lsq_unit_impl.hh (7823:dac01f14f20f) lsq_unit_impl.hh (7848:cc5e64f8423f)
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#include "arch/locked_mem.hh"
45#include "config/the_isa.hh"
46#include "config/use_checker.hh"
47#include "cpu/o3/lsq.hh"
48#include "cpu/o3/lsq_unit.hh"
49#include "base/str.hh"
50#include "mem/packet.hh"
51#include "mem/request.hh"
52
53#if USE_CHECKER
54#include "cpu/checker/cpu.hh"
55#endif
56
57template<class Impl>
58LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
59 LSQUnit *lsq_ptr)
60 : inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
61{
62 this->setFlags(Event::AutoDelete);
63}
64
65template<class Impl>
66void
67LSQUnit<Impl>::WritebackEvent::process()
68{
69 if (!lsqPtr->isSwitchedOut()) {
70 lsqPtr->writeback(inst, pkt);
71 }
72
73 if (pkt->senderState)
74 delete pkt->senderState;
75
76 delete pkt->req;
77 delete pkt;
78}
79
80template<class Impl>
81const char *
82LSQUnit<Impl>::WritebackEvent::description() const
83{
84 return "Store writeback";
85}
86
87template<class Impl>
88void
89LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
90{
91 LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
92 DynInstPtr inst = state->inst;
93 DPRINTF(IEW, "Writeback event [sn:%lli]\n", inst->seqNum);
94 DPRINTF(Activity, "Activity: Writeback event [sn:%lli]\n", inst->seqNum);
95
96 //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
97
98 assert(!pkt->wasNacked());
99
100 // If this is a split access, wait until all packets are received.
101 if (TheISA::HasUnalignedMemAcc && !state->complete()) {
102 delete pkt->req;
103 delete pkt;
104 return;
105 }
106
107 if (isSwitchedOut() || inst->isSquashed()) {
108 iewStage->decrWb(inst->seqNum);
109 } else {
110 if (!state->noWB) {
111 if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
112 !state->isLoad) {
113 writeback(inst, pkt);
114 } else {
115 writeback(inst, state->mainPkt);
116 }
117 }
118
119 if (inst->isStore()) {
120 completeStore(state->idx);
121 }
122 }
123
124 if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
125 delete state->mainPkt->req;
126 delete state->mainPkt;
127 }
128 delete state;
129 delete pkt->req;
130 delete pkt;
131}
132
133template <class Impl>
134LSQUnit<Impl>::LSQUnit()
135 : loads(0), stores(0), storesToWB(0), stalled(false),
136 isStoreBlocked(false), isLoadBlocked(false),
137 loadBlockedHandled(false), hasPendingPkt(false)
138{
139}
140
141template<class Impl>
142void
143LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
144 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
145 unsigned id)
146{
147 cpu = cpu_ptr;
148 iewStage = iew_ptr;
149
150 DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
151
152 switchedOut = false;
153
154 lsq = lsq_ptr;
155
156 lsqID = id;
157
158 // Add 1 for the sentinel entry (they are circular queues).
159 LQEntries = maxLQEntries + 1;
160 SQEntries = maxSQEntries + 1;
161
162 loadQueue.resize(LQEntries);
163 storeQueue.resize(SQEntries);
164
165 loadHead = loadTail = 0;
166
167 storeHead = storeWBIdx = storeTail = 0;
168
169 usedPorts = 0;
170 cachePorts = params->cachePorts;
171
172 retryPkt = NULL;
173 memDepViolator = NULL;
174
175 blockedLoadSeqNum = 0;
176}
177
178template<class Impl>
179std::string
180LSQUnit<Impl>::name() const
181{
182 if (Impl::MaxThreads == 1) {
183 return iewStage->name() + ".lsq";
184 } else {
185 return iewStage->name() + ".lsq.thread." + to_string(lsqID);
186 }
187}
188
189template<class Impl>
190void
191LSQUnit<Impl>::regStats()
192{
193 lsqForwLoads
194 .name(name() + ".forwLoads")
195 .desc("Number of loads that had data forwarded from stores");
196
197 invAddrLoads
198 .name(name() + ".invAddrLoads")
199 .desc("Number of loads ignored due to an invalid address");
200
201 lsqSquashedLoads
202 .name(name() + ".squashedLoads")
203 .desc("Number of loads squashed");
204
205 lsqIgnoredResponses
206 .name(name() + ".ignoredResponses")
207 .desc("Number of memory responses ignored because the instruction is squashed");
208
209 lsqMemOrderViolation
210 .name(name() + ".memOrderViolation")
211 .desc("Number of memory ordering violations");
212
213 lsqSquashedStores
214 .name(name() + ".squashedStores")
215 .desc("Number of stores squashed");
216
217 invAddrSwpfs
218 .name(name() + ".invAddrSwpfs")
219 .desc("Number of software prefetches ignored due to an invalid address");
220
221 lsqBlockedLoads
222 .name(name() + ".blockedLoads")
223 .desc("Number of blocked loads due to partial load-store forwarding");
224
225 lsqRescheduledLoads
226 .name(name() + ".rescheduledLoads")
227 .desc("Number of loads that were rescheduled");
228
229 lsqCacheBlocked
230 .name(name() + ".cacheBlocked")
231 .desc("Number of times an access to memory failed due to the cache being blocked");
232}
233
234template<class Impl>
235void
236LSQUnit<Impl>::setDcachePort(Port *dcache_port)
237{
238 dcachePort = dcache_port;
239
240#if USE_CHECKER
241 if (cpu->checker) {
242 cpu->checker->setDcachePort(dcachePort);
243 }
244#endif
245}
246
247template<class Impl>
248void
249LSQUnit<Impl>::clearLQ()
250{
251 loadQueue.clear();
252}
253
254template<class Impl>
255void
256LSQUnit<Impl>::clearSQ()
257{
258 storeQueue.clear();
259}
260
261template<class Impl>
262void
263LSQUnit<Impl>::switchOut()
264{
265 switchedOut = true;
266 for (int i = 0; i < loadQueue.size(); ++i) {
267 assert(!loadQueue[i]);
268 loadQueue[i] = NULL;
269 }
270
271 assert(storesToWB == 0);
272}
273
274template<class Impl>
275void
276LSQUnit<Impl>::takeOverFrom()
277{
278 switchedOut = false;
279 loads = stores = storesToWB = 0;
280
281 loadHead = loadTail = 0;
282
283 storeHead = storeWBIdx = storeTail = 0;
284
285 usedPorts = 0;
286
287 memDepViolator = NULL;
288
289 blockedLoadSeqNum = 0;
290
291 stalled = false;
292 isLoadBlocked = false;
293 loadBlockedHandled = false;
294}
295
296template<class Impl>
297void
298LSQUnit<Impl>::resizeLQ(unsigned size)
299{
300 unsigned size_plus_sentinel = size + 1;
301 assert(size_plus_sentinel >= LQEntries);
302
303 if (size_plus_sentinel > LQEntries) {
304 while (size_plus_sentinel > loadQueue.size()) {
305 DynInstPtr dummy;
306 loadQueue.push_back(dummy);
307 LQEntries++;
308 }
309 } else {
310 LQEntries = size_plus_sentinel;
311 }
312
313}
314
315template<class Impl>
316void
317LSQUnit<Impl>::resizeSQ(unsigned size)
318{
319 unsigned size_plus_sentinel = size + 1;
320 if (size_plus_sentinel > SQEntries) {
321 while (size_plus_sentinel > storeQueue.size()) {
322 SQEntry dummy;
323 storeQueue.push_back(dummy);
324 SQEntries++;
325 }
326 } else {
327 SQEntries = size_plus_sentinel;
328 }
329}
330
331template <class Impl>
332void
333LSQUnit<Impl>::insert(DynInstPtr &inst)
334{
335 assert(inst->isMemRef());
336
337 assert(inst->isLoad() || inst->isStore());
338
339 if (inst->isLoad()) {
340 insertLoad(inst);
341 } else {
342 insertStore(inst);
343 }
344
345 inst->setInLSQ();
346}
347
348template <class Impl>
349void
350LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
351{
352 assert((loadTail + 1) % LQEntries != loadHead);
353 assert(loads < LQEntries);
354
355 DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
356 load_inst->pcState(), loadTail, load_inst->seqNum);
357
358 load_inst->lqIdx = loadTail;
359
360 if (stores == 0) {
361 load_inst->sqIdx = -1;
362 } else {
363 load_inst->sqIdx = storeTail;
364 }
365
366 loadQueue[loadTail] = load_inst;
367
368 incrLdIdx(loadTail);
369
370 ++loads;
371}
372
373template <class Impl>
374void
375LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
376{
377 // Make sure it is not full before inserting an instruction.
