lsq_unit_impl.hh (7944:1daf51f62013) lsq_unit_impl.hh (8133:9f704aa10eb4)
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#include "arch/locked_mem.hh"
45#include "config/the_isa.hh"
46#include "config/use_checker.hh"
47#include "cpu/o3/lsq.hh"
48#include "cpu/o3/lsq_unit.hh"
49#include "base/str.hh"
50#include "mem/packet.hh"
51#include "mem/request.hh"
52
53#if USE_CHECKER
54#include "cpu/checker/cpu.hh"
55#endif
56
57template<class Impl>
58LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
59 LSQUnit *lsq_ptr)
60 : inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
61{
62 this->setFlags(Event::AutoDelete);
63}
64
65template<class Impl>
66void
67LSQUnit<Impl>::WritebackEvent::process()
68{
69 if (!lsqPtr->isSwitchedOut()) {
70 lsqPtr->writeback(inst, pkt);
71 }
72
73 if (pkt->senderState)
74 delete pkt->senderState;
75
76 delete pkt->req;
77 delete pkt;
78}
79
80template<class Impl>
81const char *
82LSQUnit<Impl>::WritebackEvent::description() const
83{
84 return "Store writeback";
85}
86
87template<class Impl>
88void
89LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
90{
91 LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
92 DynInstPtr inst = state->inst;
93 DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
94 DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
95
96 //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
97
98 assert(!pkt->wasNacked());
99
100 // If this is a split access, wait until all packets are received.
101 if (TheISA::HasUnalignedMemAcc && !state->complete()) {
102 delete pkt->req;
103 delete pkt;
104 return;
105 }
106
107 if (isSwitchedOut() || inst->isSquashed()) {
108 iewStage->decrWb(inst->seqNum);
109 } else {
110 if (!state->noWB) {
111 if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
112 !state->isLoad) {
113 writeback(inst, pkt);
114 } else {
115 writeback(inst, state->mainPkt);
116 }
117 }
118
119 if (inst->isStore()) {
120 completeStore(state->idx);
121 }
122 }
123
124 if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
125 delete state->mainPkt->req;
126 delete state->mainPkt;
127 }
128 delete state;
129 delete pkt->req;
130 delete pkt;
131}
132
133template <class Impl>
134LSQUnit<Impl>::LSQUnit()
135 : loads(0), stores(0), storesToWB(0), stalled(false),
136 isStoreBlocked(false), isLoadBlocked(false),
137 loadBlockedHandled(false), hasPendingPkt(false)
138{
139}
140
141template<class Impl>
142void
143LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
144 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
145 unsigned id)
146{
147 cpu = cpu_ptr;
148 iewStage = iew_ptr;
149
150 DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
151
152 switchedOut = false;
153
154 lsq = lsq_ptr;
155
156 lsqID = id;
157
158 // Add 1 for the sentinel entry (they are circular queues).
159 LQEntries = maxLQEntries + 1;
160 SQEntries = maxSQEntries + 1;
161
162 loadQueue.resize(LQEntries);
163 storeQueue.resize(SQEntries);
164
165 loadHead = loadTail = 0;
166
167 storeHead = storeWBIdx = storeTail = 0;
168
169 usedPorts = 0;
170 cachePorts = params->cachePorts;
171
172 retryPkt = NULL;
173 memDepViolator = NULL;
174
175 blockedLoadSeqNum = 0;
176}
177
178template<class Impl>
179std::string
180LSQUnit<Impl>::name() const
181{
182 if (Impl::MaxThreads == 1) {
183 return iewStage->name() + ".lsq";
184 } else {
185 return iewStage->name() + ".lsq.thread." + to_string(lsqID);
186 }
187}
188
189template<class Impl>
190void
191LSQUnit<Impl>::regStats()
192{
193 lsqForwLoads
194 .name(name() + ".forwLoads")
195 .desc("Number of loads that had data forwarded from stores");
196
197 invAddrLoads
198 .name(name() + ".invAddrLoads")
199 .desc("Number of loads ignored due to an invalid address");
200
201 lsqSquashedLoads
202 .name(name() + ".squashedLoads")
203 .desc("Number of loads squashed");
204
205 lsqIgnoredResponses
206 .name(name() + ".ignoredResponses")
207 .desc("Number of memory responses ignored because the instruction is squashed");
208
209 lsqMemOrderViolation
210 .name(name() + ".memOrderViolation")
211 .desc("Number of memory ordering violations");
212
213 lsqSquashedStores
214 .name(name() + ".squashedStores")
215 .desc("Number of stores squashed");
216
217 invAddrSwpfs
218 .name(name() + ".invAddrSwpfs")
219 .desc("Number of software prefetches ignored due to an invalid address");
220
221 lsqBlockedLoads
222 .name(name() + ".blockedLoads")
223 .desc("Number of blocked loads due to partial load-store forwarding");
224
225 lsqRescheduledLoads
226 .name(name() + ".rescheduledLoads")
227 .desc("Number of loads that were rescheduled");
228
229 lsqCacheBlocked
230 .name(name() + ".cacheBlocked")
231 .desc("Number of times an access to memory failed due to the cache being blocked");
232}
233
234template<class Impl>
235void
236LSQUnit<Impl>::setDcachePort(Port *dcache_port)
237{
238 dcachePort = dcache_port;
239
240#if USE_CHECKER
241 if (cpu->checker) {
242 cpu->checker->setDcachePort(dcachePort);
243 }
244#endif
245}
246
247template<class Impl>
248void
249LSQUnit<Impl>::clearLQ()
250{
251 loadQueue.clear();
252}
253
254template<class Impl>
255void
256LSQUnit<Impl>::clearSQ()
257{
258 storeQueue.clear();
259}
260
261template<class Impl>
262void
263LSQUnit<Impl>::switchOut()
264{
265 switchedOut = true;
266 for (int i = 0; i < loadQueue.size(); ++i) {
267 assert(!loadQueue[i]);
268 loadQueue[i] = NULL;
269 }
270
271 assert(storesToWB == 0);
272}
273
274template<class Impl>
275void
276LSQUnit<Impl>::takeOverFrom()
277{
278 switchedOut = false;
279 loads = stores = storesToWB = 0;
280
281 loadHead = loadTail = 0;
282
283 storeHead = storeWBIdx = storeTail = 0;
284
285 usedPorts = 0;
286
287 memDepViolator = NULL;
288
289 blockedLoadSeqNum = 0;
290
291 stalled = false;
292 isLoadBlocked = false;
293 loadBlockedHandled = false;
294}
295
296template<class Impl>
297void
298LSQUnit<Impl>::resizeLQ(unsigned size)
299{
300 unsigned size_plus_sentinel = size + 1;
301 assert(size_plus_sentinel >= LQEntries);
302
303 if (size_plus_sentinel > LQEntries) {
304 while (size_plus_sentinel > loadQueue.size()) {
305 DynInstPtr dummy;
306 loadQueue.push_back(dummy);
307 LQEntries++;
308 }
309 } else {
310 LQEntries = size_plus_sentinel;
311 }
312
313}
314
315template<class Impl>
316void
317LSQUnit<Impl>::resizeSQ(unsigned size)
318{
319 unsigned size_plus_sentinel = size + 1;
320 if (size_plus_sentinel > SQEntries) {
321 while (size_plus_sentinel > storeQueue.size()) {
322 SQEntry dummy;
323 storeQueue.push_back(dummy);
324 SQEntries++;
325 }
326 } else {
327 SQEntries = size_plus_sentinel;
328 }
329}
330
331template <class Impl>
332void
333LSQUnit<Impl>::insert(DynInstPtr &inst)
334{
335 assert(inst->isMemRef());
336
337 assert(inst->isLoad() || inst->isStore());
338
339 if (inst->isLoad()) {
340 insertLoad(inst);
341 } else {
342 insertStore(inst);
343 }
344
345 inst->setInLSQ();
346}
347
348template <class Impl>
349void
350LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
351{
352 assert((loadTail + 1) % LQEntries != loadHead);
353 assert(loads < LQEntries);
354
355 DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
356 load_inst->pcState(), loadTail, load_inst->seqNum);
357
358 load_inst->lqIdx = loadTail;
359
360 if (stores == 0) {
361 load_inst->sqIdx = -1;
362 } else {
363 load_inst->sqIdx = storeTail;
364 }
365
366 loadQueue[loadTail] = load_inst;
367
368 incrLdIdx(loadTail);
369
370 ++loads;
371}
372
373template <class Impl>
374void
375LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
376{
377 // Make sure it is not full before inserting an instruction.
