
459 if (!ld_inst->effAddrValid || ld_inst->uncacheable()) {
460 incrLdIdx(load_idx);
461 continue;
462 }
463
464 Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
465 Addr ld_eff_addr2 =
466 (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
467
468 if ((inst_eff_addr2 > ld_eff_addr1 && inst_eff_addr1 < ld_eff_addr2) ||
469 inst_eff_addr1 == ld_eff_addr1) {
470 // A load/store incorrectly passed this load/store.
471 // Check if we already have a violator, or if it's newer
472 // squash and refetch.
473 if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
474 break;
475
476 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and [sn:%lli]"
477 " at address %#x\n", inst->seqNum, ld_inst->seqNum,
478 ld_eff_addr1);
479 memDepViolator = ld_inst;
480
481 ++lsqMemOrderViolation;
482
483 return TheISA::genMachineCheckFault();
484 }
485
486 incrLdIdx(load_idx);
487 }
488 return NoFault;
489}
490
491
492
493
494template <class Impl>
495Fault
496LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
497{
498 using namespace TheISA;
499 // Execute a specific load.
500 Fault load_fault = NoFault;
501
502 DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
503 inst->pcState(), inst->seqNum);
504
505 assert(!inst->isSquashed());
506
507 load_fault = inst->initiateAcc();
508
509 if (inst->isTranslationDelayed() &&
510 load_fault == NoFault)
511 return load_fault;
512
513 // If the instruction faulted or predicated false, then we need to send it
514 // along to commit without the instruction completing.
515 if (load_fault != NoFault || inst->readPredicate() == false) {
516 // Send this instruction to commit, also make sure iew stage
517 // realizes there is activity.
518 // Mark it as executed unless it is an uncached load that
519 // needs to hit the head of commit.
520 if (inst->readPredicate() == false)
521 inst->forwardOldRegs();
522 DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
523 inst->seqNum,
524 (load_fault != NoFault ? "fault" : "predication"));
525 if (!(inst->hasRequest() && inst->uncacheable()) ||
526 inst->isAtCommit()) {
527 inst->setExecuted();
528 }
529 iewStage->instToCommit(inst);
530 iewStage->activityThisCycle();
531 } else if (!loadBlocked()) {
532 assert(inst->effAddrValid);
533 int load_idx = inst->lqIdx;
534 incrLdIdx(load_idx);
535
536 if (checkLoads)
537 return checkViolations(load_idx, inst);
538 }
539
540 return load_fault;
541}
542
543template <class Impl>
544Fault
545LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
546{
547 using namespace TheISA;
548 // Make sure that a store exists.
549 assert(stores != 0);
550
551 int store_idx = store_inst->sqIdx;
552
553 DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
554 store_inst->pcState(), store_inst->seqNum);
555
556 assert(!store_inst->isSquashed());
557
558 // Check the recently completed loads to see if any match this store's
559 // address. If so, then we have a memory ordering violation.
560 int load_idx = store_inst->lqIdx;
561
562 Fault store_fault = store_inst->initiateAcc();
563
564 if (store_inst->isTranslationDelayed() &&
565 store_fault == NoFault)
566 return store_fault;
567
568 if (store_inst->readPredicate() == false)
569 store_inst->forwardOldRegs();
570
571 if (storeQueue[store_idx].size == 0) {
572 DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
573 store_inst->pcState(), store_inst->seqNum);
574
575 return store_fault;
576 } else if (store_inst->readPredicate() == false) {
577 DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
578 store_inst->seqNum);
579 return store_fault;
580 }
581
582 assert(store_fault == NoFault);
583
584 if (store_inst->isStoreConditional()) {
585 // Store conditionals need to set themselves as able to
586 // writeback if we haven't had a fault by here.
587 storeQueue[store_idx].canWB = true;
588
589 ++storesToWB;
590 }
591
592 return checkViolations(load_idx, store_inst);
593
594}
595
596template <class Impl>
597void
598LSQUnit<Impl>::commitLoad()
599{
600 assert(loadQueue[loadHead]);
601
602 DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
603 loadQueue[loadHead]->pcState());
604
605 loadQueue[loadHead] = NULL;
606
607 incrLdIdx(loadHead);
608
609 --loads;
610}
611
612template <class Impl>
613void
614LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
615{
616 assert(loads == 0 || loadQueue[loadHead]);
617
618 while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
619 commitLoad();
620 }
621}
622
623template <class Impl>
624void
625LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
626{
627 assert(stores == 0 || storeQueue[storeHead].inst);
628
629 int store_idx = storeHead;
630
631 while (store_idx != storeTail) {
632 assert(storeQueue[store_idx].inst);
633 // Mark any stores that are now committed and have not yet
634 // been marked as able to write back.
635 if (!storeQueue[store_idx].canWB) {
636 if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
637 break;
638 }
639 DPRINTF(LSQUnit, "Marking store as able to write back, PC "
640 "%s [sn:%lli]\n",
641 storeQueue[store_idx].inst->pcState(),
642 storeQueue[store_idx].inst->seqNum);
643
644 storeQueue[store_idx].canWB = true;
645
646 ++storesToWB;
647 }
648
649 incrStIdx(store_idx);
650 }
651}
652
653template <class Impl>
654void
655LSQUnit<Impl>::writebackPendingStore()
656{
657 if (hasPendingPkt) {
658 assert(pendingPkt != NULL);
659
660 // If the cache is blocked, this will store the packet for retry.
661 if (sendStore(pendingPkt)) {
662 storePostSend(pendingPkt);
663 }
664 pendingPkt = NULL;
665 hasPendingPkt = false;
666 }
667}
668
669template <class Impl>
670void
671LSQUnit<Impl>::writebackStores()
672{
673 // First writeback the second packet from any split store that didn't
674 // complete last cycle because there weren't enough cache ports available.