378 assert((storeTail + 1) % SQEntries != storeHead);
379 assert(stores < SQEntries);
380
381 DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
382 store_inst->pcState(), storeTail, store_inst->seqNum);
383
384 store_inst->sqIdx = storeTail;
385 store_inst->lqIdx = loadTail;
386
387 storeQueue[storeTail] = SQEntry(store_inst);
388
389 incrStIdx(storeTail);
390
391 ++stores;
392}
393
394template <class Impl>
395typename Impl::DynInstPtr
396LSQUnit<Impl>::getMemDepViolator()
397{
398 DynInstPtr temp = memDepViolator;
399
400 memDepViolator = NULL;
401
402 return temp;
403}
404
405template <class Impl>
406unsigned
407LSQUnit<Impl>::numFreeEntries()
408{
409 unsigned free_lq_entries = LQEntries - loads;
410 unsigned free_sq_entries = SQEntries - stores;
411
412 // Both the LQ and SQ entries have an extra dummy entry to differentiate
413 // empty/full conditions. Subtract 1 from the free entries.
414 if (free_lq_entries < free_sq_entries) {
415 return free_lq_entries - 1;
416 } else {
417 return free_sq_entries - 1;
418 }
419}
420
421template <class Impl>
422int
423LSQUnit<Impl>::numLoadsReady()
424{
425 int load_idx = loadHead;
426 int retval = 0;
427
428 while (load_idx != loadTail) {
429 assert(loadQueue[load_idx]);
430
431 if (loadQueue[load_idx]->readyToIssue()) {
432 ++retval;
433 }
434 }
435
436 return retval;
437}
438
439template <class Impl>
440Fault
441LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
442{
443 using namespace TheISA;
444 // Execute a specific load.
445 Fault load_fault = NoFault;
446
447 DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
448 inst->pcState(),inst->seqNum);
449
450 assert(!inst->isSquashed());
451
452 load_fault = inst->initiateAcc();
453
454 // If the instruction faulted or predicated false, then we need to send it
455 // along to commit without the instruction completing.
456 if (load_fault != NoFault || inst->readPredicate() == false) {
457 // Send this instruction to commit, also make sure iew stage
458 // realizes there is activity.
459 // Mark it as executed unless it is an uncached load that
460 // needs to hit the head of commit.
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#include "arch/locked_mem.hh"
45#include "config/the_isa.hh"
46#include "config/use_checker.hh"
47#include "cpu/o3/lsq.hh"
48#include "cpu/o3/lsq_unit.hh"
49#include "base/str.hh"
50#include "mem/packet.hh"
51#include "mem/request.hh"
52
53#if USE_CHECKER
54#include "cpu/checker/cpu.hh"
55#endif
56
57template<class Impl>
58LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
59 LSQUnit *lsq_ptr)
60 : inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
61{
62 this->setFlags(Event::AutoDelete);
63}
64
65template<class Impl>
66void
67LSQUnit<Impl>::WritebackEvent::process()
68{
69 if (!lsqPtr->isSwitchedOut()) {
70 lsqPtr->writeback(inst, pkt);
71 }
72
73 if (pkt->senderState)
74 delete pkt->senderState;
75
76 delete pkt->req;
77 delete pkt;
78}
79
80template<class Impl>
81const char *
82LSQUnit<Impl>::WritebackEvent::description() const
83{
84 return "Store writeback";
85}
86
87template<class Impl>
88void
89LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
90{
91 LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
92 DynInstPtr inst = state->inst;
93 DPRINTF(IEW, "Writeback event [sn:%lli]\n", inst->seqNum);
94 DPRINTF(Activity, "Activity: Writeback event [sn:%lli]\n", inst->seqNum);
95
96 //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
97
98 assert(!pkt->wasNacked());
99
100 // If this is a split access, wait until all packets are received.
101 if (TheISA::HasUnalignedMemAcc && !state->complete()) {
102 delete pkt->req;
103 delete pkt;
104 return;
105 }
106
107 if (isSwitchedOut() || inst->isSquashed()) {
108 iewStage->decrWb(inst->seqNum);
109 } else {
110 if (!state->noWB) {
111 if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
112 !state->isLoad) {
113 writeback(inst, pkt);
114 } else {
115 writeback(inst, state->mainPkt);
116 }
117 }
118
119 if (inst->isStore()) {
120 completeStore(state->idx);
121 }
122 }
123
124 if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
125 delete state->mainPkt->req;
126 delete state->mainPkt;
127 }
128 delete state;
129 delete pkt->req;
130 delete pkt;
131}
132
133template <class Impl>
134LSQUnit<Impl>::LSQUnit()
135 : loads(0), stores(0), storesToWB(0), stalled(false),
136 isStoreBlocked(false), isLoadBlocked(false),
137 loadBlockedHandled(false), hasPendingPkt(false)
138{
139}
140
141template<class Impl>
142void
143LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
144 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
145 unsigned id)
146{
147 cpu = cpu_ptr;
148 iewStage = iew_ptr;
149
150 DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
151
152 switchedOut = false;
153
154 lsq = lsq_ptr;
155
156 lsqID = id;
157
158 // Add 1 for the sentinel entry (they are circular queues).