378 assert((storeTail + 1) % SQEntries != storeHead);
379 assert(stores < SQEntries);
380
381 DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
382 store_inst->pcState(), storeTail, store_inst->seqNum);
383
384 store_inst->sqIdx = storeTail;
385 store_inst->lqIdx = loadTail;
386
387 storeQueue[storeTail] = SQEntry(store_inst);
388
389 incrStIdx(storeTail);
390
391 ++stores;
392}
393
394template <class Impl>
395typename Impl::DynInstPtr
396LSQUnit<Impl>::getMemDepViolator()
397{
398 DynInstPtr temp = memDepViolator;
399
400 memDepViolator = NULL;
401
402 return temp;
403}
404
405template <class Impl>
406unsigned
407LSQUnit<Impl>::numFreeEntries()
408{
409 unsigned free_lq_entries = LQEntries - loads;
410 unsigned free_sq_entries = SQEntries - stores;
411
412 // Both the LQ and SQ entries have an extra dummy entry to differentiate
413 // empty/full conditions. Subtract 1 from the free entries.
414 if (free_lq_entries < free_sq_entries) {
415 return free_lq_entries - 1;
416 } else {
417 return free_sq_entries - 1;
418 }
419}
420
421template <class Impl>
422int
423LSQUnit<Impl>::numLoadsReady()
424{
425 int load_idx = loadHead;
426 int retval = 0;
427
428 while (load_idx != loadTail) {
429 assert(loadQueue[load_idx]);
430
431 if (loadQueue[load_idx]->readyToIssue()) {
432 ++retval;
433 }
434 }
435
436 return retval;
437}
438
439template <class Impl>
440Fault
441LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
442{
443 using namespace TheISA;
444 // Execute a specific load.
445 Fault load_fault = NoFault;
446
447 DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
448 inst->pcState(), inst->seqNum);
449
450 assert(!inst->isSquashed());
451
452 load_fault = inst->initiateAcc();
453
454 if (inst->isTranslationDelayed() &&
455 load_fault == NoFault)
456 return load_fault;
457
458 // If the instruction faulted or predicated false, then we need to send it
459 // along to commit without the instruction completing.
460 if (load_fault != NoFault || inst->readPredicate() == false) {
461 // Send this instruction to commit, also make sure iew stage
462 // realizes there is activity.
463 // Mark it as executed unless it is an uncached load that
464 // needs to hit the head of commit.
465 if (inst->readPredicate() == false)
466 inst->forwardOldRegs();
467 DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
468 inst->seqNum,
469 (load_fault != NoFault ? "fault" : "predication"));
470 if (!(inst->hasRequest() && inst->uncacheable()) ||
471 inst->isAtCommit()) {
472 inst->setExecuted();
473 }
474 iewStage->instToCommit(inst);
475 iewStage->activityThisCycle();
476 } else if (!loadBlocked()) {
477 assert(inst->effAddrValid);
478 int load_idx = inst->lqIdx;
479 incrLdIdx(load_idx);
480 while (load_idx != loadTail) {
481 // Really only need to check loads that have actually executed
482
483 // @todo: For now this is extra conservative, detecting a
484 // violation if the addresses match assuming all accesses
485 // are quad word accesses.
486
487 // @todo: Fix this, magic number being used here
488
489 // @todo: Uncachable load is not executed until it reaches
490 // the head of the ROB. Once this if checks only the executed
491 // loads(as noted above), this check can be removed
492 if (loadQueue[load_idx]->effAddrValid &&
493 ((loadQueue[load_idx]->effAddr >> 8)
494 == (inst->effAddr >> 8)) &&
495 !loadQueue[load_idx]->uncacheable()) {
496 // A load incorrectly passed this load. Squash and refetch.
497 // For now return a fault to show that it was unsuccessful.
498 DynInstPtr violator = loadQueue[load_idx];
499 if (!memDepViolator ||
500 (violator->seqNum < memDepViolator->seqNum)) {
501 memDepViolator = violator;
502 } else {
503 break;
504 }
505
506 ++lsqMemOrderViolation;
507
508 return genMachineCheckFault();
509 }
510
511 incrLdIdx(load_idx);
512 }
513 }
514
515 return load_fault;
516}
517
518template <class Impl>
519Fault
520LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
521{
522 using namespace TheISA;
523 // Make sure that a store exists.
524 assert(stores != 0);
525
526 int store_idx = store_inst->sqIdx;
527
528 DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
529 store_inst->pcState(), store_inst->seqNum);
530
531 assert(!store_inst->isSquashed());
532
533 // Check the recently completed loads to see if any match this store's
534 // address. If so, then we have a memory ordering violation.
535 int load_idx = store_inst->lqIdx;
536
537 Fault store_fault = store_inst->initiateAcc();
538
539 if (store_inst->isTranslationDelayed() &&
540 store_fault == NoFault)
541 return store_fault;
542
543 if (store_inst->readPredicate() == false)
544 store_inst->forwardOldRegs();
545
546 if (storeQueue[store_idx].size == 0) {
547 DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
548 store_inst->pcState(), store_inst->seqNum);
549
550 return store_fault;
551 } else if (store_inst->readPredicate() == false) {
552 DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
553 store_inst->seqNum);
554 return store_fault;
555 }
556
557 assert(store_fault == NoFault);
558
559 if (store_inst->isStoreConditional()) {
560 // Store conditionals need to set themselves as able to
561 // writeback if we haven't had a fault by here.
562 storeQueue[store_idx].canWB = true;
563
564 ++storesToWB;
565 }
566
567 assert(store_inst->effAddrValid);
568 while (load_idx != loadTail) {
569 // Really only need to check loads that have actually executed
570 // It's safe to check all loads because effAddr is set to
571 // InvalAddr when the dyn inst is created.
572
573 // @todo: For now this is extra conservative, detecting a
574 // violation if the addresses match assuming all accesses
575 // are quad word accesses.
576
577 // @todo: Fix this, magic number being used here
578
579 // @todo: Uncachable load is not executed until it reaches
580 // the head of the ROB. Once this if checks only the executed
581 // loads(as noted above), this check can be removed
582 if (loadQueue[load_idx]->effAddrValid &&
583 ((loadQueue[load_idx]->effAddr >> 8)
584 == (store_inst->effAddr >> 8)) &&
585 !loadQueue[load_idx]->uncacheable()) {
586 // A load incorrectly passed this store. Squash and refetch.
587 // For now return a fault to show that it was unsuccessful.
588 DynInstPtr violator = loadQueue[load_idx];
589 if (!memDepViolator ||
590 (violator->seqNum < memDepViolator->seqNum)) {
591 memDepViolator = violator;
592 } else {
593 break;
594 }
595
596 ++lsqMemOrderViolation;
597
598 return genMachineCheckFault();
599 }
600
601 incrLdIdx(load_idx);
602 }
603
604 return store_fault;
605}
606
607template <class Impl>
608void
609LSQUnit<Impl>::commitLoad()
610{
611 assert(loadQueue[loadHead]);
612
613 DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
614 loadQueue[loadHead]->pcState());
615
616 loadQueue[loadHead] = NULL;
617
618 incrLdIdx(loadHead);
619
620 --loads;
621}
622
623template <class Impl>
624void
625LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
626{
627 assert(loads == 0 || loadQueue[loadHead]);
628
629 while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
630 commitLoad();
631 }
632}
633
634template <class Impl>
635void
636LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
637{
638 assert(stores == 0 || storeQueue[storeHead].inst);
639
640 int store_idx = storeHead;
641
642 while (store_idx != storeTail) {
643 assert(storeQueue[store_idx].inst);
644 // Mark any stores that are now committed and have not yet
645 // been marked as able to write back.
