lsq_unit_impl.hh (7597:063f160e8b50) lsq_unit_impl.hh (7598:c0ae58952ed0)
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#include "arch/locked_mem.hh"
45#include "config/the_isa.hh"
46#include "config/use_checker.hh"
47#include "cpu/o3/lsq.hh"
48#include "cpu/o3/lsq_unit.hh"
49#include "base/str.hh"
50#include "mem/packet.hh"
51#include "mem/request.hh"
52
53#if USE_CHECKER
54#include "cpu/checker/cpu.hh"
55#endif
56
57template<class Impl>
58LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
59 LSQUnit *lsq_ptr)
60 : inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
61{
62 this->setFlags(Event::AutoDelete);
63}
64
65template<class Impl>
66void
67LSQUnit<Impl>::WritebackEvent::process()
68{
69 if (!lsqPtr->isSwitchedOut()) {
70 lsqPtr->writeback(inst, pkt);
71 }
72
73 if (pkt->senderState)
74 delete pkt->senderState;
75
76 delete pkt->req;
77 delete pkt;
78}
79
80template<class Impl>
81const char *
82LSQUnit<Impl>::WritebackEvent::description() const
83{
84 return "Store writeback";
85}
86
87template<class Impl>
88void
89LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
90{
91 LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
92 DynInstPtr inst = state->inst;
93 DPRINTF(IEW, "Writeback event [sn:%lli]\n", inst->seqNum);
94 DPRINTF(Activity, "Activity: Writeback event [sn:%lli]\n", inst->seqNum);
95
96 //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
97
98 assert(!pkt->wasNacked());
99
100 // If this is a split access, wait until all packets are received.
101 if (TheISA::HasUnalignedMemAcc && !state->complete()) {
102 delete pkt->req;
103 delete pkt;
104 return;
105 }
106
107 if (isSwitchedOut() || inst->isSquashed()) {
108 iewStage->decrWb(inst->seqNum);
109 } else {
110 if (!state->noWB) {
111 if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
112 !state->isLoad) {
113 writeback(inst, pkt);
114 } else {
115 writeback(inst, state->mainPkt);
116 }
117 }
118
119 if (inst->isStore()) {
120 completeStore(state->idx);
121 }
122 }
123
124 if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
125 delete state->mainPkt->req;
126 delete state->mainPkt;
127 }
128 delete state;
129 delete pkt->req;
130 delete pkt;
131}
132
133template <class Impl>
134LSQUnit<Impl>::LSQUnit()
135 : loads(0), stores(0), storesToWB(0), stalled(false),
136 isStoreBlocked(false), isLoadBlocked(false),
137 loadBlockedHandled(false), hasPendingPkt(false)
138{
139}
140
141template<class Impl>
142void
143LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
144 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
145 unsigned id)
146{
147 cpu = cpu_ptr;
148 iewStage = iew_ptr;
149
150 DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
151
152 switchedOut = false;
153
154 lsq = lsq_ptr;
155
156 lsqID = id;
157
158 // Add 1 for the sentinel entry (they are circular queues).
159 LQEntries = maxLQEntries + 1;
160 SQEntries = maxSQEntries + 1;
161
162 loadQueue.resize(LQEntries);
163 storeQueue.resize(SQEntries);
164
165 loadHead = loadTail = 0;
166
167 storeHead = storeWBIdx = storeTail = 0;
168
169 usedPorts = 0;
170 cachePorts = params->cachePorts;
171
172 retryPkt = NULL;
173 memDepViolator = NULL;
174
175 blockedLoadSeqNum = 0;
176}
177
178template<class Impl>
179std::string
180LSQUnit<Impl>::name() const
181{
182 if (Impl::MaxThreads == 1) {
183 return iewStage->name() + ".lsq";
184 } else {
185 return iewStage->name() + ".lsq.thread." + to_string(lsqID);
186 }
187}
188
189template<class Impl>
190void
191LSQUnit<Impl>::regStats()
192{
193 lsqForwLoads
194 .name(name() + ".forwLoads")
195 .desc("Number of loads that had data forwarded from stores");
196
197 invAddrLoads
198 .name(name() + ".invAddrLoads")
199 .desc("Number of loads ignored due to an invalid address");
200
201 lsqSquashedLoads
202 .name(name() + ".squashedLoads")