675 if (TheISA::HasUnalignedMemAcc) {
676 writebackPendingStore();
677 }
678
679 while (storesToWB > 0 &&
680 storeWBIdx != storeTail &&
681 storeQueue[storeWBIdx].inst &&
682 storeQueue[storeWBIdx].canWB &&
683 usedPorts < cachePorts) {
684
685 if (isStoreBlocked || lsq->cacheBlocked()) {
686 DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
687 " is blocked!\n");
688 break;
689 }
690
691 // Store didn't write any data so no need to write it back to
692 // memory.
693 if (storeQueue[storeWBIdx].size == 0) {
694 completeStore(storeWBIdx);
695
696 incrStIdx(storeWBIdx);
697
698 continue;
699 }
700
701 ++usedPorts;
702
703 if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
704 incrStIdx(storeWBIdx);
705
706 continue;
707 }
708
709 assert(storeQueue[storeWBIdx].req);
710 assert(!storeQueue[storeWBIdx].committed);
711
712 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
713 assert(storeQueue[storeWBIdx].sreqLow);
714 assert(storeQueue[storeWBIdx].sreqHigh);
715 }
716
717 DynInstPtr inst = storeQueue[storeWBIdx].inst;
718
719 Request *req = storeQueue[storeWBIdx].req;
720 storeQueue[storeWBIdx].committed = true;
721
722 assert(!inst->memData);
723 inst->memData = new uint8_t[64];
724
725 memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
726
727 MemCmd command =
728 req->isSwap() ? MemCmd::SwapReq :
729 (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
730 PacketPtr data_pkt;
731 PacketPtr snd_data_pkt = NULL;
732
733 LSQSenderState *state = new LSQSenderState;
734 state->isLoad = false;
735 state->idx = storeWBIdx;
736 state->inst = inst;
737
738 if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
739
740 // Build a single data packet if the store isn't split.
741 data_pkt = new Packet(req, command, Packet::Broadcast);
742 data_pkt->dataStatic(inst->memData);
743 data_pkt->senderState = state;
744 } else {
745 RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
746 RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
747
748 // Create two packets if the store is split in two.
749 data_pkt = new Packet(sreqLow, command, Packet::Broadcast);
750 snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast);
751
752 data_pkt->dataStatic(inst->memData);
753 snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
754
755 data_pkt->senderState = state;
756 snd_data_pkt->senderState = state;
757
758 state->isSplit = true;
759 state->outstanding = 2;
760
761 // Can delete the main request now.
762 delete req;
763 req = sreqLow;
764 }
765
766 DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
767 "to Addr:%#x, data:%#x [sn:%lli]\n",
768 storeWBIdx, inst->pcState(),
769 req->getPaddr(), (int)*(inst->memData),
770 inst->seqNum);
771
772 // @todo: Remove this SC hack once the memory system handles it.
773 if (inst->isStoreConditional()) {
774 assert(!storeQueue[storeWBIdx].isSplit);
775 // Disable recording the result temporarily. Writing to
776 // misc regs normally updates the result, but this is not
777 // the desired behavior when handling store conditionals.
778 inst->recordResult = false;
779 bool success = TheISA::handleLockedWrite(inst.get(), req);
780 inst->recordResult = true;
781
782 if (!success) {
783 // Instantly complete this store.
784 DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. "
785 "Instantly completing it.\n",
786 inst->seqNum);
787 WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
788 cpu->schedule(wb, curTick() + 1);
789 completeStore(storeWBIdx);
790 incrStIdx(storeWBIdx);
791 continue;
792 }
793 } else {
794 // Non-store conditionals do not need a writeback.
795 state->noWB = true;
796 }
797
798 if (!sendStore(data_pkt)) {
799 DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
800 "retry later\n",
801 inst->seqNum);
802
803 // Need to store the second packet, if split.
804 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
805 state->pktToSend = true;
806 state->pendingPacket = snd_data_pkt;
807 }
808 } else {
809
810 // If split, try to send the second packet too
811 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
812 assert(snd_data_pkt);
813
814 // Ensure there are enough ports to use.
815 if (usedPorts < cachePorts) {
816 ++usedPorts;
817 if (sendStore(snd_data_pkt)) {
818 storePostSend(snd_data_pkt);
819 } else {
820 DPRINTF(IEW, "D-Cache became blocked when writing"
821 " [sn:%lli] second packet, will retry later\n",
822 inst->seqNum);
823 }
824 } else {
825
826 // Store the packet for when there's free ports.
827 assert(pendingPkt == NULL);
828 pendingPkt = snd_data_pkt;
829 hasPendingPkt = true;
830 }
831 } else {
832
833 // Not a split store.
834 storePostSend(data_pkt);
835 }
836 }
837 }
838
839 // Not sure this should set it to 0.
840 usedPorts = 0;
841
842 assert(stores >= 0 && storesToWB >= 0);
843}
844
845/*template <class Impl>
846void
847LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
848{
849 list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
850 mshrSeqNums.end(),
851 seqNum);
852
853 if (mshr_it != mshrSeqNums.end()) {
854 mshrSeqNums.erase(mshr_it);
855 DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
856 }
857}*/
858
859template <class Impl>
860void
861LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
862{
863 DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
864 "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
865
866 int load_idx = loadTail;
867 decrLdIdx(load_idx);
868
869 while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
870 DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
871 "[sn:%lli]\n",
872 loadQueue[load_idx]->pcState(),
873 loadQueue[load_idx]->seqNum);
874
875 if (isStalled() && load_idx == stallingLoadIdx) {
876 stalled = false;
877 stallingStoreIsn = 0;
878 stallingLoadIdx = 0;
879 }
880
881 // Clear the smart pointer to make sure it is decremented.
882 loadQueue[load_idx]->setSquashed();
883 loadQueue[load_idx] = NULL;
884 --loads;
885
886 // Inefficient!