646 if (!storeQueue[store_idx].canWB) {
647 if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
648 break;
649 }
650 DPRINTF(LSQUnit, "Marking store as able to write back, PC "
651 "%s [sn:%lli]\n",
652 storeQueue[store_idx].inst->pcState(),
653 storeQueue[store_idx].inst->seqNum);
654
655 storeQueue[store_idx].canWB = true;
656
657 ++storesToWB;
658 }
659
660 incrStIdx(store_idx);
661 }
662}
663
664template <class Impl>
665void
666LSQUnit<Impl>::writebackPendingStore()
667{
668 if (hasPendingPkt) {
669 assert(pendingPkt != NULL);
670
671 // If the cache is blocked, this will store the packet for retry.
672 if (sendStore(pendingPkt)) {
673 storePostSend(pendingPkt);
674 }
675 pendingPkt = NULL;
676 hasPendingPkt = false;
677 }
678}
679
680template <class Impl>
681void
682LSQUnit<Impl>::writebackStores()
683{
684 // First writeback the second packet from any split store that didn't
685 // complete last cycle because there weren't enough cache ports available.
686 if (TheISA::HasUnalignedMemAcc) {
687 writebackPendingStore();
688 }
689
690 while (storesToWB > 0 &&
691 storeWBIdx != storeTail &&
692 storeQueue[storeWBIdx].inst &&
693 storeQueue[storeWBIdx].canWB &&
694 usedPorts < cachePorts) {
695
696 if (isStoreBlocked || lsq->cacheBlocked()) {
697 DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
698 " is blocked!\n");
699 break;
700 }
701
702 // Store didn't write any data so no need to write it back to
703 // memory.
704 if (storeQueue[storeWBIdx].size == 0) {
705 completeStore(storeWBIdx);
706
707 incrStIdx(storeWBIdx);
708
709 continue;
710 }
711
712 ++usedPorts;
713
714 if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
715 incrStIdx(storeWBIdx);
716
717 continue;
718 }
719
720 assert(storeQueue[storeWBIdx].req);
721 assert(!storeQueue[storeWBIdx].committed);
722
723 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
724 assert(storeQueue[storeWBIdx].sreqLow);
725 assert(storeQueue[storeWBIdx].sreqHigh);
726 }
727
728 DynInstPtr inst = storeQueue[storeWBIdx].inst;
729
730 Request *req = storeQueue[storeWBIdx].req;
731 storeQueue[storeWBIdx].committed = true;
732
733 assert(!inst->memData);
734 inst->memData = new uint8_t[64];
735
736 memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
737
738 MemCmd command =
739 req->isSwap() ? MemCmd::SwapReq :
740 (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
741 PacketPtr data_pkt;
742 PacketPtr snd_data_pkt = NULL;
743
744 LSQSenderState *state = new LSQSenderState;
745 state->isLoad = false;
746 state->idx = storeWBIdx;
747 state->inst = inst;
748
749 if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
750
751 // Build a single data packet if the store isn't split.
752 data_pkt = new Packet(req, command, Packet::Broadcast);
753 data_pkt->dataStatic(inst->memData);
754 data_pkt->senderState = state;
755 } else {
756 RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
757 RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
758
759 // Create two packets if the store is split in two.
760 data_pkt = new Packet(sreqLow, command, Packet::Broadcast);
761 snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast);
762
763 data_pkt->dataStatic(inst->memData);
764 snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
765
766 data_pkt->senderState = state;
767 snd_data_pkt->senderState = state;
768
769 state->isSplit = true;
770 state->outstanding = 2;
771
772 // Can delete the main request now.
773 delete req;
774 req = sreqLow;
775 }
776
777 DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
778 "to Addr:%#x, data:%#x [sn:%lli]\n",
779 storeWBIdx, inst->pcState(),
780 req->getPaddr(), (int)*(inst->memData),
781 inst->seqNum);
782
783 // @todo: Remove this SC hack once the memory system handles it.
784 if (inst->isStoreConditional()) {
785 assert(!storeQueue[storeWBIdx].isSplit);
786 // Disable recording the result temporarily. Writing to
787 // misc regs normally updates the result, but this is not
788 // the desired behavior when handling store conditionals.
789 inst->recordResult = false;
790 bool success = TheISA::handleLockedWrite(inst.get(), req);
791 inst->recordResult = true;
792
793 if (!success) {
794 // Instantly complete this store.
795 DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. "
796 "Instantly completing it.\n",
797 inst->seqNum);
798 WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
799 cpu->schedule(wb, curTick() + 1);
800 completeStore(storeWBIdx);
801 incrStIdx(storeWBIdx);
802 continue;
803 }
804 } else {
805 // Non-store conditionals do not need a writeback.
806 state->noWB = true;
807 }
808
809 if (!sendStore(data_pkt)) {
810 DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
811 "retry later\n",
812 inst->seqNum);
813
814 // Need to store the second packet, if split.
815 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
816 state->pktToSend = true;
817 state->pendingPacket = snd_data_pkt;
818 }
819 } else {
820
821 // If split, try to send the second packet too
822 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
823 assert(snd_data_pkt);
824
825 // Ensure there are enough ports to use.
826 if (usedPorts < cachePorts) {
827 ++usedPorts;
828 if (sendStore(snd_data_pkt)) {
829 storePostSend(snd_data_pkt);
830 } else {
831 DPRINTF(IEW, "D-Cache became blocked when writing"
832 " [sn:%lli] second packet, will retry later\n",
833 inst->seqNum);
834 }
835 } else {
836
837 // Store the packet for when there's free ports.
838 assert(pendingPkt == NULL);
839 pendingPkt = snd_data_pkt;
840 hasPendingPkt = true;
841 }
842 } else {
843
844 // Not a split store.
845 storePostSend(data_pkt);
846 }
847 }
848 }
849
850 // Not sure this should set it to 0.
851 usedPorts = 0;
852
853 assert(stores >= 0 && storesToWB >= 0);
854}
855
856/*template <class Impl>
857void
858LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
859{
860 list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
861 mshrSeqNums.end(),
862 seqNum);
863
864 if (mshr_it != mshrSeqNums.end()) {
865 mshrSeqNums.erase(mshr_it);
866 DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
867 }
868}*/
869
870template <class Impl>
871void
872LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
873{
874 DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
875 "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
876
877 int load_idx = loadTail;
878 decrLdIdx(load_idx);
879
880 while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
881 DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
882 "[sn:%lli]\n",
883 loadQueue[load_idx]->pcState(),
884 loadQueue[load_idx]->seqNum);
885
886 if (isStalled() && load_idx == stallingLoadIdx) {
887 stalled = false;
888 stallingStoreIsn = 0;
889 stallingLoadIdx = 0;
890 }
891
892 // Clear the smart pointer to make sure it is decremented.
893 loadQueue[load_idx]->setSquashed();
894 loadQueue[load_idx] = NULL;
895 --loads;
896
897 // Inefficient!
898 loadTail = load_idx;
899
900 decrLdIdx(load_idx);
901 ++lsqSquashedLoads;
902 }
903
904 if (isLoadBlocked) {
905 if (squashed_num < blockedLoadSeqNum) {
906 isLoadBlocked = false;
907 loadBlockedHandled = false;
908 blockedLoadSeqNum = 0;
909 }
910 }
911
912 if (memDepViolator && squashed_num < memDepViolator->seqNum) {
913 memDepViolator = NULL;
914 }
915
916 int store_idx = storeTail;
917 decrStIdx(store_idx);
918
919 while (stores != 0 &&
920 storeQueue[store_idx].inst->seqNum > squashed_num) {
921 // Instructions marked as can WB are already committed.