203 .desc("Number of loads squashed");
204
205 lsqIgnoredResponses
206 .name(name() + ".ignoredResponses")
207 .desc("Number of memory responses ignored because the instruction is squashed");
208
209 lsqMemOrderViolation
210 .name(name() + ".memOrderViolation")
211 .desc("Number of memory ordering violations");
212
213 lsqSquashedStores
214 .name(name() + ".squashedStores")
215 .desc("Number of stores squashed");
216
217 invAddrSwpfs
218 .name(name() + ".invAddrSwpfs")
219 .desc("Number of software prefetches ignored due to an invalid address");
220
221 lsqBlockedLoads
222 .name(name() + ".blockedLoads")
223 .desc("Number of blocked loads due to partial load-store forwarding");
224
225 lsqRescheduledLoads
226 .name(name() + ".rescheduledLoads")
227 .desc("Number of loads that were rescheduled");
228
229 lsqCacheBlocked
230 .name(name() + ".cacheBlocked")
231 .desc("Number of times an access to memory failed due to the cache being blocked");
232}
233
234template<class Impl>
235void
236LSQUnit<Impl>::setDcachePort(Port *dcache_port)
237{
238 dcachePort = dcache_port;
239
240#if USE_CHECKER
241 if (cpu->checker) {
242 cpu->checker->setDcachePort(dcachePort);
243 }
244#endif
245}
246
247template<class Impl>
248void
249LSQUnit<Impl>::clearLQ()
250{
251 loadQueue.clear();
252}
253
254template<class Impl>
255void
256LSQUnit<Impl>::clearSQ()
257{
258 storeQueue.clear();
259}
260
261template<class Impl>
262void
263LSQUnit<Impl>::switchOut()
264{
265 switchedOut = true;
266 for (int i = 0; i < loadQueue.size(); ++i) {
267 assert(!loadQueue[i]);
268 loadQueue[i] = NULL;
269 }
270
271 assert(storesToWB == 0);
272}
273
274template<class Impl>
275void
276LSQUnit<Impl>::takeOverFrom()
277{
278 switchedOut = false;
279 loads = stores = storesToWB = 0;
280
281 loadHead = loadTail = 0;
282
283 storeHead = storeWBIdx = storeTail = 0;
284
285 usedPorts = 0;
286
287 memDepViolator = NULL;
288
289 blockedLoadSeqNum = 0;
290
291 stalled = false;
292 isLoadBlocked = false;
293 loadBlockedHandled = false;
294}
295
296template<class Impl>
297void
298LSQUnit<Impl>::resizeLQ(unsigned size)
299{
300 unsigned size_plus_sentinel = size + 1;
301 assert(size_plus_sentinel >= LQEntries);
302
303 if (size_plus_sentinel > LQEntries) {
304 while (size_plus_sentinel > loadQueue.size()) {
305 DynInstPtr dummy;
306 loadQueue.push_back(dummy);
307 LQEntries++;
308 }
309 } else {
310 LQEntries = size_plus_sentinel;
311 }
312
313}
314
315template<class Impl>
316void
317LSQUnit<Impl>::resizeSQ(unsigned size)
318{
319 unsigned size_plus_sentinel = size + 1;
320 if (size_plus_sentinel > SQEntries) {
321 while (size_plus_sentinel > storeQueue.size()) {
322 SQEntry dummy;
323 storeQueue.push_back(dummy);
324 SQEntries++;
325 }
326 } else {
327 SQEntries = size_plus_sentinel;
328 }
329}
330
331template <class Impl>
332void
333LSQUnit<Impl>::insert(DynInstPtr &inst)
334{
335 assert(inst->isMemRef());
336
337 assert(inst->isLoad() || inst->isStore());
338
339 if (inst->isLoad()) {
340 insertLoad(inst);
341 } else {
342 insertStore(inst);
343 }
344
345 inst->setInLSQ();
346}
347
348template <class Impl>
349void
350LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
351{
352 assert((loadTail + 1) % LQEntries != loadHead);
353 assert(loads < LQEntries);
354
355 DPRINTF(LSQUnit, "Inserting load PC %#x, idx:%i [sn:%lli]\n",
356 load_inst->readPC(), loadTail, load_inst->seqNum);
357
358 load_inst->lqIdx = loadTail;
359
360 if (stores == 0) {
361 load_inst->sqIdx = -1;
362 } else {
363 load_inst->sqIdx = storeTail;
364 }
365
366 loadQueue[loadTail] = load_inst;
367
368 incrLdIdx(loadTail);
369
370 ++loads;
371}
372
373template <class Impl>
374void
375LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
376{
377 // Make sure it is not full before inserting an instruction.