887 loadTail = load_idx;
888
889 decrLdIdx(load_idx);
890 ++lsqSquashedLoads;
891 }
892
893 if (isLoadBlocked) {
894 if (squashed_num < blockedLoadSeqNum) {
895 isLoadBlocked = false;
896 loadBlockedHandled = false;
897 blockedLoadSeqNum = 0;
898 }
899 }
900
901 if (memDepViolator && squashed_num < memDepViolator->seqNum) {
902 memDepViolator = NULL;
903 }
904
905 int store_idx = storeTail;
906 decrStIdx(store_idx);
907
908 while (stores != 0 &&
909 storeQueue[store_idx].inst->seqNum > squashed_num) {
910 // Instructions marked as can WB are already committed.
911 if (storeQueue[store_idx].canWB) {
912 break;
913 }
914
915 DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
916 "idx:%i [sn:%lli]\n",
917 storeQueue[store_idx].inst->pcState(),
918 store_idx, storeQueue[store_idx].inst->seqNum);
919
920 // I don't think this can happen. It should have been cleared
921 // by the stalling load.
922 if (isStalled() &&
923 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
924 panic("Is stalled should have been cleared by stalling load!\n");
925 stalled = false;
926 stallingStoreIsn = 0;
927 }
928
929 // Clear the smart pointer to make sure it is decremented.
930 storeQueue[store_idx].inst->setSquashed();
931 storeQueue[store_idx].inst = NULL;
932 storeQueue[store_idx].canWB = 0;
933
934 // Must delete request now that it wasn't handed off to
935 // memory. This is quite ugly. @todo: Figure out the proper
936 // place to really handle request deletes.
937 delete storeQueue[store_idx].req;
938 if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
939 delete storeQueue[store_idx].sreqLow;
940 delete storeQueue[store_idx].sreqHigh;
941
942 storeQueue[store_idx].sreqLow = NULL;
943 storeQueue[store_idx].sreqHigh = NULL;
944 }
945
946 storeQueue[store_idx].req = NULL;
947 --stores;
948
949 // Inefficient!
950 storeTail = store_idx;
951
952 decrStIdx(store_idx);
953 ++lsqSquashedStores;
954 }
955}
956
957template <class Impl>
958void
959LSQUnit<Impl>::storePostSend(PacketPtr pkt)
960{
961 if (isStalled() &&
962 storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
963 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
964 "load idx:%i\n",
965 stallingStoreIsn, stallingLoadIdx);
966 stalled = false;
967 stallingStoreIsn = 0;
968 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
969 }
970
971 if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
972 // The store is basically completed at this time. This
973 // only works so long as the checker doesn't try to
974 // verify the value in memory for stores.
975 storeQueue[storeWBIdx].inst->setCompleted();
976#if USE_CHECKER
977 if (cpu->checker) {
978 cpu->checker->verify(storeQueue[storeWBIdx].inst);
979 }
980#endif
981 }
982
983 incrStIdx(storeWBIdx);
984}
985
986template <class Impl>
987void
988LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
989{
990 iewStage->wakeCPU();
991
992 // Squashed instructions do not need to complete their access.
993 if (inst->isSquashed()) {
994 iewStage->decrWb(inst->seqNum);
995 assert(!inst->isStore());
996 ++lsqIgnoredResponses;
997 return;
998 }
999
1000 if (!inst->isExecuted()) {
1001 inst->setExecuted();
1002
1003 // Complete access to copy data to proper place.
1004 inst->completeAcc(pkt);
1005 }
1006
1007 // Need to insert instruction into queue to commit
1008 iewStage->instToCommit(inst);
1009
1010 iewStage->activityThisCycle();
1011
1012 // see if this load changed the PC
1013 iewStage->checkMisprediction(inst);
1014}
1015
1016template <class Impl>
1017void
1018LSQUnit<Impl>::completeStore(int store_idx)
1019{
1020 assert(storeQueue[store_idx].inst);
1021 storeQueue[store_idx].completed = true;
1022 --storesToWB;
1023 // A bit conservative because a store completion may not free up entries,
1024 // but hopefully avoids two store completions in one cycle from making
1025 // the CPU tick twice.
1026 cpu->wakeCPU();
1027 cpu->activityThisCycle();
1028
1029 if (store_idx == storeHead) {
1030 do {
1031 incrStIdx(storeHead);
1032
1033 --stores;
1034 } while (storeQueue[storeHead].completed &&
1035 storeHead != storeTail);
1036
1037 iewStage->updateLSQNextCycle = true;
1038 }
1039
1040 DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1041 "idx:%i\n",
1042 storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1043
1044 if (isStalled() &&
1045 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1046 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1047 "load idx:%i\n",
1048 stallingStoreIsn, stallingLoadIdx);
1049 stalled = false;
1050 stallingStoreIsn = 0;
1051 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1052 }
1053
1054 storeQueue[store_idx].inst->setCompleted();
1055
1056 // Tell the checker we've completed this instruction. Some stores
1057 // may get reported twice to the checker, but the checker can
1058 // handle that case.
1059#if USE_CHECKER
1060 if (cpu->checker) {
1061 cpu->checker->verify(storeQueue[store_idx].inst);
1062 }
1063#endif
1064}
1065
1066template <class Impl>
1067bool
1068LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1069{
1070 if (!dcachePort->sendTiming(data_pkt)) {
1071 // Need to handle becoming blocked on a store.
1072 isStoreBlocked = true;
1073 ++lsqCacheBlocked;
1074 assert(retryPkt == NULL);
1075 retryPkt = data_pkt;
1076 lsq->setRetryTid(lsqID);
1077 return false;
1078 }
1079 return true;
1080}
1081
1082template <class Impl>
1083void
1084LSQUnit<Impl>::recvRetry()
1085{
1086 if (isStoreBlocked) {
1087 DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1088 assert(retryPkt != NULL);
1089
1090 if (dcachePort->sendTiming(retryPkt)) {
1091 LSQSenderState *state =
1092 dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1093
1094 // Don't finish the store unless this is the last packet.
1095 if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1096 state->pendingPacket == retryPkt) {
1097 state->pktToSend = false;
1098 storePostSend(retryPkt);
1099 }
1100 retryPkt = NULL;
1101 isStoreBlocked = false;
1102 lsq->setRetryTid(InvalidThreadID);
1103
1104 // Send any outstanding packet.