922 if (storeQueue[store_idx].canWB) {
923 break;
924 }
925
926 DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
927 "idx:%i [sn:%lli]\n",
928 storeQueue[store_idx].inst->pcState(),
929 store_idx, storeQueue[store_idx].inst->seqNum);
930
931 // I don't think this can happen. It should have been cleared
932 // by the stalling load.
933 if (isStalled() &&
934 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
935 panic("Is stalled should have been cleared by stalling load!\n");
936 stalled = false;
937 stallingStoreIsn = 0;
938 }
939
940 // Clear the smart pointer to make sure it is decremented.
941 storeQueue[store_idx].inst->setSquashed();
942 storeQueue[store_idx].inst = NULL;
943 storeQueue[store_idx].canWB = 0;
944
945 // Must delete request now that it wasn't handed off to
946 // memory. This is quite ugly. @todo: Figure out the proper
947 // place to really handle request deletes.
948 delete storeQueue[store_idx].req;
949 if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
950 delete storeQueue[store_idx].sreqLow;
951 delete storeQueue[store_idx].sreqHigh;
952
953 storeQueue[store_idx].sreqLow = NULL;
954 storeQueue[store_idx].sreqHigh = NULL;
955 }
956
957 storeQueue[store_idx].req = NULL;
958 --stores;
959
960 // Inefficient!
961 storeTail = store_idx;
962
963 decrStIdx(store_idx);
964 ++lsqSquashedStores;
965 }
966}
967
968template <class Impl>
969void
970LSQUnit<Impl>::storePostSend(PacketPtr pkt)
971{
972 if (isStalled() &&
973 storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
974 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
975 "load idx:%i\n",
976 stallingStoreIsn, stallingLoadIdx);
977 stalled = false;
978 stallingStoreIsn = 0;
979 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
980 }
981
982 if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
983 // The store is basically completed at this time. This
984 // only works so long as the checker doesn't try to
985 // verify the value in memory for stores.
986 storeQueue[storeWBIdx].inst->setCompleted();
987#if USE_CHECKER
988 if (cpu->checker) {
989 cpu->checker->verify(storeQueue[storeWBIdx].inst);
990 }
991#endif
992 }
993
994 incrStIdx(storeWBIdx);
995}
996
997template <class Impl>
998void
999LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1000{
1001 iewStage->wakeCPU();
1002
1003 // Squashed instructions do not need to complete their access.
1004 if (inst->isSquashed()) {
1005 iewStage->decrWb(inst->seqNum);
1006 assert(!inst->isStore());
1007 ++lsqIgnoredResponses;
1008 return;
1009 }
1010
1011 if (!inst->isExecuted()) {
1012 inst->setExecuted();
1013
1014 // Complete access to copy data to proper place.
1015 inst->completeAcc(pkt);
1016 }
1017
1018 // Need to insert instruction into queue to commit
1019 iewStage->instToCommit(inst);
1020
1021 iewStage->activityThisCycle();
1022
1023 // see if this load changed the PC
1024 iewStage->checkMisprediction(inst);
1025}
1026
1027template <class Impl>
1028void
1029LSQUnit<Impl>::completeStore(int store_idx)
1030{
1031 assert(storeQueue[store_idx].inst);
1032 storeQueue[store_idx].completed = true;
1033 --storesToWB;
1034 // A bit conservative because a store completion may not free up entries,
1035 // but hopefully avoids two store completions in one cycle from making
1036 // the CPU tick twice.
1037 cpu->wakeCPU();
1038 cpu->activityThisCycle();
1039
1040 if (store_idx == storeHead) {
1041 do {
1042 incrStIdx(storeHead);
1043
1044 --stores;
1045 } while (storeQueue[storeHead].completed &&
1046 storeHead != storeTail);
1047
1048 iewStage->updateLSQNextCycle = true;
1049 }
1050
1051 DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1052 "idx:%i\n",
1053 storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1054
1055 if (isStalled() &&
1056 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1057 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1058 "load idx:%i\n",
1059 stallingStoreIsn, stallingLoadIdx);
1060 stalled = false;
1061 stallingStoreIsn = 0;
1062 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1063 }
1064
1065 storeQueue[store_idx].inst->setCompleted();
1066
1067 // Tell the checker we've completed this instruction. Some stores
1068 // may get reported twice to the checker, but the checker can
1069 // handle that case.
1070#if USE_CHECKER
1071 if (cpu->checker) {
1072 cpu->checker->verify(storeQueue[store_idx].inst);
1073 }
1074#endif
1075}
1076
1077template <class Impl>
1078bool
1079LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1080{
1081 if (!dcachePort->sendTiming(data_pkt)) {
1082 // Need to handle becoming blocked on a store.
1083 isStoreBlocked = true;
1084 ++lsqCacheBlocked;
1085 assert(retryPkt == NULL);
1086 retryPkt = data_pkt;
1087 lsq->setRetryTid(lsqID);
1088 return false;
1089 }
1090 return true;
1091}
1092
1093template <class Impl>
1094void
1095LSQUnit<Impl>::recvRetry()
1096{
1097 if (isStoreBlocked) {
1098 DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1099 assert(retryPkt != NULL);
1100
1101 if (dcachePort->sendTiming(retryPkt)) {
1102 LSQSenderState *state =
1103 dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1104
1105 // Don't finish the store unless this is the last packet.
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#include "arch/locked_mem.hh"
45#include "config/the_isa.hh"
46#include "config/use_checker.hh"
47#include "cpu/o3/lsq.hh"
48#include "cpu/o3/lsq_unit.hh"
49#include "base/str.hh"
50#include "mem/packet.hh"
51#include "mem/request.hh"
52
53#if USE_CHECKER
54#include "cpu/checker/cpu.hh"
55#endif
56
57template<class Impl>
58LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
59 LSQUnit *lsq_ptr)
60 : inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
61{
62 this->setFlags(Event::AutoDelete);
63}
64
65template<class Impl>
66void
67LSQUnit<Impl>::WritebackEvent::process()
68{
69 if (!lsqPtr->isSwitchedOut()) {
70 lsqPtr->writeback(inst, pkt);
71 }
72
73 if (pkt->senderState)
74 delete pkt->senderState;
75
76 delete pkt->req;
77 delete pkt;
78}
79
80template<class Impl>
81const char *
82LSQUnit<Impl>::WritebackEvent::description() const
83{
84 return "Store writeback";
85}
86
87template<class Impl>
88void
89LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
90{
91 LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
92 DynInstPtr inst = state->inst;
93 DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
94 DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
95
96 //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
97
98 assert(!pkt->wasNacked());
99
100 // If this is a split access, wait until all packets are received.
101 if (TheISA::HasUnalignedMemAcc && !state->complete()) {
102 delete pkt->req;
103 delete pkt;
104 return;
105 }
106
107 if (isSwitchedOut() || inst->isSquashed()) {
108 iewStage->decrWb(inst->seqNum);
109 } else {
110 if (!state->noWB) {
111 if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
112 !state->isLoad) {
113 writeback(inst, pkt);
114 } else {
115 writeback(inst, state->mainPkt);
116 }
117 }
118
119 if (inst->isStore()) {
120 completeStore(state->idx);
121 }
122 }
123
124 if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
125 delete state->mainPkt->req;
126 delete state->mainPkt;
127 }
128 delete state;
129 delete pkt->req;
130 delete pkt;
131}
132
133template <class Impl>
134LSQUnit<Impl>::LSQUnit()
135 : loads(0), stores(0), storesToWB(0), stalled(false),
136 isStoreBlocked(false), isLoadBlocked(false),
137 loadBlockedHandled(false), hasPendingPkt(false)
138{
139}
140
141template<class Impl>
142void
143LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
144 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
145 unsigned id)
146{
147 cpu = cpu_ptr;
148 iewStage = iew_ptr;
149
150 DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
151
152 switchedOut = false;
153
154 lsq = lsq_ptr;
155
156 lsqID = id;
157
158 // Add 1 for the sentinel entry (they are circular queues).