378 assert((storeTail + 1) % SQEntries != storeHead);
379 assert(stores < SQEntries);
380
381 DPRINTF(LSQUnit, "Inserting store PC %#x, idx:%i [sn:%lli]\n",
382 store_inst->readPC(), storeTail, store_inst->seqNum);
383
384 store_inst->sqIdx = storeTail;
385 store_inst->lqIdx = loadTail;
386
387 storeQueue[storeTail] = SQEntry(store_inst);
388
389 incrStIdx(storeTail);
390
391 ++stores;
392}
393
394template <class Impl>
395typename Impl::DynInstPtr
396LSQUnit<Impl>::getMemDepViolator()
397{
398 DynInstPtr temp = memDepViolator;
399
400 memDepViolator = NULL;
401
402 return temp;
403}
404
405template <class Impl>
406unsigned
407LSQUnit<Impl>::numFreeEntries()
408{
409 unsigned free_lq_entries = LQEntries - loads;
410 unsigned free_sq_entries = SQEntries - stores;
411
412 // Both the LQ and SQ entries have an extra dummy entry to differentiate
413 // empty/full conditions. Subtract 1 from the free entries.
414 if (free_lq_entries < free_sq_entries) {
415 return free_lq_entries - 1;
416 } else {
417 return free_sq_entries - 1;
418 }
419}
420
421template <class Impl>
422int
423LSQUnit<Impl>::numLoadsReady()
424{
425 int load_idx = loadHead;
426 int retval = 0;
427
428 while (load_idx != loadTail) {
429 assert(loadQueue[load_idx]);
430
431 if (loadQueue[load_idx]->readyToIssue()) {
432 ++retval;
433 }
434 }
435
436 return retval;
437}
438
439template <class Impl>
440Fault
441LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
442{
443 using namespace TheISA;
444 // Execute a specific load.
445 Fault load_fault = NoFault;
446
447 DPRINTF(LSQUnit, "Executing load PC %#x, [sn:%lli]\n",
448 inst->readPC(),inst->seqNum);
449
450 assert(!inst->isSquashed());
451
452 load_fault = inst->initiateAcc();
453
454 // If the instruction faulted or predicated false, then we need to send it
455 // along to commit without the instruction completing.
456 if (load_fault != NoFault || inst->readPredicate() == false) {
457 // Send this instruction to commit, also make sure iew stage
458 // realizes there is activity.
459 // Mark it as executed unless it is an uncached load that
460 // needs to hit the head of commit.
461 if (!(inst->hasRequest() && inst->uncacheable()) ||
462 inst->isAtCommit()) {
463 inst->setExecuted();
464 }
465 iewStage->instToCommit(inst);
466 iewStage->activityThisCycle();
467 } else if (!loadBlocked()) {
468 assert(inst->effAddrValid);
469 int load_idx = inst->lqIdx;
470 incrLdIdx(load_idx);
471 while (load_idx != loadTail) {
472 // Really only need to check loads that have actually executed
473
474 // @todo: For now this is extra conservative, detecting a
475 // violation if the addresses match assuming all accesses
476 // are quad word accesses.
477
478 // @todo: Fix this, magic number being used here
479 if (loadQueue[load_idx]->effAddrValid &&
480 (loadQueue[load_idx]->effAddr >> 8) ==
481 (inst->effAddr >> 8)) {
482 // A load incorrectly passed this load. Squash and refetch.
483 // For now return a fault to show that it was unsuccessful.
484 DynInstPtr violator = loadQueue[load_idx];
485 if (!memDepViolator ||
486 (violator->seqNum < memDepViolator->seqNum)) {
487 memDepViolator = violator;
488 } else {
489 break;
490 }
491
492 ++lsqMemOrderViolation;
493
494 return genMachineCheckFault();
495 }
496
497 incrLdIdx(load_idx);
498 }
499 }
500
501 return load_fault;
502}
503
504template <class Impl>
505Fault
506LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
507{
508 using namespace TheISA;
509 // Make sure that a store exists.
510 assert(stores != 0);
511
512 int store_idx = store_inst->sqIdx;
513
514 DPRINTF(LSQUnit, "Executing store PC %#x [sn:%lli]\n",
515 store_inst->readPC(), store_inst->seqNum);
516
517 assert(!store_inst->isSquashed());
518
519 // Check the recently completed loads to see if any match this store's
520 // address. If so, then we have a memory ordering violation.
521 int load_idx = store_inst->lqIdx;
522
523 Fault store_fault = store_inst->initiateAcc();
524
525 if (storeQueue[store_idx].size == 0) {
526 DPRINTF(LSQUnit,"Fault on Store PC %#x, [sn:%lli],Size = 0\n",
527 store_inst->readPC(),store_inst->seqNum);
528
529 return store_fault;
530 }
531
532 assert(store_fault == NoFault);
533
534 if (store_inst->isStoreConditional()) {
535 // Store conditionals need to set themselves as able to
536 // writeback if we haven't had a fault by here.