159 LQEntries = maxLQEntries + 1;
160 SQEntries = maxSQEntries + 1;
161
162 loadQueue.resize(LQEntries);
163 storeQueue.resize(SQEntries);
164
165 loadHead = loadTail = 0;
166
167 storeHead = storeWBIdx = storeTail = 0;
168
169 usedPorts = 0;
170 cachePorts = params->cachePorts;
171
172 retryPkt = NULL;
173 memDepViolator = NULL;
174
175 blockedLoadSeqNum = 0;
176}
177
178template<class Impl>
179std::string
180LSQUnit<Impl>::name() const
181{
182 if (Impl::MaxThreads == 1) {
183 return iewStage->name() + ".lsq";
184 } else {
185 return iewStage->name() + ".lsq.thread." + to_string(lsqID);
186 }
187}
188
189template<class Impl>
190void
191LSQUnit<Impl>::regStats()
192{
193 lsqForwLoads
194 .name(name() + ".forwLoads")
195 .desc("Number of loads that had data forwarded from stores");
196
197 invAddrLoads
198 .name(name() + ".invAddrLoads")
199 .desc("Number of loads ignored due to an invalid address");
200
201 lsqSquashedLoads
202 .name(name() + ".squashedLoads")
203 .desc("Number of loads squashed");
204
205 lsqIgnoredResponses
206 .name(name() + ".ignoredResponses")
207 .desc("Number of memory responses ignored because the instruction is squashed");
208
209 lsqMemOrderViolation
210 .name(name() + ".memOrderViolation")
211 .desc("Number of memory ordering violations");
212
213 lsqSquashedStores
214 .name(name() + ".squashedStores")
215 .desc("Number of stores squashed");
216
217 invAddrSwpfs
218 .name(name() + ".invAddrSwpfs")
219 .desc("Number of software prefetches ignored due to an invalid address");
220
221 lsqBlockedLoads
222 .name(name() + ".blockedLoads")
223 .desc("Number of blocked loads due to partial load-store forwarding");
224
225 lsqRescheduledLoads
226 .name(name() + ".rescheduledLoads")
227 .desc("Number of loads that were rescheduled");
228
229 lsqCacheBlocked
230 .name(name() + ".cacheBlocked")
231 .desc("Number of times an access to memory failed due to the cache being blocked");
232}
233
234template<class Impl>
235void
236LSQUnit<Impl>::setDcachePort(Port *dcache_port)
237{
238 dcachePort = dcache_port;
239
240#if USE_CHECKER
241 if (cpu->checker) {
242 cpu->checker->setDcachePort(dcachePort);
243 }
244#endif
245}
246
247template<class Impl>
248void
249LSQUnit<Impl>::clearLQ()
250{
251 loadQueue.clear();
252}
253
254template<class Impl>
255void
256LSQUnit<Impl>::clearSQ()
257{
258 storeQueue.clear();
259}
260
261template<class Impl>
262void
263LSQUnit<Impl>::switchOut()
264{
265 switchedOut = true;
266 for (int i = 0; i < loadQueue.size(); ++i) {
267 assert(!loadQueue[i]);
268 loadQueue[i] = NULL;
269 }
270
271 assert(storesToWB == 0);
272}
273
274template<class Impl>
275void
276LSQUnit<Impl>::takeOverFrom()
277{
278 switchedOut = false;
279 loads = stores = storesToWB = 0;
280
281 loadHead = loadTail = 0;
282
283 storeHead = storeWBIdx = storeTail = 0;
284
285 usedPorts = 0;
286
287 memDepViolator = NULL;
288
289 blockedLoadSeqNum = 0;
290
291 stalled = false;
292 isLoadBlocked = false;
293 loadBlockedHandled = false;
294}
295
296template<class Impl>
297void
298LSQUnit<Impl>::resizeLQ(unsigned size)
299{
300 unsigned size_plus_sentinel = size + 1;
301 assert(size_plus_sentinel >= LQEntries);
302
303 if (size_plus_sentinel > LQEntries) {
304 while (size_plus_sentinel > loadQueue.size()) {
305 DynInstPtr dummy;
306 loadQueue.push_back(dummy);
307 LQEntries++;
308 }
309 } else {
310 LQEntries = size_plus_sentinel;
311 }
312
313}
314
315template<class Impl>
316void
317LSQUnit<Impl>::resizeSQ(unsigned size)
318{
319 unsigned size_plus_sentinel = size + 1;
320 if (size_plus_sentinel > SQEntries) {
321 while (size_plus_sentinel > storeQueue.size()) {
322 SQEntry dummy;
323 storeQueue.push_back(dummy);
324 SQEntries++;
325 }
326 } else {
327 SQEntries = size_plus_sentinel;
328 }
329}
330
331template <class Impl>
332void
333LSQUnit<Impl>::insert(DynInstPtr &inst)
334{
335 assert(inst->isMemRef());
336
337 assert(inst->isLoad() || inst->isStore());
338
339 if (inst->isLoad()) {
340 insertLoad(inst);
341 } else {
342 insertStore(inst);
343 }
344
345 inst->setInLSQ();
346}
347
348template <class Impl>
349void
350LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
351{
352 assert((loadTail + 1) % LQEntries != loadHead);
353 assert(loads < LQEntries);
354
355 DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
356 load_inst->pcState(), loadTail, load_inst->seqNum);
357
358 load_inst->lqIdx = loadTail;
359
360 if (stores == 0) {
361 load_inst->sqIdx = -1;
362 } else {
363 load_inst->sqIdx = storeTail;
364 }
365
366 loadQueue[loadTail] = load_inst;
367
368 incrLdIdx(loadTail);
369
370 ++loads;
371}
372
373template <class Impl>
374void
375LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
376{
377 // Make sure it is not full before inserting an instruction.
378 assert((storeTail + 1) % SQEntries != storeHead);
379 assert(stores < SQEntries);
380
381 DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
382 store_inst->pcState(), storeTail, store_inst->seqNum);
383
384 store_inst->sqIdx = storeTail;
385 store_inst->lqIdx = loadTail;
386
387 storeQueue[storeTail] = SQEntry(store_inst);
388
389 incrStIdx(storeTail);
390
391 ++stores;
392}
393
394template <class Impl>
395typename Impl::DynInstPtr
396LSQUnit<Impl>::getMemDepViolator()
397{
398 DynInstPtr temp = memDepViolator;
399
400 memDepViolator = NULL;
401
402 return temp;
403}
404
405template <class Impl>
406unsigned
407LSQUnit<Impl>::numFreeEntries()
408{
409 unsigned free_lq_entries = LQEntries - loads;
410 unsigned free_sq_entries = SQEntries - stores;
411
412 // Both the LQ and SQ entries have an extra dummy entry to differentiate
413 // empty/full conditions. Subtract 1 from the free entries.
414 if (free_lq_entries < free_sq_entries) {
415 return free_lq_entries - 1;
416 } else {
417 return free_sq_entries - 1;
418 }
419}
420
421template <class Impl>
422int
423LSQUnit<Impl>::numLoadsReady()
424{
425 int load_idx = loadHead;
426 int retval = 0;
427
428 while (load_idx != loadTail) {
429 assert(loadQueue[load_idx]);
430
431 if (loadQueue[load_idx]->readyToIssue()) {
432 ++retval;
433 }
434 }
435
436 return retval;
437}
438
439template <class Impl>
440Fault
441LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
442{
443 using namespace TheISA;
444 // Execute a specific load.
445 Fault load_fault = NoFault;
446
447 DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
448 inst->pcState(),inst->seqNum);
449
450 assert(!inst->isSquashed());
451
452 load_fault = inst->initiateAcc();
453
454 // If the instruction faulted or predicated false, then we need to send it
455 // along to commit without the instruction completing.
456 if (load_fault != NoFault || inst->readPredicate() == false) {
457 // Send this instruction to commit, also make sure iew stage
458 // realizes there is activity.
459 // Mark it as executed unless it is an uncached load that
460 // needs to hit the head of commit.
461 if (inst->readPredicate() == false)
462 inst->forwardOldRegs();
461 DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
462 inst->seqNum,
463 (load_fault != NoFault ? "fault" : "predication"));
464 if (!(inst->hasRequest() && inst->uncacheable()) ||
465 inst->isAtCommit()) {
466 inst->setExecuted();
467 }
468 iewStage->instToCommit(inst);
469 iewStage->activityThisCycle();
470 } else if (!loadBlocked()) {
471 assert(inst->effAddrValid);
472 int load_idx = inst->lqIdx;
473 incrLdIdx(load_idx);
474 while (load_idx != loadTail) {
475 // Really only need to check loads that have actually executed
476
477 // @todo: For now this is extra conservative, detecting a
478 // violation if the addresses match assuming all accesses
479 // are quad word accesses.
480
481 // @todo: Fix this, magic number being used here
482
483 // @todo: Uncachable load is not executed until it reaches
484 // the head of the ROB. Once this if checks only the executed
485 // loads(as noted above), this check can be removed
486 if (loadQueue[load_idx]->effAddrValid &&
487 ((loadQueue[load_idx]->effAddr >> 8)
488 == (inst->effAddr >> 8)) &&
489 !loadQueue[load_idx]->uncacheable()) {
490 // A load incorrectly passed this load. Squash and refetch.
491 // For now return a fault to show that it was unsuccessful.
492 DynInstPtr violator = loadQueue[load_idx];
493 if (!memDepViolator ||
494 (violator->seqNum < memDepViolator->seqNum)) {
495 memDepViolator = violator;
496 } else {
497 break;
498 }
499
500 ++lsqMemOrderViolation;
501
502 return genMachineCheckFault();
503 }
504
505 incrLdIdx(load_idx);
506 }
507 }
508
509 return load_fault;
510}
511
512template <class Impl>
513Fault
514LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
515{
516 using namespace TheISA;
517 // Make sure that a store exists.