159 LQEntries = maxLQEntries + 1;
160 SQEntries = maxSQEntries + 1;
161
162 loadQueue.resize(LQEntries);
163 storeQueue.resize(SQEntries);
164
165 loadHead = loadTail = 0;
166
167 storeHead = storeWBIdx = storeTail = 0;
168
169 usedPorts = 0;
170 cachePorts = params->cachePorts;
171
172 retryPkt = NULL;
173 memDepViolator = NULL;
174
175 blockedLoadSeqNum = 0;
176}
177
178template<class Impl>
179std::string
180LSQUnit<Impl>::name() const
181{
182 if (Impl::MaxThreads == 1) {
183 return iewStage->name() + ".lsq";
184 } else {
185 return iewStage->name() + ".lsq.thread." + to_string(lsqID);
186 }
187}
188
189template<class Impl>
190void
191LSQUnit<Impl>::regStats()
192{
193 lsqForwLoads
194 .name(name() + ".forwLoads")
195 .desc("Number of loads that had data forwarded from stores");
196
197 invAddrLoads
198 .name(name() + ".invAddrLoads")
199 .desc("Number of loads ignored due to an invalid address");
200
201 lsqSquashedLoads
202 .name(name() + ".squashedLoads")
203 .desc("Number of loads squashed");
204
205 lsqIgnoredResponses
206 .name(name() + ".ignoredResponses")
207 .desc("Number of memory responses ignored because the instruction is squashed");
208
209 lsqMemOrderViolation
210 .name(name() + ".memOrderViolation")
211 .desc("Number of memory ordering violations");
212
213 lsqSquashedStores
214 .name(name() + ".squashedStores")
215 .desc("Number of stores squashed");
216
217 invAddrSwpfs
218 .name(name() + ".invAddrSwpfs")
219 .desc("Number of software prefetches ignored due to an invalid address");
220
221 lsqBlockedLoads
222 .name(name() + ".blockedLoads")
223 .desc("Number of blocked loads due to partial load-store forwarding");
224
225 lsqRescheduledLoads
226 .name(name() + ".rescheduledLoads")
227 .desc("Number of loads that were rescheduled");
228
229 lsqCacheBlocked
230 .name(name() + ".cacheBlocked")
231 .desc("Number of times an access to memory failed due to the cache being blocked");
232}
233
234template<class Impl>
235void
236LSQUnit<Impl>::setDcachePort(Port *dcache_port)
237{
238 dcachePort = dcache_port;
239
240#if USE_CHECKER
241 if (cpu->checker) {
242 cpu->checker->setDcachePort(dcachePort);
243 }
244#endif
245}
246
247template<class Impl>
248void
249LSQUnit<Impl>::clearLQ()
250{
251 loadQueue.clear();
252}
253
254template<class Impl>
255void
256LSQUnit<Impl>::clearSQ()
257{
258 storeQueue.clear();
259}
260
261template<class Impl>
262void
263LSQUnit<Impl>::switchOut()
264{
265 switchedOut = true;
266 for (int i = 0; i < loadQueue.size(); ++i) {
267 assert(!loadQueue[i]);
268 loadQueue[i] = NULL;
269 }
270
271 assert(storesToWB == 0);
272}
273
274template<class Impl>
275void
276LSQUnit<Impl>::takeOverFrom()
277{
278 switchedOut = false;
279 loads = stores = storesToWB = 0;
280
281 loadHead = loadTail = 0;
282
283 storeHead = storeWBIdx = storeTail = 0;
284
285 usedPorts = 0;
286
287 memDepViolator = NULL;
288
289 blockedLoadSeqNum = 0;
290
291 stalled = false;
292 isLoadBlocked = false;
293 loadBlockedHandled = false;
294}
295
296template<class Impl>
297void
298LSQUnit<Impl>::resizeLQ(unsigned size)
299{
300 unsigned size_plus_sentinel = size + 1;
301 assert(size_plus_sentinel >= LQEntries);
302
303 if (size_plus_sentinel > LQEntries) {
304 while (size_plus_sentinel > loadQueue.size()) {
305 DynInstPtr dummy;
306 loadQueue.push_back(dummy);
307 LQEntries++;
308 }
309 } else {
310 LQEntries = size_plus_sentinel;
311 }
312
313}
314
315template<class Impl>
316void
317LSQUnit<Impl>::resizeSQ(unsigned size)
318{
319 unsigned size_plus_sentinel = size + 1;
320 if (size_plus_sentinel > SQEntries) {
321 while (size_plus_sentinel > storeQueue.size()) {
322 SQEntry dummy;
323 storeQueue.push_back(dummy);
324 SQEntries++;
325 }
326 } else {
327 SQEntries = size_plus_sentinel;
328 }
329}
330
331template <class Impl>
332void
333LSQUnit<Impl>::insert(DynInstPtr &inst)
334{
335 assert(inst->isMemRef());
336
337 assert(inst->isLoad() || inst->isStore());
338
339 if (inst->isLoad()) {
340 insertLoad(inst);
341 } else {
342 insertStore(inst);
343 }
344
345 inst->setInLSQ();
346}
347
348template <class Impl>
349void
350LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
351{
352 assert((loadTail + 1) % LQEntries != loadHead);
353 assert(loads < LQEntries);
354
355 DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
356 load_inst->pcState(), loadTail, load_inst->seqNum);
357
358 load_inst->lqIdx = loadTail;
359
360 if (stores == 0) {
361 load_inst->sqIdx = -1;
362 } else {
363 load_inst->sqIdx = storeTail;
364 }
365
366 loadQueue[loadTail] = load_inst;
367
368 incrLdIdx(loadTail);
369
370 ++loads;
371}
372
373template <class Impl>
374void
375LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
376{
377 // Make sure it is not full before inserting an instruction.
378 assert((storeTail + 1) % SQEntries != storeHead);
379 assert(stores < SQEntries);
380
381 DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
382 store_inst->pcState(), storeTail, store_inst->seqNum);
383
384 store_inst->sqIdx = storeTail;
385 store_inst->lqIdx = loadTail;
386
387 storeQueue[storeTail] = SQEntry(store_inst);
388
389 incrStIdx(storeTail);
390
391 ++stores;
392}
393
394template <class Impl>
395typename Impl::DynInstPtr
396LSQUnit<Impl>::getMemDepViolator()
397{
398 DynInstPtr temp = memDepViolator;
399
400 memDepViolator = NULL;
401
402 return temp;
403}
404
405template <class Impl>
406unsigned
407LSQUnit<Impl>::numFreeEntries()
408{
409 unsigned free_lq_entries = LQEntries - loads;
410 unsigned free_sq_entries = SQEntries - stores;
411
412 // Both the LQ and SQ entries have an extra dummy entry to differentiate
413 // empty/full conditions. Subtract 1 from the free entries.
414 if (free_lq_entries < free_sq_entries) {
415 return free_lq_entries - 1;
416 } else {
417 return free_sq_entries - 1;
418 }
419}
420
421template <class Impl>
422int
423LSQUnit<Impl>::numLoadsReady()
424{
425 int load_idx = loadHead;
426 int retval = 0;
427
428 while (load_idx != loadTail) {
429 assert(loadQueue[load_idx]);
430
431 if (loadQueue[load_idx]->readyToIssue()) {
432 ++retval;
433 }
434 }
435
436 return retval;
437}
438
439template <class Impl>
440Fault
441LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
442{
443 using namespace TheISA;
444 // Execute a specific load.
445 Fault load_fault = NoFault;
446
447 DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
448 inst->pcState(), inst->seqNum);
449
450 assert(!inst->isSquashed());
451
452 load_fault = inst->initiateAcc();
453
454 if (inst->isTranslationDelayed() &&
455 load_fault == NoFault)
456 return load_fault;
457
458 // If the instruction faulted or predicated false, then we need to send it
459 // along to commit without the instruction completing.