537 storeQueue[store_idx].canWB = true;
538
539 ++storesToWB;
540 }
541
542 assert(store_inst->effAddrValid);
543 while (load_idx != loadTail) {
544 // Really only need to check loads that have actually executed
545 // It's safe to check all loads because effAddr is set to
546 // InvalAddr when the dyn inst is created.
547
548 // @todo: For now this is extra conservative, detecting a
549 // violation if the addresses match assuming all accesses
550 // are quad word accesses.
551
552 // @todo: Fix this, magic number being used here
553 if (loadQueue[load_idx]->effAddrValid &&
554 (loadQueue[load_idx]->effAddr >> 8) ==
555 (store_inst->effAddr >> 8)) {
556 // A load incorrectly passed this store. Squash and refetch.
557 // For now return a fault to show that it was unsuccessful.
558 DynInstPtr violator = loadQueue[load_idx];
559 if (!memDepViolator ||
560 (violator->seqNum < memDepViolator->seqNum)) {
561 memDepViolator = violator;
562 } else {
563 break;
564 }
565
566 ++lsqMemOrderViolation;
567
568 return genMachineCheckFault();
569 }
570
571 incrLdIdx(load_idx);
572 }
573
574 return store_fault;
575}
576
577template <class Impl>
578void
579LSQUnit<Impl>::commitLoad()
580{
581 assert(loadQueue[loadHead]);
582
583 DPRINTF(LSQUnit, "Committing head load instruction, PC %#x\n",
584 loadQueue[loadHead]->readPC());
585
586 loadQueue[loadHead] = NULL;
587
588 incrLdIdx(loadHead);
589
590 --loads;
591}
592
593template <class Impl>
594void
595LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
596{
597 assert(loads == 0 || loadQueue[loadHead]);
598
599 while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
600 commitLoad();
601 }
602}
603
604template <class Impl>
605void
606LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
607{
608 assert(stores == 0 || storeQueue[storeHead].inst);
609
610 int store_idx = storeHead;
611
612 while (store_idx != storeTail) {
613 assert(storeQueue[store_idx].inst);
614 // Mark any stores that are now committed and have not yet
615 // been marked as able to write back.
616 if (!storeQueue[store_idx].canWB) {
617 if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
618 break;
619 }
620 DPRINTF(LSQUnit, "Marking store as able to write back, PC "
621 "%#x [sn:%lli]\n",
622 storeQueue[store_idx].inst->readPC(),
623 storeQueue[store_idx].inst->seqNum);
624
625 storeQueue[store_idx].canWB = true;
626
627 ++storesToWB;
628 }
629
630 incrStIdx(store_idx);
631 }
632}
633
634template <class Impl>
635void
636LSQUnit<Impl>::writebackPendingStore()
637{
638 if (hasPendingPkt) {
639 assert(pendingPkt != NULL);
640
641 // If the cache is blocked, this will store the packet for retry.
642 if (sendStore(pendingPkt)) {
643 storePostSend(pendingPkt);
644 }
645 pendingPkt = NULL;
646 hasPendingPkt = false;
647 }
648}
649
650template <class Impl>
651void
652LSQUnit<Impl>::writebackStores()
653{
654 // First writeback the second packet from any split store that didn't
655 // complete last cycle because there weren't enough cache ports available.
656 if (TheISA::HasUnalignedMemAcc) {
657 writebackPendingStore();
658 }
659
660 while (storesToWB > 0 &&
661 storeWBIdx != storeTail &&
662 storeQueue[storeWBIdx].inst &&
663 storeQueue[storeWBIdx].canWB &&
664 usedPorts < cachePorts) {
665
666 if (isStoreBlocked || lsq->cacheBlocked()) {
667 DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
668 " is blocked!\n");
669 break;
670 }
671
672 // Store didn't write any data so no need to write it back to
673 // memory.
674 if (storeQueue[storeWBIdx].size == 0) {
675 completeStore(storeWBIdx);
676
677 incrStIdx(storeWBIdx);
678
679 continue;
680 }
681
682 ++usedPorts;
683
684 if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
685 incrStIdx(storeWBIdx);
686
687 continue;
688 }
689
690 assert(storeQueue[storeWBIdx].req);
691 assert(!storeQueue[storeWBIdx].committed);
692
693 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
694 assert(storeQueue[storeWBIdx].sreqLow);
695 assert(storeQueue[storeWBIdx].sreqHigh);
696 }
697
698 DynInstPtr inst = storeQueue[storeWBIdx].inst;
699
700 Request *req = storeQueue[storeWBIdx].req;
701 storeQueue[storeWBIdx].committed = true;
702
703 assert(!inst->memData);
704 inst->memData = new uint8_t[64];
705
706 memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
707
708 MemCmd command =
709 req->isSwap() ? MemCmd::SwapReq :
710 (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
711 PacketPtr data_pkt;
712 PacketPtr snd_data_pkt = NULL;
713
714 LSQSenderState *state = new LSQSenderState;
715 state->isLoad = false;
716 state->idx = storeWBIdx;
717 state->inst = inst;
718
719 if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
720
721 // Build a single data packet if the store isn't split.