518 assert(stores != 0);
519
520 int store_idx = store_inst->sqIdx;
521
522 DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
523 store_inst->pcState(), store_inst->seqNum);
524
525 assert(!store_inst->isSquashed());
526
527 // Check the recently completed loads to see if any match this store's
528 // address. If so, then we have a memory ordering violation.
529 int load_idx = store_inst->lqIdx;
530
531 Fault store_fault = store_inst->initiateAcc();
532
463 DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
464 inst->seqNum,
465 (load_fault != NoFault ? "fault" : "predication"));
466 if (!(inst->hasRequest() && inst->uncacheable()) ||
467 inst->isAtCommit()) {
468 inst->setExecuted();
469 }
470 iewStage->instToCommit(inst);
471 iewStage->activityThisCycle();
472 } else if (!loadBlocked()) {
473 assert(inst->effAddrValid);
474 int load_idx = inst->lqIdx;
475 incrLdIdx(load_idx);
476 while (load_idx != loadTail) {
477 // Really only need to check loads that have actually executed
478
479 // @todo: For now this is extra conservative, detecting a
480 // violation if the addresses match assuming all accesses
481 // are quad word accesses.
482
483 // @todo: Fix this, magic number being used here
484
485 // @todo: Uncachable load is not executed until it reaches
486 // the head of the ROB. Once this if checks only the executed
487 // loads(as noted above), this check can be removed
488 if (loadQueue[load_idx]->effAddrValid &&
489 ((loadQueue[load_idx]->effAddr >> 8)
490 == (inst->effAddr >> 8)) &&
491 !loadQueue[load_idx]->uncacheable()) {
492 // A load incorrectly passed this load. Squash and refetch.
493 // For now return a fault to show that it was unsuccessful.
494 DynInstPtr violator = loadQueue[load_idx];
495 if (!memDepViolator ||
496 (violator->seqNum < memDepViolator->seqNum)) {
497 memDepViolator = violator;
498 } else {
499 break;
500 }
501
502 ++lsqMemOrderViolation;
503
504 return genMachineCheckFault();
505 }
506
507 incrLdIdx(load_idx);
508 }
509 }
510
511 return load_fault;
512}
513
514template <class Impl>
515Fault
516LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
517{
518 using namespace TheISA;
519 // Make sure that a store exists.
520 assert(stores != 0);
521
522 int store_idx = store_inst->sqIdx;
523
524 DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
525 store_inst->pcState(), store_inst->seqNum);
526
527 assert(!store_inst->isSquashed());
528
529 // Check the recently completed loads to see if any match this store's
530 // address. If so, then we have a memory ordering violation.
531 int load_idx = store_inst->lqIdx;
532
533 Fault store_fault = store_inst->initiateAcc();
534
535 if (store_inst->readPredicate() == false)
536 store_inst->forwardOldRegs();
537
533 if (storeQueue[store_idx].size == 0) {
534 DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
535 store_inst->pcState(), store_inst->seqNum);
536
537 return store_fault;
538 } else if (store_inst->readPredicate() == false) {
539 DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
540 store_inst->seqNum);
541 return store_fault;
542 }
543
544 assert(store_fault == NoFault);
545
546 if (store_inst->isStoreConditional()) {
547 // Store conditionals need to set themselves as able to
548 // writeback if we haven't had a fault by here.
549 storeQueue[store_idx].canWB = true;
550
551 ++storesToWB;
552 }
553
554 assert(store_inst->effAddrValid);
555 while (load_idx != loadTail) {
556 // Really only need to check loads that have actually executed
557 // It's safe to check all loads because effAddr is set to
558 // InvalAddr when the dyn inst is created.
559
560 // @todo: For now this is extra conservative, detecting a
561 // violation if the addresses match assuming all accesses
562 // are quad word accesses.
563
564 // @todo: Fix this, magic number being used here
565
566 // @todo: Uncachable load is not executed until it reaches
567 // the head of the ROB. Once this if checks only the executed
568 // loads(as noted above), this check can be removed
569 if (loadQueue[load_idx]->effAddrValid &&
570 ((loadQueue[load_idx]->effAddr >> 8)
571 == (store_inst->effAddr >> 8)) &&
572 !loadQueue[load_idx]->uncacheable()) {
573 // A load incorrectly passed this store. Squash and refetch.
574 // For now return a fault to show that it was unsuccessful.
575 DynInstPtr violator = loadQueue[load_idx];
576 if (!memDepViolator ||
577 (violator->seqNum < memDepViolator->seqNum)) {
578 memDepViolator = violator;
579 } else {
580 break;
581 }
582
583 ++lsqMemOrderViolation;
584
585 return genMachineCheckFault();
586 }
587
588 incrLdIdx(load_idx);
589 }
590
591 return store_fault;
592}
593
594template <class Impl>
595void
596LSQUnit<Impl>::commitLoad()
597{
598 assert(loadQueue[loadHead]);
599
600 DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
601 loadQueue[loadHead]->pcState());
602
603 loadQueue[loadHead] = NULL;
604
605 incrLdIdx(loadHead);
606
607 --loads;
608}
609
610template <class Impl>
611void
612LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
613{
614 assert(loads == 0 || loadQueue[loadHead]);
615
616 while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
617 commitLoad();
618 }
619}
620
621template <class Impl>
622void
623LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
624{
625 assert(stores == 0 || storeQueue[storeHead].inst);
626
627 int store_idx = storeHead;
628
629 while (store_idx != storeTail) {
630 assert(storeQueue[store_idx].inst);
631 // Mark any stores that are now committed and have not yet
632 // been marked as able to write back.
633 if (!storeQueue[store_idx].canWB) {
634 if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
635 break;
636 }
637 DPRINTF(LSQUnit, "Marking store as able to write back, PC "
638 "%s [sn:%lli]\n",
639 storeQueue[store_idx].inst->pcState(),
640 storeQueue[store_idx].inst->seqNum);
641
642 storeQueue[store_idx].canWB = true;
643
644 ++storesToWB;
645 }
646
647 incrStIdx(store_idx);
648 }
649}
650
651template <class Impl>
652void
653LSQUnit<Impl>::writebackPendingStore()
654{
655 if (hasPendingPkt) {
656 assert(pendingPkt != NULL);
657
658 // If the cache is blocked, this will store the packet for retry.
659 if (sendStore(pendingPkt)) {
660 storePostSend(pendingPkt);
661 }
662 pendingPkt = NULL;
663 hasPendingPkt = false;
664 }
665}
666
667template <class Impl>
668void
669LSQUnit<Impl>::writebackStores()
670{
671 // First writeback the second packet from any split store that didn't
672 // complete last cycle because there weren't enough cache ports available.
673 if (TheISA::HasUnalignedMemAcc) {
674 writebackPendingStore();
675 }
676
677 while (storesToWB > 0 &&
678 storeWBIdx != storeTail &&
679 storeQueue[storeWBIdx].inst &&
680 storeQueue[storeWBIdx].canWB &&
681 usedPorts < cachePorts) {
682
683 if (isStoreBlocked || lsq->cacheBlocked()) {
684 DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
685 " is blocked!\n");
686 break;
687 }
688
689 // Store didn't write any data so no need to write it back to
690 // memory.