1105 if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1106 assert(state->pendingPacket);
1107 if (sendStore(state->pendingPacket)) {
1108 storePostSend(state->pendingPacket);
1109 }
1110 }
1111 } else {
1112 // Still blocked!
1113 ++lsqCacheBlocked;
1114 lsq->setRetryTid(lsqID);
1115 }
1116 } else if (isLoadBlocked) {
1117 DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1118 "no need to resend packet.\n");
1119 } else {
1120 DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1121 }
1122}
1123
1124template <class Impl>
1125inline void
1126LSQUnit<Impl>::incrStIdx(int &store_idx)
1127{
1128 if (++store_idx >= SQEntries)
1129 store_idx = 0;
1130}
1131
1132template <class Impl>
1133inline void
1134LSQUnit<Impl>::decrStIdx(int &store_idx)
1135{
1136 if (--store_idx < 0)
1137 store_idx += SQEntries;
1138}
1139
1140template <class Impl>
1141inline void
1142LSQUnit<Impl>::incrLdIdx(int &load_idx)
1143{
1144 if (++load_idx >= LQEntries)
1145 load_idx = 0;
1146}
1147
1148template <class Impl>
1149inline void
1150LSQUnit<Impl>::decrLdIdx(int &load_idx)
1151{
1152 if (--load_idx < 0)
1153 load_idx += LQEntries;
1154}
1155
1156template <class Impl>
1157void
1158LSQUnit<Impl>::dumpInsts()
1159{
1160 cprintf("Load store queue: Dumping instructions.\n");
1161 cprintf("Load queue size: %i\n", loads);
1162 cprintf("Load queue: ");
1163
1164 int load_idx = loadHead;
1165
1166 while (load_idx != loadTail && loadQueue[load_idx]) {
1167 cprintf("%s ", loadQueue[load_idx]->pcState());
1168
1169 incrLdIdx(load_idx);
1170 }
1171
1172 cprintf("Store queue size: %i\n", stores);
1173 cprintf("Store queue: ");
1174
1175 int store_idx = storeHead;
1176
1177 while (store_idx != storeTail && storeQueue[store_idx].inst) {
1178 cprintf("%s ", storeQueue[store_idx].inst->pcState());
1179
1180 incrStIdx(store_idx);
1181 }
1182
1183 cprintf("\n");
1184}
192 }
193}
194
195template<class Impl>
196void
197LSQUnit<Impl>::regStats()
198{
199 lsqForwLoads
200 .name(name() + ".forwLoads")
201 .desc("Number of loads that had data forwarded from stores");
202
203 invAddrLoads
204 .name(name() + ".invAddrLoads")
205 .desc("Number of loads ignored due to an invalid address");
206
207 lsqSquashedLoads
208 .name(name() + ".squashedLoads")
209 .desc("Number of loads squashed");
210
211 lsqIgnoredResponses
212 .name(name() + ".ignoredResponses")
213 .desc("Number of memory responses ignored because the instruction is squashed");
214
215 lsqMemOrderViolation
216 .name(name() + ".memOrderViolation")
217 .desc("Number of memory ordering violations");
218
219 lsqSquashedStores
220 .name(name() + ".squashedStores")
221 .desc("Number of stores squashed");
222
223 invAddrSwpfs
224 .name(name() + ".invAddrSwpfs")
225 .desc("Number of software prefetches ignored due to an invalid address");
226
227 lsqBlockedLoads
228 .name(name() + ".blockedLoads")
229 .desc("Number of blocked loads due to partial load-store forwarding");
230
231 lsqRescheduledLoads
232 .name(name() + ".rescheduledLoads")
233 .desc("Number of loads that were rescheduled");
234
235 lsqCacheBlocked
236 .name(name() + ".cacheBlocked")
237 .desc("Number of times an access to memory failed due to the cache being blocked");
238}
239
240template<class Impl>
241void
242LSQUnit<Impl>::setDcachePort(Port *dcache_port)
243{
244 dcachePort = dcache_port;
245
246#if USE_CHECKER
247 if (cpu->checker) {
248 cpu->checker->setDcachePort(dcachePort);
249 }
250#endif
251}
252
253template<class Impl>
254void
255LSQUnit<Impl>::clearLQ()
256{
257 loadQueue.clear();
258}
259
260template<class Impl>
261void
262LSQUnit<Impl>::clearSQ()
263{
264 storeQueue.clear();
265}
266
267template<class Impl>
268void
269LSQUnit<Impl>::switchOut()
270{
271 switchedOut = true;
272 for (int i = 0; i < loadQueue.size(); ++i) {
273 assert(!loadQueue[i]);
274 loadQueue[i] = NULL;
275 }
276
277 assert(storesToWB == 0);
278}
279
280template<class Impl>
281void
282LSQUnit<Impl>::takeOverFrom()
283{
284 switchedOut = false;
285 loads = stores = storesToWB = 0;
286
287 loadHead = loadTail = 0;
288
289 storeHead = storeWBIdx = storeTail = 0;
290
291 usedPorts = 0;
292
293 memDepViolator = NULL;
294
295 blockedLoadSeqNum = 0;
296
297 stalled = false;
298 isLoadBlocked = false;
299 loadBlockedHandled = false;
300}
301
302template<class Impl>
303void
304LSQUnit<Impl>::resizeLQ(unsigned size)
305{
306 unsigned size_plus_sentinel = size + 1;
307 assert(size_plus_sentinel >= LQEntries);
308
309 if (size_plus_sentinel > LQEntries) {
310 while (size_plus_sentinel > loadQueue.size()) {
311 DynInstPtr dummy;
312 loadQueue.push_back(dummy);
313 LQEntries++;
314 }
315 } else {
316 LQEntries = size_plus_sentinel;
317 }
318
319}
320
321template<class Impl>
322void
323LSQUnit<Impl>::resizeSQ(unsigned size)
324{
325 unsigned size_plus_sentinel = size + 1;
326 if (size_plus_sentinel > SQEntries) {
327 while (size_plus_sentinel > storeQueue.size()) {
328 SQEntry dummy;
329 storeQueue.push_back(dummy);
330 SQEntries++;
331 }
332 } else {
333 SQEntries = size_plus_sentinel;
334 }
335}
336
337template <class Impl>
338void
339LSQUnit<Impl>::insert(DynInstPtr &inst)
340{
341 assert(inst->isMemRef());
342
343 assert(inst->isLoad() || inst->isStore());
344
345 if (inst->isLoad()) {
346 insertLoad(inst);
347 } else {
348 insertStore(inst);
349 }
350
351 inst->setInLSQ();
352}
353
354template <class Impl>
355void
356LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
357{
358 assert((loadTail + 1) % LQEntries != loadHead);
359 assert(loads < LQEntries);
360
361 DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
362 load_inst->pcState(), loadTail, load_inst->seqNum);
363
364 load_inst->lqIdx = loadTail;
365
366 if (stores == 0) {
367 load_inst->sqIdx = -1;
368 } else {
369 load_inst->sqIdx = storeTail;
370 }
371
372 loadQueue[loadTail] = load_inst;
373
374 incrLdIdx(loadTail);
375
376 ++loads;
377}
378
379template <class Impl>
380void
381LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
382{
383 // Make sure it is not full before inserting an instruction.