722 data_pkt = new Packet(req, command, Packet::Broadcast);
723 data_pkt->dataStatic(inst->memData);
724 data_pkt->senderState = state;
725 } else {
726 RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
727 RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
728
729 // Create two packets if the store is split in two.
730 data_pkt = new Packet(sreqLow, command, Packet::Broadcast);
731 snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast);
732
733 data_pkt->dataStatic(inst->memData);
734 snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
735
736 data_pkt->senderState = state;
737 snd_data_pkt->senderState = state;
738
739 state->isSplit = true;
740 state->outstanding = 2;
741
742 // Can delete the main request now.
743 delete req;
744 req = sreqLow;
745 }
746
747 DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%#x "
748 "to Addr:%#x, data:%#x [sn:%lli]\n",
749 storeWBIdx, inst->readPC(),
750 req->getPaddr(), (int)*(inst->memData),
751 inst->seqNum);
752
753 // @todo: Remove this SC hack once the memory system handles it.
754 if (inst->isStoreConditional()) {
755 assert(!storeQueue[storeWBIdx].isSplit);
756 // Disable recording the result temporarily. Writing to
757 // misc regs normally updates the result, but this is not
758 // the desired behavior when handling store conditionals.
759 inst->recordResult = false;
760 bool success = TheISA::handleLockedWrite(inst.get(), req);
761 inst->recordResult = true;
762
763 if (!success) {
764 // Instantly complete this store.
765 DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. "
766 "Instantly completing it.\n",
767 inst->seqNum);
768 WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
769 cpu->schedule(wb, curTick + 1);
770 completeStore(storeWBIdx);
771 incrStIdx(storeWBIdx);
772 continue;
773 }
774 } else {
775 // Non-store conditionals do not need a writeback.
776 state->noWB = true;
777 }
778
779 if (!sendStore(data_pkt)) {
780 DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
781 "retry later\n",
782 inst->seqNum);
783
784 // Need to store the second packet, if split.
785 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
786 state->pktToSend = true;
787 state->pendingPacket = snd_data_pkt;
788 }
789 } else {
790
791 // If split, try to send the second packet too
792 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
793 assert(snd_data_pkt);
794
795 // Ensure there are enough ports to use.
796 if (usedPorts < cachePorts) {
797 ++usedPorts;
798 if (sendStore(snd_data_pkt)) {
799 storePostSend(snd_data_pkt);
800 } else {
801 DPRINTF(IEW, "D-Cache became blocked when writing"
802 " [sn:%lli] second packet, will retry later\n",
803 inst->seqNum);
804 }
805 } else {
806
807 // Store the packet for when there's free ports.
808 assert(pendingPkt == NULL);
809 pendingPkt = snd_data_pkt;
810 hasPendingPkt = true;
811 }
812 } else {
813
814 // Not a split store.
815 storePostSend(data_pkt);
816 }
817 }
818 }
819
820 // Not sure this should set it to 0.
821 usedPorts = 0;
822
823 assert(stores >= 0 && storesToWB >= 0);
824}
825
826/*template <class Impl>
827void
828LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
829{
830 list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
831 mshrSeqNums.end(),
832 seqNum);
833
834 if (mshr_it != mshrSeqNums.end()) {
835 mshrSeqNums.erase(mshr_it);
836 DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
837 }
838}*/
839
840template <class Impl>
841void
842LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
843{
844 DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
845 "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
846
847 int load_idx = loadTail;
848 decrLdIdx(load_idx);
849
850 while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
851 DPRINTF(LSQUnit,"Load Instruction PC %#x squashed, "
852 "[sn:%lli]\n",
853 loadQueue[load_idx]->readPC(),
854 loadQueue[load_idx]->seqNum);
855
856 if (isStalled() && load_idx == stallingLoadIdx) {
857 stalled = false;
858 stallingStoreIsn = 0;
859 stallingLoadIdx = 0;
860 }
861
862 // Clear the smart pointer to make sure it is decremented.
863 loadQueue[load_idx]->setSquashed();
864 loadQueue[load_idx] = NULL;
865 --loads;
866
867 // Inefficient!