460 if (load_fault != NoFault || inst->readPredicate() == false) {
461 // Send this instruction to commit, also make sure iew stage
462 // realizes there is activity.
463 // Mark it as executed unless it is an uncached load that
464 // needs to hit the head of commit.
465 if (inst->readPredicate() == false)
466 inst->forwardOldRegs();
467 DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
468 inst->seqNum,
469 (load_fault != NoFault ? "fault" : "predication"));
470 if (!(inst->hasRequest() && inst->uncacheable()) ||
471 inst->isAtCommit()) {
472 inst->setExecuted();
473 }
474 iewStage->instToCommit(inst);
475 iewStage->activityThisCycle();
476 } else if (!loadBlocked()) {
477 assert(inst->effAddrValid);
478 int load_idx = inst->lqIdx;
479 incrLdIdx(load_idx);
480 while (load_idx != loadTail) {
481 // Really only need to check loads that have actually executed
482
483 // @todo: For now this is extra conservative, detecting a
484 // violation if the addresses match assuming all accesses
485 // are quad word accesses.
486
487 // @todo: Fix this, magic number being used here
488
489 // @todo: Uncachable load is not executed until it reaches
490 // the head of the ROB. Once this if checks only the executed
491 // loads(as noted above), this check can be removed
492 if (loadQueue[load_idx]->effAddrValid &&
493 ((loadQueue[load_idx]->effAddr >> 8)
494 == (inst->effAddr >> 8)) &&
495 !loadQueue[load_idx]->uncacheable()) {
496 // A load incorrectly passed this load. Squash and refetch.
497 // For now return a fault to show that it was unsuccessful.
498 DynInstPtr violator = loadQueue[load_idx];
499 if (!memDepViolator ||
500 (violator->seqNum < memDepViolator->seqNum)) {
501 memDepViolator = violator;
502 } else {
503 break;
504 }
505
506 ++lsqMemOrderViolation;
507
508 return genMachineCheckFault();
509 }
510
511 incrLdIdx(load_idx);
512 }
513 }
514
515 return load_fault;
516}
517
518template <class Impl>
519Fault
520LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
521{
522 using namespace TheISA;
523 // Make sure that a store exists.
524 assert(stores != 0);
525
526 int store_idx = store_inst->sqIdx;
527
528 DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
529 store_inst->pcState(), store_inst->seqNum);
530
531 assert(!store_inst->isSquashed());
532
533 // Check the recently completed loads to see if any match this store's
534 // address. If so, then we have a memory ordering violation.
535 int load_idx = store_inst->lqIdx;
536
537 Fault store_fault = store_inst->initiateAcc();
538
539 if (store_inst->isTranslationDelayed() &&
540 store_fault == NoFault)
541 return store_fault;
542
543 if (store_inst->readPredicate() == false)
544 store_inst->forwardOldRegs();
545
546 if (storeQueue[store_idx].size == 0) {
547 DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
548 store_inst->pcState(), store_inst->seqNum);
549
550 return store_fault;
551 } else if (store_inst->readPredicate() == false) {
552 DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
553 store_inst->seqNum);
554 return store_fault;
555 }
556
557 assert(store_fault == NoFault);
558
559 if (store_inst->isStoreConditional()) {
560 // Store conditionals need to set themselves as able to
561 // writeback if we haven't had a fault by here.
562 storeQueue[store_idx].canWB = true;
563
564 ++storesToWB;
565 }
566
567 assert(store_inst->effAddrValid);
568 while (load_idx != loadTail) {
569 // Really only need to check loads that have actually executed
570 // It's safe to check all loads because effAddr is set to
571 // InvalAddr when the dyn inst is created.
572
573 // @todo: For now this is extra conservative, detecting a
574 // violation if the addresses match assuming all accesses
575 // are quad word accesses.
576
577 // @todo: Fix this, magic number being used here
578
579 // @todo: Uncachable load is not executed until it reaches
580 // the head of the ROB. Once this if checks only the executed
581 // loads(as noted above), this check can be removed
582 if (loadQueue[load_idx]->effAddrValid &&
583 ((loadQueue[load_idx]->effAddr >> 8)
584 == (store_inst->effAddr >> 8)) &&
585 !loadQueue[load_idx]->uncacheable()) {
586 // A load incorrectly passed this store. Squash and refetch.
587 // For now return a fault to show that it was unsuccessful.
588 DynInstPtr violator = loadQueue[load_idx];
589 if (!memDepViolator ||
590 (violator->seqNum < memDepViolator->seqNum)) {
591 memDepViolator = violator;
592 } else {
593 break;
594 }
595
596 ++lsqMemOrderViolation;
597
598 return genMachineCheckFault();
599 }
600
601 incrLdIdx(load_idx);
602 }
603
604 return store_fault;
605}
606
607template <class Impl>
608void
609LSQUnit<Impl>::commitLoad()
610{
611 assert(loadQueue[loadHead]);
612
613 DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
614 loadQueue[loadHead]->pcState());
615
616 loadQueue[loadHead] = NULL;
617
618 incrLdIdx(loadHead);
619
620 --loads;
621}
622
623template <class Impl>
624void
625LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
626{
627 assert(loads == 0 || loadQueue[loadHead]);
628
629 while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
630 commitLoad();
631 }
632}
633
634template <class Impl>
635void
636LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
637{
638 assert(stores == 0 || storeQueue[storeHead].inst);
639
640 int store_idx = storeHead;
641
642 while (store_idx != storeTail) {
643 assert(storeQueue[store_idx].inst);
644 // Mark any stores that are now committed and have not yet
645 // been marked as able to write back.
646 if (!storeQueue[store_idx].canWB) {
647 if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
648 break;
649 }
650 DPRINTF(LSQUnit, "Marking store as able to write back, PC "
651 "%s [sn:%lli]\n",
652 storeQueue[store_idx].inst->pcState(),
653 storeQueue[store_idx].inst->seqNum);
654
655 storeQueue[store_idx].canWB = true;
656
657 ++storesToWB;
658 }
659
660 incrStIdx(store_idx);
661 }
662}
663
664template <class Impl>
665void
666LSQUnit<Impl>::writebackPendingStore()
667{
668 if (hasPendingPkt) {
669 assert(pendingPkt != NULL);
670
671 // If the cache is blocked, this will store the packet for retry.
672 if (sendStore(pendingPkt)) {
673 storePostSend(pendingPkt);
674 }
675 pendingPkt = NULL;
676 hasPendingPkt = false;
677 }
678}
679
680template <class Impl>
681void
682LSQUnit<Impl>::writebackStores()
683{
684 // First writeback the second packet from any split store that didn't
685 // complete last cycle because there weren't enough cache ports available.
686 if (TheISA::HasUnalignedMemAcc) {
687 writebackPendingStore();
688 }
689
690 while (storesToWB > 0 &&
691 storeWBIdx != storeTail &&
692 storeQueue[storeWBIdx].inst &&
693 storeQueue[storeWBIdx].canWB &&
694 usedPorts < cachePorts) {
695
696 if (isStoreBlocked || lsq->cacheBlocked()) {
697 DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
698 " is blocked!\n");
699 break;
700 }
701
702 // Store didn't write any data so no need to write it back to
703 // memory.