384 assert((storeTail + 1) % SQEntries != storeHead);
385 assert(stores < SQEntries);
386
387 DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
388 store_inst->pcState(), storeTail, store_inst->seqNum);
389
390 store_inst->sqIdx = storeTail;
391 store_inst->lqIdx = loadTail;
392
393 storeQueue[storeTail] = SQEntry(store_inst);
394
395 incrStIdx(storeTail);
396
397 ++stores;
398}
399
400template <class Impl>
401typename Impl::DynInstPtr
402LSQUnit<Impl>::getMemDepViolator()
403{
404 DynInstPtr temp = memDepViolator;
405
406 memDepViolator = NULL;
407
408 return temp;
409}
410
411template <class Impl>
412unsigned
413LSQUnit<Impl>::numFreeEntries()
414{
415 unsigned free_lq_entries = LQEntries - loads;
416 unsigned free_sq_entries = SQEntries - stores;
417
418 // Both the LQ and SQ entries have an extra dummy entry to differentiate
419 // empty/full conditions. Subtract 1 from the free entries.
420 if (free_lq_entries < free_sq_entries) {
421 return free_lq_entries - 1;
422 } else {
423 return free_sq_entries - 1;
424 }
425}
426
427template <class Impl>
428int
429LSQUnit<Impl>::numLoadsReady()
430{
431 int load_idx = loadHead;
432 int retval = 0;
433
434 while (load_idx != loadTail) {
435 assert(loadQueue[load_idx]);
436
437 if (loadQueue[load_idx]->readyToIssue()) {
438 ++retval;
439 }
440 }
441
442 return retval;
443}
444
445template <class Impl>
446Fault
447LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
448{
449 Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
450 Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
451
452 /** @todo in theory you only need to check an instruction that has executed
453 * however, there isn't a good way in the pipeline at the moment to check
454 * all instructions that will execute before the store writes back. Thus,
455 * like the implementation that came before it, we're overly conservative.
456 */
457 while (load_idx != loadTail) {
458 DynInstPtr ld_inst = loadQueue[load_idx];
459 if (!ld_inst->effAddrValid || ld_inst->uncacheable()) {
460 incrLdIdx(load_idx);
461 continue;
462 }
463
464 Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
465 Addr ld_eff_addr2 =
466 (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
467
468 if ((inst_eff_addr2 > ld_eff_addr1 && inst_eff_addr1 < ld_eff_addr2) ||
469 inst_eff_addr1 == ld_eff_addr1) {
470 // A load/store incorrectly passed this load/store.
471 // Check if we already have a violator, or if it's newer
472 // squash and refetch.
473 if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
474 break;
475
476 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and [sn:%lli]"
477 " at address %#x\n", inst->seqNum, ld_inst->seqNum,
478 ld_eff_addr1);
479 memDepViolator = ld_inst;
480
481 ++lsqMemOrderViolation;
482
483 return TheISA::genMachineCheckFault();
484 }
485
486 incrLdIdx(load_idx);
487 }
488 return NoFault;
489}
490
491
492
493
494template <class Impl>
495Fault
496LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
497{
498 using namespace TheISA;
499 // Execute a specific load.
500 Fault load_fault = NoFault;
501
502 DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
503 inst->pcState(), inst->seqNum);
504
505 assert(!inst->isSquashed());
506
507 load_fault = inst->initiateAcc();
508
509 if (inst->isTranslationDelayed() &&
510 load_fault == NoFault)
511 return load_fault;
512
513 // If the instruction faulted or predicated false, then we need to send it
514 // along to commit without the instruction completing.
515 if (load_fault != NoFault || inst->readPredicate() == false) {
516 // Send this instruction to commit, also make sure iew stage
517 // realizes there is activity.
518 // Mark it as executed unless it is an uncached load that
519 // needs to hit the head of commit.
520 if (inst->readPredicate() == false)
521 inst->forwardOldRegs();
522 DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
523 inst->seqNum,
524 (load_fault != NoFault ? "fault" : "predication"));
525 if (!(inst->hasRequest() && inst->uncacheable()) ||
526 inst->isAtCommit()) {
527 inst->setExecuted();
528 }
529 iewStage->instToCommit(inst);
530 iewStage->activityThisCycle();
531 } else if (!loadBlocked()) {
532 assert(inst->effAddrValid);
533 int load_idx = inst->lqIdx;
534 incrLdIdx(load_idx);
535
536 if (checkLoads)
537 return checkViolations(load_idx, inst);
538 }
539
540 return load_fault;
541}
542
543template <class Impl>
544Fault
545LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
546{
547 using namespace TheISA;
548 // Make sure that a store exists.