868 loadTail = load_idx;
869
870 decrLdIdx(load_idx);
871 ++lsqSquashedLoads;
872 }
873
874 if (isLoadBlocked) {
875 if (squashed_num < blockedLoadSeqNum) {
876 isLoadBlocked = false;
877 loadBlockedHandled = false;
878 blockedLoadSeqNum = 0;
879 }
880 }
881
882 if (memDepViolator && squashed_num < memDepViolator->seqNum) {
883 memDepViolator = NULL;
884 }
885
886 int store_idx = storeTail;
887 decrStIdx(store_idx);
888
889 while (stores != 0 &&
890 storeQueue[store_idx].inst->seqNum > squashed_num) {
891 // Instructions marked as can WB are already committed.
892 if (storeQueue[store_idx].canWB) {
893 break;
894 }
895
896 DPRINTF(LSQUnit,"Store Instruction PC %#x squashed, "
897 "idx:%i [sn:%lli]\n",
898 storeQueue[store_idx].inst->readPC(),
899 store_idx, storeQueue[store_idx].inst->seqNum);
900
901 // I don't think this can happen. It should have been cleared
902 // by the stalling load.
903 if (isStalled() &&
904 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
905 panic("Is stalled should have been cleared by stalling load!\n");
906 stalled = false;
907 stallingStoreIsn = 0;
908 }
909
910 // Clear the smart pointer to make sure it is decremented.
911 storeQueue[store_idx].inst->setSquashed();
912 storeQueue[store_idx].inst = NULL;
913 storeQueue[store_idx].canWB = 0;
914
915 // Must delete request now that it wasn't handed off to
916 // memory. This is quite ugly. @todo: Figure out the proper
917 // place to really handle request deletes.
918 delete storeQueue[store_idx].req;
919 if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
920 delete storeQueue[store_idx].sreqLow;
921 delete storeQueue[store_idx].sreqHigh;
922
923 storeQueue[store_idx].sreqLow = NULL;
924 storeQueue[store_idx].sreqHigh = NULL;
925 }
926
927 storeQueue[store_idx].req = NULL;
928 --stores;
929
930 // Inefficient!
931 storeTail = store_idx;
932
933 decrStIdx(store_idx);
934 ++lsqSquashedStores;
935 }
936}
937
938template <class Impl>
939void
940LSQUnit<Impl>::storePostSend(PacketPtr pkt)
941{
942 if (isStalled() &&
943 storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
944 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
945 "load idx:%i\n",
946 stallingStoreIsn, stallingLoadIdx);
947 stalled = false;
948 stallingStoreIsn = 0;
949 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
950 }
951
952 if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
953 // The store is basically completed at this time. This
954 // only works so long as the checker doesn't try to
955 // verify the value in memory for stores.
956 storeQueue[storeWBIdx].inst->setCompleted();
957#if USE_CHECKER
958 if (cpu->checker) {
959 cpu->checker->verify(storeQueue[storeWBIdx].inst);
960 }
961#endif
962 }
963
964 incrStIdx(storeWBIdx);
965}
966
967template <class Impl>
968void
969LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
970{
971 iewStage->wakeCPU();
972
973 // Squashed instructions do not need to complete their access.
974 if (inst->isSquashed()) {
975 iewStage->decrWb(inst->seqNum);
976 assert(!inst->isStore());
977 ++lsqIgnoredResponses;
978 return;
979 }
980
981 if (!inst->isExecuted()) {
982 inst->setExecuted();
983
984 // Complete access to copy data to proper place.
985 inst->completeAcc(pkt);
986 }
987
988 // Need to insert instruction into queue to commit
989 iewStage->instToCommit(inst);
990
991 iewStage->activityThisCycle();
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#include "arch/locked_mem.hh"
45#include "config/the_isa.hh"
46#include "config/use_checker.hh"
47#include "cpu/o3/lsq.hh"
48#include "cpu/o3/lsq_unit.hh"
49#include "base/str.hh"
50#include "mem/packet.hh"
51#include "mem/request.hh"
52
53#if USE_CHECKER
54#include "cpu/checker/cpu.hh"
55#endif
56
57template<class Impl>
58LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
59 LSQUnit *lsq_ptr)
60 : inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
61{
62 this->setFlags(Event::AutoDelete);
63}
64
65template<class Impl>
66void
67LSQUnit<Impl>::WritebackEvent::process()
68{
69 if (!lsqPtr->isSwitchedOut()) {
70 lsqPtr->writeback(inst, pkt);
71 }
72
73 if (pkt->senderState)
74 delete pkt->senderState;
75
76 delete pkt->req;
77 delete pkt;
78}
79
80template<class Impl>
81const char *
82LSQUnit<Impl>::WritebackEvent::description() const
83{
84 return "Store writeback";
85}
86
87template<class Impl>
88void
89LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
90{
91 LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
92 DynInstPtr inst = state->inst;
93 DPRINTF(IEW, "Writeback event [sn:%lli]\n", inst->seqNum);
94 DPRINTF(Activity, "Activity: Writeback event [sn:%lli]\n", inst->seqNum);
95
96 //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
97
98 assert(!pkt->wasNacked());
99
100 // If this is a split access, wait until all packets are received.