691 if (storeQueue[storeWBIdx].size == 0) {
692 completeStore(storeWBIdx);
693
694 incrStIdx(storeWBIdx);
695
696 continue;
697 }
698
699 ++usedPorts;
700
701 if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
702 incrStIdx(storeWBIdx);
703
704 continue;
705 }
706
707 assert(storeQueue[storeWBIdx].req);
708 assert(!storeQueue[storeWBIdx].committed);
709
710 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
711 assert(storeQueue[storeWBIdx].sreqLow);
712 assert(storeQueue[storeWBIdx].sreqHigh);
713 }
714
715 DynInstPtr inst = storeQueue[storeWBIdx].inst;
716
717 Request *req = storeQueue[storeWBIdx].req;
718 storeQueue[storeWBIdx].committed = true;
719
720 assert(!inst->memData);
721 inst->memData = new uint8_t[64];
722
723 memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
724
725 MemCmd command =
726 req->isSwap() ? MemCmd::SwapReq :
727 (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
728 PacketPtr data_pkt;
729 PacketPtr snd_data_pkt = NULL;
730
731 LSQSenderState *state = new LSQSenderState;
732 state->isLoad = false;
733 state->idx = storeWBIdx;
734 state->inst = inst;
735
736 if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
737
738 // Build a single data packet if the store isn't split.
739 data_pkt = new Packet(req, command, Packet::Broadcast);
740 data_pkt->dataStatic(inst->memData);
741 data_pkt->senderState = state;
742 } else {
743 RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
744 RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
745
746 // Create two packets if the store is split in two.
747 data_pkt = new Packet(sreqLow, command, Packet::Broadcast);
748 snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast);
749
750 data_pkt->dataStatic(inst->memData);
751 snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
752
753 data_pkt->senderState = state;
754 snd_data_pkt->senderState = state;
755
756 state->isSplit = true;
757 state->outstanding = 2;
758
759 // Can delete the main request now.
760 delete req;
761 req = sreqLow;
762 }
763
764 DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
765 "to Addr:%#x, data:%#x [sn:%lli]\n",
766 storeWBIdx, inst->pcState(),
767 req->getPaddr(), (int)*(inst->memData),
768 inst->seqNum);
769
770 // @todo: Remove this SC hack once the memory system handles it.
771 if (inst->isStoreConditional()) {
772 assert(!storeQueue[storeWBIdx].isSplit);
773 // Disable recording the result temporarily. Writing to
774 // misc regs normally updates the result, but this is not
775 // the desired behavior when handling store conditionals.
776 inst->recordResult = false;
777 bool success = TheISA::handleLockedWrite(inst.get(), req);
778 inst->recordResult = true;
779
780 if (!success) {
781 // Instantly complete this store.
782 DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. "
783 "Instantly completing it.\n",
784 inst->seqNum);
785 WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
786 cpu->schedule(wb, curTick() + 1);
787 completeStore(storeWBIdx);
788 incrStIdx(storeWBIdx);
789 continue;
790 }
791 } else {
792 // Non-store conditionals do not need a writeback.
793 state->noWB = true;
794 }
795
796 if (!sendStore(data_pkt)) {
797 DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
798 "retry later\n",
799 inst->seqNum);
800
801 // Need to store the second packet, if split.
802 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
803 state->pktToSend = true;
804 state->pendingPacket = snd_data_pkt;
805 }
806 } else {
807
808 // If split, try to send the second packet too
809 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
810 assert(snd_data_pkt);
811
812 // Ensure there are enough ports to use.
813 if (usedPorts < cachePorts) {
814 ++usedPorts;
815 if (sendStore(snd_data_pkt)) {
816 storePostSend(snd_data_pkt);
817 } else {
818 DPRINTF(IEW, "D-Cache became blocked when writing"
819 " [sn:%lli] second packet, will retry later\n",
820 inst->seqNum);
821 }
822 } else {
823
824 // Store the packet for when there's free ports.
825 assert(pendingPkt == NULL);
826 pendingPkt = snd_data_pkt;
827 hasPendingPkt = true;
828 }
829 } else {
830
831 // Not a split store.
832 storePostSend(data_pkt);
833 }
834 }
835 }
836
837 // Not sure this should set it to 0.
838 usedPorts = 0;
839
840 assert(stores >= 0 && storesToWB >= 0);
841}
842
843/*template <class Impl>
844void
845LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
846{
847 list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
848 mshrSeqNums.end(),
849 seqNum);
850
851 if (mshr_it != mshrSeqNums.end()) {
852 mshrSeqNums.erase(mshr_it);
853 DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
854 }
855}*/
856
857template <class Impl>
858void
859LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
860{
861 DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
862 "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
863
864 int load_idx = loadTail;
865 decrLdIdx(load_idx);
866
867 while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
868 DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
869 "[sn:%lli]\n",
870 loadQueue[load_idx]->pcState(),
871 loadQueue[load_idx]->seqNum);
872
873 if (isStalled() && load_idx == stallingLoadIdx) {
874 stalled = false;
875 stallingStoreIsn = 0;
876 stallingLoadIdx = 0;
877 }
878
879 // Clear the smart pointer to make sure it is decremented.
880 loadQueue[load_idx]->setSquashed();
881 loadQueue[load_idx] = NULL;
882 --loads;
883
884 // Inefficient!
885 loadTail = load_idx;
886
887 decrLdIdx(load_idx);
888 ++lsqSquashedLoads;
889 }
890
891 if (isLoadBlocked) {
892 if (squashed_num < blockedLoadSeqNum) {
893 isLoadBlocked = false;
894 loadBlockedHandled = false;
895 blockedLoadSeqNum = 0;
896 }
897 }
898
899 if (memDepViolator && squashed_num < memDepViolator->seqNum) {
900 memDepViolator = NULL;
901 }
902
903 int store_idx = storeTail;
904 decrStIdx(store_idx);
905
906 while (stores != 0 &&
907 storeQueue[store_idx].inst->seqNum > squashed_num) {
908 // Instructions marked as can WB are already committed.
909 if (storeQueue[store_idx].canWB) {
910 break;
911 }
912
913 DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
914 "idx:%i [sn:%lli]\n",
915 storeQueue[store_idx].inst->pcState(),
916 store_idx, storeQueue[store_idx].inst->seqNum);
917
918 // I don't think this can happen. It should have been cleared
919 // by the stalling load.
920 if (isStalled() &&
921 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
922 panic("Is stalled should have been cleared by stalling load!\n");
923 stalled = false;
924 stallingStoreIsn = 0;
925 }
926
927 // Clear the smart pointer to make sure it is decremented.
928 storeQueue[store_idx].inst->setSquashed();
929 storeQueue[store_idx].inst = NULL;
930 storeQueue[store_idx].canWB = 0;
931
932 // Must delete request now that it wasn't handed off to
933 // memory. This is quite ugly. @todo: Figure out the proper
934 // place to really handle request deletes.
935 delete storeQueue[store_idx].req;
936 if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
937 delete storeQueue[store_idx].sreqLow;
938 delete storeQueue[store_idx].sreqHigh;
939
940 storeQueue[store_idx].sreqLow = NULL;
941 storeQueue[store_idx].sreqHigh = NULL;
942 }
943
944 storeQueue[store_idx].req = NULL;
945 --stores;
946
947 // Inefficient!
948 storeTail = store_idx;
949
950 decrStIdx(store_idx);
951 ++lsqSquashedStores;
952 }
953}
954
955template <class Impl>
956void
957LSQUnit<Impl>::storePostSend(PacketPtr pkt)
958{
959 if (isStalled() &&
960 storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
961 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
962 "load idx:%i\n",
963 stallingStoreIsn, stallingLoadIdx);
964 stalled = false;
965 stallingStoreIsn = 0;
966 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
967 }
968
969 if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
970 // The store is basically completed at this time. This
971 // only works so long as the checker doesn't try to
972 // verify the value in memory for stores.
973 storeQueue[storeWBIdx].inst->setCompleted();
974#if USE_CHECKER
975 if (cpu->checker) {
976 cpu->checker->verify(storeQueue[storeWBIdx].inst);
977 }
978#endif
979 }
980
981 incrStIdx(storeWBIdx);
982}
983
984template <class Impl>
985void
986LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
987{
988 iewStage->wakeCPU();
989
990 // Squashed instructions do not need to complete their access.