704 if (storeQueue[storeWBIdx].size == 0) {
705 completeStore(storeWBIdx);
706
707 incrStIdx(storeWBIdx);
708
709 continue;
710 }
711
712 ++usedPorts;
713
714 if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
715 incrStIdx(storeWBIdx);
716
717 continue;
718 }
719
720 assert(storeQueue[storeWBIdx].req);
721 assert(!storeQueue[storeWBIdx].committed);
722
723 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
724 assert(storeQueue[storeWBIdx].sreqLow);
725 assert(storeQueue[storeWBIdx].sreqHigh);
726 }
727
728 DynInstPtr inst = storeQueue[storeWBIdx].inst;
729
730 Request *req = storeQueue[storeWBIdx].req;
731 storeQueue[storeWBIdx].committed = true;
732
733 assert(!inst->memData);
734 inst->memData = new uint8_t[64];
735
736 memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
737
738 MemCmd command =
739 req->isSwap() ? MemCmd::SwapReq :
740 (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
741 PacketPtr data_pkt;
742 PacketPtr snd_data_pkt = NULL;
743
744 LSQSenderState *state = new LSQSenderState;
745 state->isLoad = false;
746 state->idx = storeWBIdx;
747 state->inst = inst;
748
749 if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
750
751 // Build a single data packet if the store isn't split.
752 data_pkt = new Packet(req, command, Packet::Broadcast);
753 data_pkt->dataStatic(inst->memData);
754 data_pkt->senderState = state;
755 } else {
756 RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
757 RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
758
759 // Create two packets if the store is split in two.
760 data_pkt = new Packet(sreqLow, command, Packet::Broadcast);
761 snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast);
762
763 data_pkt->dataStatic(inst->memData);
764 snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
765
766 data_pkt->senderState = state;
767 snd_data_pkt->senderState = state;
768
769 state->isSplit = true;
770 state->outstanding = 2;
771
772 // Can delete the main request now.
773 delete req;
774 req = sreqLow;
775 }
776
777 DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
778 "to Addr:%#x, data:%#x [sn:%lli]\n",
779 storeWBIdx, inst->pcState(),
780 req->getPaddr(), (int)*(inst->memData),
781 inst->seqNum);
782
783 // @todo: Remove this SC hack once the memory system handles it.
784 if (inst->isStoreConditional()) {
785 assert(!storeQueue[storeWBIdx].isSplit);
786 // Disable recording the result temporarily. Writing to
787 // misc regs normally updates the result, but this is not
788 // the desired behavior when handling store conditionals.
789 inst->recordResult = false;
790 bool success = TheISA::handleLockedWrite(inst.get(), req);
791 inst->recordResult = true;
792
793 if (!success) {
794 // Instantly complete this store.
795 DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. "
796 "Instantly completing it.\n",
797 inst->seqNum);
798 WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
799 cpu->schedule(wb, curTick() + 1);
800 completeStore(storeWBIdx);
801 incrStIdx(storeWBIdx);
802 continue;
803 }
804 } else {
805 // Non-store conditionals do not need a writeback.
806 state->noWB = true;
807 }
808
809 if (!sendStore(data_pkt)) {
810 DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
811 "retry later\n",
812 inst->seqNum);
813
814 // Need to store the second packet, if split.
815 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
816 state->pktToSend = true;
817 state->pendingPacket = snd_data_pkt;
818 }
819 } else {
820
821 // If split, try to send the second packet too
822 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
823 assert(snd_data_pkt);
824
825 // Ensure there are enough ports to use.
826 if (usedPorts < cachePorts) {
827 ++usedPorts;
828 if (sendStore(snd_data_pkt)) {
829 storePostSend(snd_data_pkt);
830 } else {
831 DPRINTF(IEW, "D-Cache became blocked when writing"
832 " [sn:%lli] second packet, will retry later\n",
833 inst->seqNum);
834 }
835 } else {
836
837 // Store the packet for when there's free ports.
838 assert(pendingPkt == NULL);
839 pendingPkt = snd_data_pkt;
840 hasPendingPkt = true;
841 }
842 } else {
843
844 // Not a split store.
845 storePostSend(data_pkt);
846 }
847 }
848 }
849
850 // Not sure this should set it to 0.
851 usedPorts = 0;
852
853 assert(stores >= 0 && storesToWB >= 0);
854}
855
856/*template <class Impl>
857void
858LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
859{
860 list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
861 mshrSeqNums.end(),
862 seqNum);
863
864 if (mshr_it != mshrSeqNums.end()) {
865 mshrSeqNums.erase(mshr_it);
866 DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
867 }
868}*/
869
870template <class Impl>
871void
872LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
873{
874 DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
875 "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
876
877 int load_idx = loadTail;
878 decrLdIdx(load_idx);
879
880 while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
881 DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
882 "[sn:%lli]\n",
883 loadQueue[load_idx]->pcState(),
884 loadQueue[load_idx]->seqNum);
885
886 if (isStalled() && load_idx == stallingLoadIdx) {
887 stalled = false;
888 stallingStoreIsn = 0;
889 stallingLoadIdx = 0;
890 }
891
892 // Clear the smart pointer to make sure it is decremented.
893 loadQueue[load_idx]->setSquashed();
894 loadQueue[load_idx] = NULL;
895 --loads;
896
897 // Inefficient!
898 loadTail = load_idx;
899
900 decrLdIdx(load_idx);
901 ++lsqSquashedLoads;
902 }
903
904 if (isLoadBlocked) {
905 if (squashed_num < blockedLoadSeqNum) {
906 isLoadBlocked = false;
907 loadBlockedHandled = false;
908 blockedLoadSeqNum = 0;
909 }
910 }
911
912 if (memDepViolator && squashed_num < memDepViolator->seqNum) {
913 memDepViolator = NULL;
914 }
915
916 int store_idx = storeTail;
917 decrStIdx(store_idx);
918
919 while (stores != 0 &&
920 storeQueue[store_idx].inst->seqNum > squashed_num) {
921 // Instructions marked as can WB are already committed.
922 if (storeQueue[store_idx].canWB) {
923 break;
924 }
925
926 DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
927 "idx:%i [sn:%lli]\n",
928 storeQueue[store_idx].inst->pcState(),
929 store_idx, storeQueue[store_idx].inst->seqNum);
930
931 // I don't think this can happen. It should have been cleared
932 // by the stalling load.
933 if (isStalled() &&
934 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
935 panic("Is stalled should have been cleared by stalling load!\n");
936 stalled = false;
937 stallingStoreIsn = 0;
938 }
939
940 // Clear the smart pointer to make sure it is decremented.
941 storeQueue[store_idx].inst->setSquashed();
942 storeQueue[store_idx].inst = NULL;
943 storeQueue[store_idx].canWB = 0;
944
945 // Must delete request now that it wasn't handed off to
946 // memory. This is quite ugly. @todo: Figure out the proper
947 // place to really handle request deletes.
948 delete storeQueue[store_idx].req;
949 if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
950 delete storeQueue[store_idx].sreqLow;
951 delete storeQueue[store_idx].sreqHigh;
952
953 storeQueue[store_idx].sreqLow = NULL;
954 storeQueue[store_idx].sreqHigh = NULL;
955 }
956
957 storeQueue[store_idx].req = NULL;
958 --stores;
959
960 // Inefficient!
961 storeTail = store_idx;
962
963 decrStIdx(store_idx);
964 ++lsqSquashedStores;
965 }
966}
967
968template <class Impl>
969void
970LSQUnit<Impl>::storePostSend(PacketPtr pkt)
971{
972 if (isStalled() &&
973 storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
974 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
975 "load idx:%i\n",
976 stallingStoreIsn, stallingLoadIdx);
977 stalled = false;
978 stallingStoreIsn = 0;
979 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
980 }
981
982 if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
983 // The store is basically completed at this time. This
984 // only works so long as the checker doesn't try to
985 // verify the value in memory for stores.
986 storeQueue[storeWBIdx].inst->setCompleted();
987#if USE_CHECKER
988 if (cpu->checker) {
989 cpu->checker->verify(storeQueue[storeWBIdx].inst);
990 }
991#endif
992 }
993
994 incrStIdx(storeWBIdx);
995}
996
997template <class Impl>
998void
999LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1000{
1001 iewStage->wakeCPU();
1002
1003 // Squashed instructions do not need to complete their access.
1004 if (inst->isSquashed()) {
1005 iewStage->decrWb(inst->seqNum);
1006 assert(!inst->isStore());
1007 ++lsqIgnoredResponses;
1008 return;
1009 }
1010
1011 if (!inst->isExecuted()) {
1012 inst->setExecuted();
1013
1014 // Complete access to copy data to proper place.