101 if (TheISA::HasUnalignedMemAcc && !state->complete()) {
102 delete pkt->req;
103 delete pkt;
104 return;
105 }
106
107 if (isSwitchedOut() || inst->isSquashed()) {
108 iewStage->decrWb(inst->seqNum);
109 } else {
110 if (!state->noWB) {
111 if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
112 !state->isLoad) {
113 writeback(inst, pkt);
114 } else {
115 writeback(inst, state->mainPkt);
116 }
117 }
118
119 if (inst->isStore()) {
120 completeStore(state->idx);
121 }
122 }
123
124 if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
125 delete state->mainPkt->req;
126 delete state->mainPkt;
127 }
128 delete state;
129 delete pkt->req;
130 delete pkt;
131}
132
133template <class Impl>
134LSQUnit<Impl>::LSQUnit()
135 : loads(0), stores(0), storesToWB(0), stalled(false),
136 isStoreBlocked(false), isLoadBlocked(false),
137 loadBlockedHandled(false), hasPendingPkt(false)
138{
139}
140
141template<class Impl>
142void
143LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
144 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
145 unsigned id)
146{
147 cpu = cpu_ptr;
148 iewStage = iew_ptr;
149
150 DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
151
152 switchedOut = false;
153
154 lsq = lsq_ptr;
155
156 lsqID = id;
157
158 // Add 1 for the sentinel entry (they are circular queues).
159 LQEntries = maxLQEntries + 1;
160 SQEntries = maxSQEntries + 1;
161
162 loadQueue.resize(LQEntries);
163 storeQueue.resize(SQEntries);
164
165 loadHead = loadTail = 0;
166
167 storeHead = storeWBIdx = storeTail = 0;
168
169 usedPorts = 0;
170 cachePorts = params->cachePorts;
171
172 retryPkt = NULL;
173 memDepViolator = NULL;
174
175 blockedLoadSeqNum = 0;
176}
177
178template<class Impl>
179std::string
180LSQUnit<Impl>::name() const
181{
182 if (Impl::MaxThreads == 1) {
183 return iewStage->name() + ".lsq";
184 } else {
185 return iewStage->name() + ".lsq.thread." + to_string(lsqID);
186 }
187}
188
189template<class Impl>
190void
191LSQUnit<Impl>::regStats()
192{
193 lsqForwLoads
194 .name(name() + ".forwLoads")
195 .desc("Number of loads that had data forwarded from stores");
196
197 invAddrLoads
198 .name(name() + ".invAddrLoads")
199 .desc("Number of loads ignored due to an invalid address");
200
201 lsqSquashedLoads
202 .name(name() + ".squashedLoads")
203 .desc("Number of loads squashed");
204
205 lsqIgnoredResponses
206 .name(name() + ".ignoredResponses")
207 .desc("Number of memory responses ignored because the instruction is squashed");
208
209 lsqMemOrderViolation
210 .name(name() + ".memOrderViolation")
211 .desc("Number of memory ordering violations");
212
213 lsqSquashedStores
214 .name(name() + ".squashedStores")
215 .desc("Number of stores squashed");
216
217 invAddrSwpfs
218 .name(name() + ".invAddrSwpfs")
219 .desc("Number of software prefetches ignored due to an invalid address");
220
221 lsqBlockedLoads
222 .name(name() + ".blockedLoads")
223 .desc("Number of blocked loads due to partial load-store forwarding");
224
225 lsqRescheduledLoads
226 .name(name() + ".rescheduledLoads")
227 .desc("Number of loads that were rescheduled");
228
229 lsqCacheBlocked
230 .name(name() + ".cacheBlocked")
231 .desc("Number of times an access to memory failed due to the cache being blocked");
232}
233
234template<class Impl>
235void
236LSQUnit<Impl>::setDcachePort(Port *dcache_port)
237{
238 dcachePort = dcache_port;
239
240#if USE_CHECKER
241 if (cpu->checker) {
242 cpu->checker->setDcachePort(dcachePort);
243 }
244#endif
245}
246
247template<class Impl>
248void
249LSQUnit<Impl>::clearLQ()