991 if (inst->isSquashed()) {
992 iewStage->decrWb(inst->seqNum);
993 assert(!inst->isStore());
994 ++lsqIgnoredResponses;
995 return;
996 }
997
998 if (!inst->isExecuted()) {
999 inst->setExecuted();
1000
1001 // Complete access to copy data to proper place.
1002 inst->completeAcc(pkt);
1003 }
1004
1005 // Need to insert instruction into queue to commit
1006 iewStage->instToCommit(inst);
1007
1008 iewStage->activityThisCycle();
1009
1010 // see if this load changed the PC
1011 iewStage->checkMisprediction(inst);
1012}
1013
1014template <class Impl>
1015void
1016LSQUnit<Impl>::completeStore(int store_idx)
1017{
1018 assert(storeQueue[store_idx].inst);
1019 storeQueue[store_idx].completed = true;
1020 --storesToWB;
1021 // A bit conservative because a store completion may not free up entries,
1022 // but hopefully avoids two store completions in one cycle from making
1023 // the CPU tick twice.
1024 cpu->wakeCPU();
1025 cpu->activityThisCycle();
1026
1027 if (store_idx == storeHead) {
1028 do {
1029 incrStIdx(storeHead);
1030
1031 --stores;
1032 } while (storeQueue[storeHead].completed &&
1033 storeHead != storeTail);
1034
1035 iewStage->updateLSQNextCycle = true;
1036 }
1037
1038 DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1039 "idx:%i\n",
1040 storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1041
1042 if (isStalled() &&
1043 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1044 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1045 "load idx:%i\n",
1046 stallingStoreIsn, stallingLoadIdx);
1047 stalled = false;
1048 stallingStoreIsn = 0;
1049 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1050 }
1051
1052 storeQueue[store_idx].inst->setCompleted();
1053
1054 // Tell the checker we've completed this instruction. Some stores
1055 // may get reported twice to the checker, but the checker can
1056 // handle that case.
1057#if USE_CHECKER
1058 if (cpu->checker) {
1059 cpu->checker->verify(storeQueue[store_idx].inst);
1060 }
1061#endif
1062}
1063
1064template <class Impl>
1065bool
1066LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1067{
1068 if (!dcachePort->sendTiming(data_pkt)) {
1069 // Need to handle becoming blocked on a store.
1070 isStoreBlocked = true;
1071 ++lsqCacheBlocked;
1072 assert(retryPkt == NULL);
1073 retryPkt = data_pkt;
1074 lsq->setRetryTid(lsqID);
1075 return false;
1076 }
1077 return true;
1078}
1079
1080template <class Impl>
1081void
1082LSQUnit<Impl>::recvRetry()
1083{
1084 if (isStoreBlocked) {
1085 DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1086 assert(retryPkt != NULL);
1087
1088 if (dcachePort->sendTiming(retryPkt)) {
1089 LSQSenderState *state =
1090 dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1091
1092 // Don't finish the store unless this is the last packet.
1093 if (!TheISA::HasUnalignedMemAcc || !state->pktToSend) {
1094 storePostSend(retryPkt);
1095 }
1096 retryPkt = NULL;
1097 isStoreBlocked = false;
1098 lsq->setRetryTid(InvalidThreadID);
1099
1100 // Send any outstanding packet.
1101 if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1102 assert(state->pendingPacket);
1103 if (sendStore(state->pendingPacket)) {
1104 storePostSend(state->pendingPacket);
1105 }
1106 }
1107 } else {
1108 // Still blocked!
1109 ++lsqCacheBlocked;
1110 lsq->setRetryTid(lsqID);
1111 }
1112 } else if (isLoadBlocked) {
1113 DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1114 "no need to resend packet.\n");
1115 } else {
1116 DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1117 }
1118}
1119
1120template <class Impl>
1121inline void
1122LSQUnit<Impl>::incrStIdx(int &store_idx)
1123{
1124 if (++store_idx >= SQEntries)
1125 store_idx = 0;
1126}
1127
1128template <class Impl>
1129inline void
1130LSQUnit<Impl>::decrStIdx(int &store_idx)
1131{
1132 if (--store_idx < 0)
1133 store_idx += SQEntries;
1134}
1135
1136template <class Impl>
1137inline void
1138LSQUnit<Impl>::incrLdIdx(int &load_idx)
1139{
1140 if (++load_idx >= LQEntries)
1141 load_idx = 0;
1142}
1143
1144template <class Impl>
1145inline void
1146LSQUnit<Impl>::decrLdIdx(int &load_idx)
1147{
1148 if (--load_idx < 0)
1149 load_idx += LQEntries;
1150}
1151
1152template <class Impl>
1153void
1154LSQUnit<Impl>::dumpInsts()
1155{
1156 cprintf("Load store queue: Dumping instructions.\n");
1157 cprintf("Load queue size: %i\n", loads);
1158 cprintf("Load queue: ");
1159
1160 int load_idx = loadHead;
1161
1162 while (load_idx != loadTail && loadQueue[load_idx]) {
1163 cprintf("%s ", loadQueue[load_idx]->pcState());
1164
1165 incrLdIdx(load_idx);
1166 }
1167
1168 cprintf("Store queue size: %i\n", stores);
1169 cprintf("Store queue: ");
1170
1171 int store_idx = storeHead;
1172
1173 while (store_idx != storeTail && storeQueue[store_idx].inst) {
1174 cprintf("%s ", storeQueue[store_idx].inst->pcState());
1175
1176 incrStIdx(store_idx);
1177 }
1178
1179 cprintf("\n");
1180}
538 if (storeQueue[store_idx].size == 0) {
539 DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
540 store_inst->pcState(), store_inst->seqNum);
541
542 return store_fault;
543 } else if (store_inst->readPredicate() == false) {
544 DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
545 store_inst->seqNum);
546 return store_fault;
547 }
548
549 assert(store_fault == NoFault);
550
551 if (store_inst->isStoreConditional()) {
552 // Store conditionals need to set themselves as able to
553 // writeback if we haven't had a fault by here.
554 storeQueue[store_idx].canWB = true;
555
556 ++storesToWB;
557 }
558
559 assert(store_inst->effAddrValid);
560 while (load_idx != loadTail) {
561 // Really only need to check loads that have actually executed
562 // It's safe to check all loads because effAddr is set to
563 // InvalAddr when the dyn inst is created.
564
565 // @todo: For now this is extra conservative, detecting a
566 // violation if the addresses match assuming all accesses
567 // are quad word accesses.
568
569 // @todo: Fix this, magic number being used here
570
571 // @todo: Uncachable load is not executed until it reaches
572 // the head of the ROB. Once this if checks only the executed
573 // loads(as noted above), this check can be removed
574 if (loadQueue[load_idx]->effAddrValid &&
575 ((loadQueue[load_idx]->effAddr >> 8)
576 == (store_inst->effAddr >> 8)) &&
577 !loadQueue[load_idx]->uncacheable()) {
578 // A load incorrectly passed this store. Squash and refetch.
579 // For now return a fault to show that it was unsuccessful.
580 DynInstPtr violator = loadQueue[load_idx];
581 if (!memDepViolator ||
582 (violator->seqNum < memDepViolator->seqNum)) {
583 memDepViolator = violator;
584 } else {
585 break;
586 }
587
588 ++lsqMemOrderViolation;
589
590 return genMachineCheckFault();
591 }
592
593 incrLdIdx(load_idx);
594 }
595
596 return store_fault;
597}
598
599template <class Impl>
600void
601LSQUnit<Impl>::commitLoad()
602{
603 assert(loadQueue[loadHead]);
604
605 DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
606 loadQueue[loadHead]->pcState());
607
608 loadQueue[loadHead] = NULL;
609
610 incrLdIdx(loadHead);
611
612 --loads;
613}
614
615template <class Impl>
616void
617LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
618{
619 assert(loads == 0 || loadQueue[loadHead]);
620
621 while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
622 commitLoad();
623 }
624}
625
626template <class Impl>
627void
628LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
629{
630 assert(stores == 0 || storeQueue[storeHead].inst);
631
632 int store_idx = storeHead;
633
634 while (store_idx != storeTail) {
635 assert(storeQueue[store_idx].inst);
636 // Mark any stores that are now committed and have not yet
637 // been marked as able to write back.