549 assert(stores != 0);
550
551 int store_idx = store_inst->sqIdx;
552
553 DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
554 store_inst->pcState(), store_inst->seqNum);
555
556 assert(!store_inst->isSquashed());
557
558 // Check the recently completed loads to see if any match this store's
559 // address. If so, then we have a memory ordering violation.
560 int load_idx = store_inst->lqIdx;
561
562 Fault store_fault = store_inst->initiateAcc();
563
564 if (store_inst->isTranslationDelayed() &&
565 store_fault == NoFault)
566 return store_fault;
567
568 if (store_inst->readPredicate() == false)
569 store_inst->forwardOldRegs();
570
571 if (storeQueue[store_idx].size == 0) {
572 DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
573 store_inst->pcState(), store_inst->seqNum);
574
575 return store_fault;
576 } else if (store_inst->readPredicate() == false) {
577 DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
578 store_inst->seqNum);
579 return store_fault;
580 }
581
582 assert(store_fault == NoFault);
583
584 if (store_inst->isStoreConditional()) {
585 // Store conditionals need to set themselves as able to
586 // writeback if we haven't had a fault by here.
587 storeQueue[store_idx].canWB = true;
588
589 ++storesToWB;
590 }
591
592 return checkViolations(load_idx, store_inst);
593
594}
595
596template <class Impl>
597void
598LSQUnit<Impl>::commitLoad()
599{
600 assert(loadQueue[loadHead]);
601
602 DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
603 loadQueue[loadHead]->pcState());
604
605 loadQueue[loadHead] = NULL;
606
607 incrLdIdx(loadHead);
608
609 --loads;
610}
611
612template <class Impl>
613void
614LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
615{
616 assert(loads == 0 || loadQueue[loadHead]);
617
618 while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
619 commitLoad();
620 }
621}
622
623template <class Impl>
624void
625LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
626{
627 assert(stores == 0 || storeQueue[storeHead].inst);
628
629 int store_idx = storeHead;
630
631 while (store_idx != storeTail) {
632 assert(storeQueue[store_idx].inst);
633 // Mark any stores that are now committed and have not yet
634 // been marked as able to write back.
635 if (!storeQueue[store_idx].canWB) {
636 if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
637 break;
638 }
639 DPRINTF(LSQUnit, "Marking store as able to write back, PC "
640 "%s [sn:%lli]\n",
641 storeQueue[store_idx].inst->pcState(),
642 storeQueue[store_idx].inst->seqNum);
643
644 storeQueue[store_idx].canWB = true;
645
646 ++storesToWB;
647 }
648
649 incrStIdx(store_idx);
650 }
651}
652
653template <class Impl>
654void
655LSQUnit<Impl>::writebackPendingStore()
656{
657 if (hasPendingPkt) {
658 assert(pendingPkt != NULL);
659
660 // If the cache is blocked, this will store the packet for retry.
661 if (sendStore(pendingPkt)) {
662 storePostSend(pendingPkt);
663 }
664 pendingPkt = NULL;
665 hasPendingPkt = false;
666 }
667}
668
669template <class Impl>
670void
671LSQUnit<Impl>::writebackStores()
672{
673 // First writeback the second packet from any split store that didn't
674 // complete last cycle because there weren't enough cache ports available.
675 if (TheISA::HasUnalignedMemAcc) {
676 writebackPendingStore();
677 }
678
679 while (storesToWB > 0 &&
680 storeWBIdx != storeTail &&
681 storeQueue[storeWBIdx].inst &&
682 storeQueue[storeWBIdx].canWB &&
683 usedPorts < cachePorts) {
684
685 if (isStoreBlocked || lsq->cacheBlocked()) {
686 DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
687 " is blocked!\n");
688 break;
689 }
690
691 // Store didn't write any data so no need to write it back to
692 // memory.
693 if (storeQueue[storeWBIdx].size == 0) {
694 completeStore(storeWBIdx);
695
696 incrStIdx(storeWBIdx);
697
698 continue;
699 }
700
701 ++usedPorts;
702
703 if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
704 incrStIdx(storeWBIdx);
705
706 continue;
707 }
708
709 assert(storeQueue[storeWBIdx].req);
710 assert(!storeQueue[storeWBIdx].committed);
711
712 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
713 assert(storeQueue[storeWBIdx].sreqLow);
714 assert(storeQueue[storeWBIdx].sreqHigh);
715 }
716
717 DynInstPtr inst = storeQueue[storeWBIdx].inst;
718
719 Request *req = storeQueue[storeWBIdx].req;
720 storeQueue[storeWBIdx].committed = true;
721
722 assert(!inst->memData);
723 inst->memData = new uint8_t[64];
724
725 memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
726
727 MemCmd command =
728 req->isSwap() ? MemCmd::SwapReq :
729 (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
730 PacketPtr data_pkt;
731 PacketPtr snd_data_pkt = NULL;
732
733 LSQSenderState *state = new LSQSenderState;
734 state->isLoad = false;
735 state->idx = storeWBIdx;
736 state->inst = inst;
737
738 if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
739
740 // Build a single data packet if the store isn't split.
741 data_pkt = new Packet(req, command, Packet::Broadcast);
742 data_pkt->dataStatic(inst->memData);
743 data_pkt->senderState = state;
744 } else {
745 RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
746 RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
747
748 // Create two packets if the store is split in two.
749 data_pkt = new Packet(sreqLow, command, Packet::Broadcast);
750 snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast);
751
752 data_pkt->dataStatic(inst->memData);
753 snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
754
755 data_pkt->senderState = state;
756 snd_data_pkt->senderState = state;
757
758 state->isSplit = true;
759 state->outstanding = 2;
760
761 // Can delete the main request now.