1015 inst->completeAcc(pkt);
1016 }
1017
1018 // Need to insert instruction into queue to commit
1019 iewStage->instToCommit(inst);
1020
1021 iewStage->activityThisCycle();
1022
1023 // see if this load changed the PC
1024 iewStage->checkMisprediction(inst);
1025}
1026
1027template <class Impl>
1028void
1029LSQUnit<Impl>::completeStore(int store_idx)
1030{
1031 assert(storeQueue[store_idx].inst);
1032 storeQueue[store_idx].completed = true;
1033 --storesToWB;
1034 // A bit conservative because a store completion may not free up entries,
1035 // but hopefully avoids two store completions in one cycle from making
1036 // the CPU tick twice.
1037 cpu->wakeCPU();
1038 cpu->activityThisCycle();
1039
1040 if (store_idx == storeHead) {
1041 do {
1042 incrStIdx(storeHead);
1043
1044 --stores;
1045 } while (storeQueue[storeHead].completed &&
1046 storeHead != storeTail);
1047
1048 iewStage->updateLSQNextCycle = true;
1049 }
1050
1051 DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1052 "idx:%i\n",
1053 storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1054
1055 if (isStalled() &&
1056 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1057 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1058 "load idx:%i\n",
1059 stallingStoreIsn, stallingLoadIdx);
1060 stalled = false;
1061 stallingStoreIsn = 0;
1062 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1063 }
1064
1065 storeQueue[store_idx].inst->setCompleted();
1066
1067 // Tell the checker we've completed this instruction. Some stores
1068 // may get reported twice to the checker, but the checker can
1069 // handle that case.
1070#if USE_CHECKER
1071 if (cpu->checker) {
1072 cpu->checker->verify(storeQueue[store_idx].inst);
1073 }
1074#endif
1075}
1076
1077template <class Impl>
1078bool
1079LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1080{
1081 if (!dcachePort->sendTiming(data_pkt)) {
1082 // Need to handle becoming blocked on a store.
1083 isStoreBlocked = true;
1084 ++lsqCacheBlocked;
1085 assert(retryPkt == NULL);
1086 retryPkt = data_pkt;
1087 lsq->setRetryTid(lsqID);
1088 return false;
1089 }
1090 return true;
1091}
1092
1093template <class Impl>
1094void
1095LSQUnit<Impl>::recvRetry()
1096{
1097 if (isStoreBlocked) {
1098 DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1099 assert(retryPkt != NULL);
1100
1101 if (dcachePort->sendTiming(retryPkt)) {
1102 LSQSenderState *state =
1103 dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1104
1105 // Don't finish the store unless this is the last packet.
1106 if (!TheISA::HasUnalignedMemAcc || !state->pktToSend) {
1106 if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1107 state->pendingPacket == retryPkt) {
1108 state->pktToSend = false;
1107 storePostSend(retryPkt);
1108 }
1109 retryPkt = NULL;
1110 isStoreBlocked = false;
1111 lsq->setRetryTid(InvalidThreadID);
1112
1113 // Send any outstanding packet.
1114 if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1115 assert(state->pendingPacket);
1116 if (sendStore(state->pendingPacket)) {
1117 storePostSend(state->pendingPacket);
1118 }
1119 }
1120 } else {
1121 // Still blocked!
1122 ++lsqCacheBlocked;
1123 lsq->setRetryTid(lsqID);
1124 }
1125 } else if (isLoadBlocked) {
1126 DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1127 "no need to resend packet.\n");
1128 } else {
1129 DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1130 }
1131}
1132
1133template <class Impl>
1134inline void
1135LSQUnit<Impl>::incrStIdx(int &store_idx)
1136{
1137 if (++store_idx >= SQEntries)
1138 store_idx = 0;
1139}
1140
1141template <class Impl>
1142inline void
1143LSQUnit<Impl>::decrStIdx(int &store_idx)
1144{
1145 if (--store_idx < 0)
1146 store_idx += SQEntries;
1147}
1148
1149template <class Impl>
1150inline void
1151LSQUnit<Impl>::incrLdIdx(int &load_idx)
1152{
1153 if (++load_idx >= LQEntries)
1154 load_idx = 0;
1155}
1156
1157template <class Impl>
1158inline void
1159LSQUnit<Impl>::decrLdIdx(int &load_idx)
1160{
1161 if (--load_idx < 0)
1162 load_idx += LQEntries;
1163}
1164
1165template <class Impl>
1166void
1167LSQUnit<Impl>::dumpInsts()
1168{
1169 cprintf("Load store queue: Dumping instructions.\n");
1170 cprintf("Load queue size: %i\n", loads);
1171 cprintf("Load queue: ");
1172
1173 int load_idx = loadHead;
1174
1175 while (load_idx != loadTail && loadQueue[load_idx]) {
1176 cprintf("%s ", loadQueue[load_idx]->pcState());
1177
1178 incrLdIdx(load_idx);
1179 }
1180
1181 cprintf("Store queue size: %i\n", stores);
1182 cprintf("Store queue: ");
1183
1184 int store_idx = storeHead;
1185
1186 while (store_idx != storeTail && storeQueue[store_idx].inst) {
1187 cprintf("%s ", storeQueue[store_idx].inst->pcState());
1188
1189 incrStIdx(store_idx);
1190 }
1191
1192 cprintf("\n");
1193}
1109 storePostSend(retryPkt);
1110 }
1111 retryPkt = NULL;
1112 isStoreBlocked = false;
1113 lsq->setRetryTid(InvalidThreadID);
1114
1115 // Send any outstanding packet.
1116 if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1117 assert(state->pendingPacket);
1118 if (sendStore(state->pendingPacket)) {
1119 storePostSend(state->pendingPacket);
1120 }
1121 }
1122 } else {
1123 // Still blocked!
1124 ++lsqCacheBlocked;
1125 lsq->setRetryTid(lsqID);
1126 }
1127 } else if (isLoadBlocked) {
1128 DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1129 "no need to resend packet.\n");
1130 } else {
1131 DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1132 }
1133}
1134
1135template <class Impl>
1136inline void
1137LSQUnit<Impl>::incrStIdx(int &store_idx)
1138{
1139 if (++store_idx >= SQEntries)
1140 store_idx = 0;
1141}
1142
1143template <class Impl>
1144inline void
1145LSQUnit<Impl>::decrStIdx(int &store_idx)
1146{
1147 if (--store_idx < 0)
1148 store_idx += SQEntries;
1149}
1150
1151template <class Impl>
1152inline void
1153LSQUnit<Impl>::incrLdIdx(int &load_idx)
1154{
1155 if (++load_idx >= LQEntries)
1156 load_idx = 0;
1157}
1158
1159template <class Impl>
1160inline void
1161LSQUnit<Impl>::decrLdIdx(int &load_idx)
1162{
1163 if (--load_idx < 0)
1164 load_idx += LQEntries;
1165}
1166
1167template <class Impl>
1168void
1169LSQUnit<Impl>::dumpInsts()
1170{
1171 cprintf("Load store queue: Dumping instructions.\n");
1172 cprintf("Load queue size: %i\n", loads);
1173 cprintf("Load queue: ");
1174
1175 int load_idx = loadHead;
1176
1177 while (load_idx != loadTail && loadQueue[load_idx]) {
1178 cprintf("%s ", loadQueue[load_idx]->pcState());
1179
1180 incrLdIdx(load_idx);
1181 }
1182
1183 cprintf("Store queue size: %i\n", stores);
1184 cprintf("Store queue: ");
1185
1186 int store_idx = storeHead;
1187
1188 while (store_idx != storeTail && storeQueue[store_idx].inst) {
1189 cprintf("%s ", storeQueue[store_idx].inst->pcState());
1190
1191 incrStIdx(store_idx);
1192 }
1193
1194 cprintf("\n");
1195}