638 if (!storeQueue[store_idx].canWB) {
639 if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
640 break;
641 }
642 DPRINTF(LSQUnit, "Marking store as able to write back, PC "
643 "%s [sn:%lli]\n",
644 storeQueue[store_idx].inst->pcState(),
645 storeQueue[store_idx].inst->seqNum);
646
647 storeQueue[store_idx].canWB = true;
648
649 ++storesToWB;
650 }
651
652 incrStIdx(store_idx);
653 }
654}
655
656template <class Impl>
657void
658LSQUnit<Impl>::writebackPendingStore()
659{
660 if (hasPendingPkt) {
661 assert(pendingPkt != NULL);
662
663 // If the cache is blocked, this will store the packet for retry.
664 if (sendStore(pendingPkt)) {
665 storePostSend(pendingPkt);
666 }
667 pendingPkt = NULL;
668 hasPendingPkt = false;
669 }
670}
671
672template <class Impl>
673void
674LSQUnit<Impl>::writebackStores()
675{
676 // First writeback the second packet from any split store that didn't
677 // complete last cycle because there weren't enough cache ports available.
678 if (TheISA::HasUnalignedMemAcc) {
679 writebackPendingStore();
680 }
681
682 while (storesToWB > 0 &&
683 storeWBIdx != storeTail &&
684 storeQueue[storeWBIdx].inst &&
685 storeQueue[storeWBIdx].canWB &&
686 usedPorts < cachePorts) {
687
688 if (isStoreBlocked || lsq->cacheBlocked()) {
689 DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
690 " is blocked!\n");
691 break;
692 }
693
694 // Store didn't write any data so no need to write it back to
695 // memory.
696 if (storeQueue[storeWBIdx].size == 0) {
697 completeStore(storeWBIdx);
698
699 incrStIdx(storeWBIdx);
700
701 continue;
702 }
703
704 ++usedPorts;
705
706 if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
707 incrStIdx(storeWBIdx);
708
709 continue;
710 }
711
712 assert(storeQueue[storeWBIdx].req);
713 assert(!storeQueue[storeWBIdx].committed);
714
715 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
716 assert(storeQueue[storeWBIdx].sreqLow);
717 assert(storeQueue[storeWBIdx].sreqHigh);
718 }
719
720 DynInstPtr inst = storeQueue[storeWBIdx].inst;
721
722 Request *req = storeQueue[storeWBIdx].req;
723 storeQueue[storeWBIdx].committed = true;
724
725 assert(!inst->memData);
726 inst->memData = new uint8_t[64];
727
728 memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
729
730 MemCmd command =
731 req->isSwap() ? MemCmd::SwapReq :
732 (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
733 PacketPtr data_pkt;
734 PacketPtr snd_data_pkt = NULL;
735
736 LSQSenderState *state = new LSQSenderState;
737 state->isLoad = false;
738 state->idx = storeWBIdx;
739 state->inst = inst;
740
741 if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
742
743 // Build a single data packet if the store isn't split.
744 data_pkt = new Packet(req, command, Packet::Broadcast);
745 data_pkt->dataStatic(inst->memData);
746 data_pkt->senderState = state;
747 } else {
748 RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
749 RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
750
751 // Create two packets if the store is split in two.
752 data_pkt = new Packet(sreqLow, command, Packet::Broadcast);
753 snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast);
754
755 data_pkt->dataStatic(inst->memData);
756 snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
757
758 data_pkt->senderState = state;
759 snd_data_pkt->senderState = state;
760
761 state->isSplit = true;
762 state->outstanding = 2;
763
764 // Can delete the main request now.
765 delete req;
766 req = sreqLow;
767 }
768
769 DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
770 "to Addr:%#x, data:%#x [sn:%lli]\n",
771 storeWBIdx, inst->pcState(),
772 req->getPaddr(), (int)*(inst->memData),
773 inst->seqNum);
774
775 // @todo: Remove this SC hack once the memory system handles it.
776 if (inst->isStoreConditional()) {
777 assert(!storeQueue[storeWBIdx].isSplit);
778 // Disable recording the result temporarily. Writing to
779 // misc regs normally updates the result, but this is not
780 // the desired behavior when handling store conditionals.
781 inst->recordResult = false;
782 bool success = TheISA::handleLockedWrite(inst.get(), req);
783 inst->recordResult = true;
784
785 if (!success) {
786 // Instantly complete this store.
787 DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. "
788 "Instantly completing it.\n",
789 inst->seqNum);
790 WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
791 cpu->schedule(wb, curTick() + 1);
792 completeStore(storeWBIdx);
793 incrStIdx(storeWBIdx);
794 continue;
795 }
796 } else {
797 // Non-store conditionals do not need a writeback.
798 state->noWB = true;
799 }
800
801 if (!sendStore(data_pkt)) {
802 DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
803 "retry later\n",
804 inst->seqNum);
805
806 // Need to store the second packet, if split.
807 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
808 state->pktToSend = true;
809 state->pendingPacket = snd_data_pkt;
810 }
811 } else {
812
813 // If split, try to send the second packet too
814 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
815 assert(snd_data_pkt);
816
817 // Ensure there are enough ports to use.
818 if (usedPorts < cachePorts) {
819 ++usedPorts;
820 if (sendStore(snd_data_pkt)) {
821 storePostSend(snd_data_pkt);
822 } else {
823 DPRINTF(IEW, "D-Cache became blocked when writing"
824 " [sn:%lli] second packet, will retry later\n",
825 inst->seqNum);
826 }
827 } else {
828
829 // Store the packet for when there's free ports.
830 assert(pendingPkt == NULL);
831 pendingPkt = snd_data_pkt;
832 hasPendingPkt = true;
833 }
834 } else {
835
836 // Not a split store.
837 storePostSend(data_pkt);
838 }
839 }
840 }
841
842 // Not sure this should set it to 0.
843 usedPorts = 0;
844
845 assert(stores >= 0 && storesToWB >= 0);
846}
847
848/*template <class Impl>
849void
850LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
851{
852 list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
853 mshrSeqNums.end(),
854 seqNum);
855
856 if (mshr_it != mshrSeqNums.end()) {
857 mshrSeqNums.erase(mshr_it);
858 DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
859 }
860}*/
861
862template <class Impl>
863void
864LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
865{
866 DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
867 "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
868
869 int load_idx = loadTail;
870 decrLdIdx(load_idx);
871
872 while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
873 DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
874 "[sn:%lli]\n",
875 loadQueue[load_idx]->pcState(),
876 loadQueue[load_idx]->seqNum);
877
878 if (isStalled() && load_idx == stallingLoadIdx) {
879 stalled = false;
880 stallingStoreIsn = 0;
881 stallingLoadIdx = 0;
882 }
883
884 // Clear the smart pointer to make sure it is decremented.
885 loadQueue[load_idx]->setSquashed();
886 loadQueue[load_idx] = NULL;
887 --loads;
888
889 // Inefficient!
890 loadTail = load_idx;
891
892 decrLdIdx(load_idx);
893 ++lsqSquashedLoads;
894 }
895
896 if (isLoadBlocked) {
897 if (squashed_num < blockedLoadSeqNum) {
898 isLoadBlocked = false;
899 loadBlockedHandled = false;
900 blockedLoadSeqNum = 0;
901 }
902 }
903
904 if (memDepViolator && squashed_num < memDepViolator->seqNum) {
905 memDepViolator = NULL;
906 }
907
908 int store_idx = storeTail;
909 decrStIdx(store_idx);
910
911 while (stores != 0 &&
912 storeQueue[store_idx].inst->seqNum > squashed_num) {
913 // Instructions marked as can WB are already committed.