762 delete req;
763 req = sreqLow;
764 }
765
766 DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
767 "to Addr:%#x, data:%#x [sn:%lli]\n",
768 storeWBIdx, inst->pcState(),
769 req->getPaddr(), (int)*(inst->memData),
770 inst->seqNum);
771
772 // @todo: Remove this SC hack once the memory system handles it.
773 if (inst->isStoreConditional()) {
774 assert(!storeQueue[storeWBIdx].isSplit);
775 // Disable recording the result temporarily. Writing to
776 // misc regs normally updates the result, but this is not
777 // the desired behavior when handling store conditionals.
778 inst->recordResult = false;
779 bool success = TheISA::handleLockedWrite(inst.get(), req);
780 inst->recordResult = true;
781
782 if (!success) {
783 // Instantly complete this store.
784 DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. "
785 "Instantly completing it.\n",
786 inst->seqNum);
787 WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
788 cpu->schedule(wb, curTick() + 1);
789 completeStore(storeWBIdx);
790 incrStIdx(storeWBIdx);
791 continue;
792 }
793 } else {
794 // Non-store conditionals do not need a writeback.
795 state->noWB = true;
796 }
797
798 if (!sendStore(data_pkt)) {
799 DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
800 "retry later\n",
801 inst->seqNum);
802
803 // Need to store the second packet, if split.
804 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
805 state->pktToSend = true;
806 state->pendingPacket = snd_data_pkt;
807 }
808 } else {
809
810 // If split, try to send the second packet too
811 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
812 assert(snd_data_pkt);
813
814 // Ensure there are enough ports to use.
815 if (usedPorts < cachePorts) {
816 ++usedPorts;
817 if (sendStore(snd_data_pkt)) {
818 storePostSend(snd_data_pkt);
819 } else {
820 DPRINTF(IEW, "D-Cache became blocked when writing"
821 " [sn:%lli] second packet, will retry later\n",
822 inst->seqNum);
823 }
824 } else {
825
826 // Store the packet for when there's free ports.
827 assert(pendingPkt == NULL);
828 pendingPkt = snd_data_pkt;
829 hasPendingPkt = true;
830 }
831 } else {
832
833 // Not a split store.
834 storePostSend(data_pkt);
835 }
836 }
837 }
838
839 // Not sure this should set it to 0.
840 usedPorts = 0;
841
842 assert(stores >= 0 && storesToWB >= 0);
843}
844
845/*template <class Impl>
846void
847LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
848{
849 list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
850 mshrSeqNums.end(),
851 seqNum);
852
853 if (mshr_it != mshrSeqNums.end()) {
854 mshrSeqNums.erase(mshr_it);
855 DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
856 }
857}*/
858
859template <class Impl>
860void
861LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
862{
863 DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
864 "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
865
866 int load_idx = loadTail;
867 decrLdIdx(load_idx);
868
869 while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
870 DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
871 "[sn:%lli]\n",
872 loadQueue[load_idx]->pcState(),
873 loadQueue[load_idx]->seqNum);
874
875 if (isStalled() && load_idx == stallingLoadIdx) {
876 stalled = false;
877 stallingStoreIsn = 0;
878 stallingLoadIdx = 0;
879 }
880
881 // Clear the smart pointer to make sure it is decremented.
882 loadQueue[load_idx]->setSquashed();
883 loadQueue[load_idx] = NULL;
884 --loads;
885
886 // Inefficient!
887 loadTail = load_idx;
888
889 decrLdIdx(load_idx);
890 ++lsqSquashedLoads;
891 }
892
893 if (isLoadBlocked) {
894 if (squashed_num < blockedLoadSeqNum) {
895 isLoadBlocked = false;
896 loadBlockedHandled = false;
897 blockedLoadSeqNum = 0;
898 }
899 }
900
901 if (memDepViolator && squashed_num < memDepViolator->seqNum) {
902 memDepViolator = NULL;
903 }
904
905 int store_idx = storeTail;
906 decrStIdx(store_idx);
907
908 while (stores != 0 &&
909 storeQueue[store_idx].inst->seqNum > squashed_num) {
910 // Instructions marked as can WB are already committed.
911 if (storeQueue[store_idx].canWB) {
912 break;
913 }
914
915 DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
916 "idx:%i [sn:%lli]\n",
917 storeQueue[store_idx].inst->pcState(),
918 store_idx, storeQueue[store_idx].inst->seqNum);
919
920 // I don't think this can happen. It should have been cleared
921 // by the stalling load.
922 if (isStalled() &&
923 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
924 panic("Is stalled should have been cleared by stalling load!\n");
925 stalled = false;
926 stallingStoreIsn = 0;
927 }
928
929 // Clear the smart pointer to make sure it is decremented.
930 storeQueue[store_idx].inst->setSquashed();
931 storeQueue[store_idx].inst = NULL;
932 storeQueue[store_idx].canWB = 0;
933
934 // Must delete request now that it wasn't handed off to
935 // memory. This is quite ugly. @todo: Figure out the proper
936 // place to really handle request deletes.
937 delete storeQueue[store_idx].req;
938 if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
939 delete storeQueue[store_idx].sreqLow;
940 delete storeQueue[store_idx].sreqHigh;
941
942 storeQueue[store_idx].sreqLow = NULL;
943 storeQueue[store_idx].sreqHigh = NULL;
944 }
945
946 storeQueue[store_idx].req = NULL;
947 --stores;
948
949 // Inefficient!
950 storeTail = store_idx;
951
952 decrStIdx(store_idx);
953 ++lsqSquashedStores;
954 }
955}
956
957template <class Impl>
958void
959LSQUnit<Impl>::storePostSend(PacketPtr pkt)
960{
961 if (isStalled() &&
962 storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
963 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
964 "load idx:%i\n",
965 stallingStoreIsn, stallingLoadIdx);
966 stalled = false;
967 stallingStoreIsn = 0;
968 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
969 }
970
971 if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
972 // The store is basically completed at this time. This
973 // only works so long as the checker doesn't try to
974 // verify the value in memory for stores.