914 if (storeQueue[store_idx].canWB) {
915 break;
916 }
917
918 DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
919 "idx:%i [sn:%lli]\n",
920 storeQueue[store_idx].inst->pcState(),
921 store_idx, storeQueue[store_idx].inst->seqNum);
922
923 // I don't think this can happen. It should have been cleared
924 // by the stalling load.
925 if (isStalled() &&
926 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
927 panic("Is stalled should have been cleared by stalling load!\n");
928 stalled = false;
929 stallingStoreIsn = 0;
930 }
931
932 // Clear the smart pointer to make sure it is decremented.
933 storeQueue[store_idx].inst->setSquashed();
934 storeQueue[store_idx].inst = NULL;
935 storeQueue[store_idx].canWB = 0;
936
937 // Must delete request now that it wasn't handed off to
938 // memory. This is quite ugly. @todo: Figure out the proper
939 // place to really handle request deletes.
940 delete storeQueue[store_idx].req;
941 if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
942 delete storeQueue[store_idx].sreqLow;
943 delete storeQueue[store_idx].sreqHigh;
944
945 storeQueue[store_idx].sreqLow = NULL;
946 storeQueue[store_idx].sreqHigh = NULL;
947 }
948
949 storeQueue[store_idx].req = NULL;
950 --stores;
951
952 // Inefficient!
953 storeTail = store_idx;
954
955 decrStIdx(store_idx);
956 ++lsqSquashedStores;
957 }
958}
959
960template <class Impl>
961void
962LSQUnit<Impl>::storePostSend(PacketPtr pkt)
963{
964 if (isStalled() &&
965 storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
966 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
967 "load idx:%i\n",
968 stallingStoreIsn, stallingLoadIdx);
969 stalled = false;
970 stallingStoreIsn = 0;
971 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
972 }
973
974 if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
975 // The store is basically completed at this time. This
976 // only works so long as the checker doesn't try to
977 // verify the value in memory for stores.
978 storeQueue[storeWBIdx].inst->setCompleted();
979#if USE_CHECKER
980 if (cpu->checker) {
981 cpu->checker->verify(storeQueue[storeWBIdx].inst);
982 }
983#endif
984 }
985
986 incrStIdx(storeWBIdx);
987}
988
989template <class Impl>
990void
991LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
992{
993 iewStage->wakeCPU();
994
995 // Squashed instructions do not need to complete their access.
996 if (inst->isSquashed()) {
997 iewStage->decrWb(inst->seqNum);
998 assert(!inst->isStore());
999 ++lsqIgnoredResponses;
1000 return;
1001 }
1002
1003 if (!inst->isExecuted()) {
1004 inst->setExecuted();
1005
1006 // Complete access to copy data to proper place.
1007 inst->completeAcc(pkt);
1008 }
1009
1010 // Need to insert instruction into queue to commit
1011 iewStage->instToCommit(inst);
1012
1013 iewStage->activityThisCycle();
1014
1015 // see if this load changed the PC
1016 iewStage->checkMisprediction(inst);
1017}
1018
1019template <class Impl>
1020void
1021LSQUnit<Impl>::completeStore(int store_idx)
1022{
1023 assert(storeQueue[store_idx].inst);
1024 storeQueue[store_idx].completed = true;
1025 --storesToWB;
1026 // A bit conservative because a store completion may not free up entries,
1027 // but hopefully avoids two store completions in one cycle from making
1028 // the CPU tick twice.
1029 cpu->wakeCPU();
1030 cpu->activityThisCycle();
1031
1032 if (store_idx == storeHead) {
1033 do {
1034 incrStIdx(storeHead);
1035
1036 --stores;
1037 } while (storeQueue[storeHead].completed &&
1038 storeHead != storeTail);
1039
1040 iewStage->updateLSQNextCycle = true;
1041 }
1042
1043 DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1044 "idx:%i\n",
1045 storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1046
1047 if (isStalled() &&
1048 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1049 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1050 "load idx:%i\n",
1051 stallingStoreIsn, stallingLoadIdx);
1052 stalled = false;
1053 stallingStoreIsn = 0;
1054 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1055 }
1056
1057 storeQueue[store_idx].inst->setCompleted();
1058
1059 // Tell the checker we've completed this instruction. Some stores
1060 // may get reported twice to the checker, but the checker can
1061 // handle that case.
1062#if USE_CHECKER
1063 if (cpu->checker) {
1064 cpu->checker->verify(storeQueue[store_idx].inst);
1065 }
1066#endif
1067}
1068
1069template <class Impl>
1070bool
1071LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1072{
1073 if (!dcachePort->sendTiming(data_pkt)) {
1074 // Need to handle becoming blocked on a store.
1075 isStoreBlocked = true;
1076 ++lsqCacheBlocked;
1077 assert(retryPkt == NULL);
1078 retryPkt = data_pkt;
1079 lsq->setRetryTid(lsqID);
1080 return false;
1081 }
1082 return true;
1083}
1084
1085template <class Impl>
1086void
1087LSQUnit<Impl>::recvRetry()
1088{
1089 if (isStoreBlocked) {
1090 DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1091 assert(retryPkt != NULL);
1092
1093 if (dcachePort->sendTiming(retryPkt)) {
1094 LSQSenderState *state =
1095 dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1096
1097 // Don't finish the store unless this is the last packet.
1098 if (!TheISA::HasUnalignedMemAcc || !state->pktToSend) {
1099 storePostSend(retryPkt);
1100 }
1101 retryPkt = NULL;
1102 isStoreBlocked = false;
1103 lsq->setRetryTid(InvalidThreadID);
1104
1105 // Send any outstanding packet.
1106 if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1107 assert(state->pendingPacket);
1108 if (sendStore(state->pendingPacket)) {
1109 storePostSend(state->pendingPacket);
1110 }
1111 }
1112 } else {
1113 // Still blocked!
1114 ++lsqCacheBlocked;
1115 lsq->setRetryTid(lsqID);
1116 }
1117 } else if (isLoadBlocked) {
1118 DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1119 "no need to resend packet.\n");
1120 } else {
1121 DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1122 }
1123}
1124
1125template <class Impl>
1126inline void
1127LSQUnit<Impl>::incrStIdx(int &store_idx)
1128{
1129 if (++store_idx >= SQEntries)
1130 store_idx = 0;
1131}
1132
1133template <class Impl>
1134inline void
1135LSQUnit<Impl>::decrStIdx(int &store_idx)
1136{
1137 if (--store_idx < 0)
1138 store_idx += SQEntries;
1139}
1140
1141template <class Impl>
1142inline void
1143LSQUnit<Impl>::incrLdIdx(int &load_idx)
1144{
1145 if (++load_idx >= LQEntries)
1146 load_idx = 0;
1147}
1148
1149template <class Impl>
1150inline void
1151LSQUnit<Impl>::decrLdIdx(int &load_idx)
1152{
1153 if (--load_idx < 0)
1154 load_idx += LQEntries;
1155}
1156
1157template <class Impl>
1158void
1159LSQUnit<Impl>::dumpInsts()
1160{
1161 cprintf("Load store queue: Dumping instructions.\n");
1162 cprintf("Load queue size: %i\n", loads);
1163 cprintf("Load queue: ");
1164
1165 int load_idx = loadHead;
1166
1167 while (load_idx != loadTail && loadQueue[load_idx]) {
1168 cprintf("%s ", loadQueue[load_idx]->pcState());
1169
1170 incrLdIdx(load_idx);
1171 }
1172
1173 cprintf("Store queue size: %i\n", stores);
1174 cprintf("Store queue: ");
1175
1176 int store_idx = storeHead;
1177
1178 while (store_idx != storeTail && storeQueue[store_idx].inst) {
1179 cprintf("%s ", storeQueue[store_idx].inst->pcState());
1180
1181 incrStIdx(store_idx);
1182 }
1183
1184 cprintf("\n");
1185}