975 storeQueue[storeWBIdx].inst->setCompleted();
976#if USE_CHECKER
977 if (cpu->checker) {
978 cpu->checker->verify(storeQueue[storeWBIdx].inst);
979 }
980#endif
981 }
982
983 incrStIdx(storeWBIdx);
984}
985
986template <class Impl>
987void
988LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
989{
990 iewStage->wakeCPU();
991
992 // Squashed instructions do not need to complete their access.
993 if (inst->isSquashed()) {
994 iewStage->decrWb(inst->seqNum);
995 assert(!inst->isStore());
996 ++lsqIgnoredResponses;
997 return;
998 }
999
1000 if (!inst->isExecuted()) {
1001 inst->setExecuted();
1002
1003 // Complete access to copy data to proper place.
1004 inst->completeAcc(pkt);
1005 }
1006
1007 // Need to insert instruction into queue to commit
1008 iewStage->instToCommit(inst);
1009
1010 iewStage->activityThisCycle();
1011
1012 // see if this load changed the PC
1013 iewStage->checkMisprediction(inst);
1014}
1015
1016template <class Impl>
1017void
1018LSQUnit<Impl>::completeStore(int store_idx)
1019{
1020 assert(storeQueue[store_idx].inst);
1021 storeQueue[store_idx].completed = true;
1022 --storesToWB;
1023 // A bit conservative because a store completion may not free up entries,
1024 // but hopefully avoids two store completions in one cycle from making
1025 // the CPU tick twice.
1026 cpu->wakeCPU();
1027 cpu->activityThisCycle();
1028
1029 if (store_idx == storeHead) {
1030 do {
1031 incrStIdx(storeHead);
1032
1033 --stores;
1034 } while (storeQueue[storeHead].completed &&
1035 storeHead != storeTail);
1036
1037 iewStage->updateLSQNextCycle = true;
1038 }
1039
1040 DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1041 "idx:%i\n",
1042 storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1043
1044 if (isStalled() &&
1045 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1046 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1047 "load idx:%i\n",
1048 stallingStoreIsn, stallingLoadIdx);
1049 stalled = false;
1050 stallingStoreIsn = 0;
1051 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1052 }
1053
1054 storeQueue[store_idx].inst->setCompleted();
1055
1056 // Tell the checker we've completed this instruction. Some stores
1057 // may get reported twice to the checker, but the checker can
1058 // handle that case.
1059#if USE_CHECKER
1060 if (cpu->checker) {
1061 cpu->checker->verify(storeQueue[store_idx].inst);
1062 }
1063#endif
1064}
1065
1066template <class Impl>
1067bool
1068LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1069{
1070 if (!dcachePort->sendTiming(data_pkt)) {
1071 // Need to handle becoming blocked on a store.
1072 isStoreBlocked = true;
1073 ++lsqCacheBlocked;
1074 assert(retryPkt == NULL);
1075 retryPkt = data_pkt;
1076 lsq->setRetryTid(lsqID);
1077 return false;
1078 }
1079 return true;
1080}
1081
1082template <class Impl>
1083void
1084LSQUnit<Impl>::recvRetry()
1085{
1086 if (isStoreBlocked) {
1087 DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1088 assert(retryPkt != NULL);
1089
1090 if (dcachePort->sendTiming(retryPkt)) {
1091 LSQSenderState *state =
1092 dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1093
1094 // Don't finish the store unless this is the last packet.
1095 if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1096 state->pendingPacket == retryPkt) {
1097 state->pktToSend = false;
1098 storePostSend(retryPkt);
1099 }
1100 retryPkt = NULL;
1101 isStoreBlocked = false;
1102 lsq->setRetryTid(InvalidThreadID);
1103
1104 // Send any outstanding packet.
1105 if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1106 assert(state->pendingPacket);
1107 if (sendStore(state->pendingPacket)) {
1108 storePostSend(state->pendingPacket);
1109 }
1110 }
1111 } else {
1112 // Still blocked!
1113 ++lsqCacheBlocked;
1114 lsq->setRetryTid(lsqID);
1115 }
1116 } else if (isLoadBlocked) {
1117 DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1118 "no need to resend packet.\n");
1119 } else {
1120 DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1121 }
1122}
1123
1124template <class Impl>
1125inline void
1126LSQUnit<Impl>::incrStIdx(int &store_idx)
1127{
1128 if (++store_idx >= SQEntries)
1129 store_idx = 0;
1130}
1131
1132template <class Impl>
1133inline void
1134LSQUnit<Impl>::decrStIdx(int &store_idx)
1135{
1136 if (--store_idx < 0)
1137 store_idx += SQEntries;
1138}
1139
1140template <class Impl>
1141inline void
1142LSQUnit<Impl>::incrLdIdx(int &load_idx)
1143{
1144 if (++load_idx >= LQEntries)
1145 load_idx = 0;
1146}
1147
1148template <class Impl>
1149inline void
1150LSQUnit<Impl>::decrLdIdx(int &load_idx)
1151{
1152 if (--load_idx < 0)
1153 load_idx += LQEntries;
1154}
1155
1156template <class Impl>
1157void
1158LSQUnit<Impl>::dumpInsts()
1159{
1160 cprintf("Load store queue: Dumping instructions.\n");
1161 cprintf("Load queue size: %i\n", loads);
1162 cprintf("Load queue: ");
1163
1164 int load_idx = loadHead;
1165
1166 while (load_idx != loadTail && loadQueue[load_idx]) {
1167 cprintf("%s ", loadQueue[load_idx]->pcState());
1168
1169 incrLdIdx(load_idx);
1170 }
1171
1172 cprintf("Store queue size: %i\n", stores);
1173 cprintf("Store queue: ");
1174
1175 int store_idx = storeHead;
1176
1177 while (store_idx != storeTail && storeQueue[store_idx].inst) {
1178 cprintf("%s ", storeQueue[store_idx].inst->pcState());
1179
1180 incrStIdx(store_idx);
1181 }
1182
1183 cprintf("\n");
1184}