250{
251 loadQueue.clear();
252}
253
254template<class Impl>
255void
256LSQUnit<Impl>::clearSQ()
257{
258 storeQueue.clear();
259}
260
261template<class Impl>
262void
263LSQUnit<Impl>::switchOut()
264{
265 switchedOut = true;
266 for (int i = 0; i < loadQueue.size(); ++i) {
267 assert(!loadQueue[i]);
268 loadQueue[i] = NULL;
269 }
270
271 assert(storesToWB == 0);
272}
273
274template<class Impl>
275void
276LSQUnit<Impl>::takeOverFrom()
277{
278 switchedOut = false;
279 loads = stores = storesToWB = 0;
280
281 loadHead = loadTail = 0;
282
283 storeHead = storeWBIdx = storeTail = 0;
284
285 usedPorts = 0;
286
287 memDepViolator = NULL;
288
289 blockedLoadSeqNum = 0;
290
291 stalled = false;
292 isLoadBlocked = false;
293 loadBlockedHandled = false;
294}
295
296template<class Impl>
297void
298LSQUnit<Impl>::resizeLQ(unsigned size)
299{
300 unsigned size_plus_sentinel = size + 1;
301 assert(size_plus_sentinel >= LQEntries);
302
303 if (size_plus_sentinel > LQEntries) {
304 while (size_plus_sentinel > loadQueue.size()) {
305 DynInstPtr dummy;
306 loadQueue.push_back(dummy);
307 LQEntries++;
308 }
309 } else {
310 LQEntries = size_plus_sentinel;
311 }
312
313}
314
315template<class Impl>
316void
317LSQUnit<Impl>::resizeSQ(unsigned size)
318{
319 unsigned size_plus_sentinel = size + 1;
320 if (size_plus_sentinel > SQEntries) {
321 while (size_plus_sentinel > storeQueue.size()) {
322 SQEntry dummy;
323 storeQueue.push_back(dummy);
324 SQEntries++;
325 }
326 } else {
327 SQEntries = size_plus_sentinel;
328 }
329}
330
331template <class Impl>
332void
333LSQUnit<Impl>::insert(DynInstPtr &inst)
334{
335 assert(inst->isMemRef());
336
337 assert(inst->isLoad() || inst->isStore());
338
339 if (inst->isLoad()) {
340 insertLoad(inst);
341 } else {
342 insertStore(inst);
343 }
344
345 inst->setInLSQ();
346}
347
348template <class Impl>
349void
350LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
351{
352 assert((loadTail + 1) % LQEntries != loadHead);
353 assert(loads < LQEntries);
354
355 DPRINTF(LSQUnit, "Inserting load PC %#x, idx:%i [sn:%lli]\n",
356 load_inst->readPC(), loadTail, load_inst->seqNum);
357
358 load_inst->lqIdx = loadTail;
359
360 if (stores == 0) {
361 load_inst->sqIdx = -1;
362 } else {
363 load_inst->sqIdx = storeTail;
364 }
365
366 loadQueue[loadTail] = load_inst;
367
368 incrLdIdx(loadTail);
369
370 ++loads;
371}
372
373template <class Impl>
374void
375LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
376{
377 // Make sure it is not full before inserting an instruction.
378 assert((storeTail + 1) % SQEntries != storeHead);
379 assert(stores < SQEntries);
380
381 DPRINTF(LSQUnit, "Inserting store PC %#x, idx:%i [sn:%lli]\n",
382 store_inst->readPC(), storeTail, store_inst->seqNum);
383
384 store_inst->sqIdx = storeTail;
385 store_inst->lqIdx = loadTail;
386
387 storeQueue[storeTail] = SQEntry(store_inst);
388
389 incrStIdx(storeTail);
390
391 ++stores;
392}
393
394template <class Impl>
395typename Impl::DynInstPtr
396LSQUnit<Impl>::getMemDepViolator()
397{
398 DynInstPtr temp = memDepViolator;
399
400 memDepViolator = NULL;
401
402 return temp;
403}
404
405template <class Impl>
406unsigned
407LSQUnit<Impl>::numFreeEntries()
408{
409 unsigned free_lq_entries = LQEntries - loads;
410 unsigned free_sq_entries = SQEntries - stores;
411
412 // Both the LQ and SQ entries have an extra dummy entry to differentiate
413 // empty/full conditions. Subtract 1 from the free entries.
414 if (free_lq_entries < free_sq_entries) {
415 return free_lq_entries - 1;
416 } else {
417 return free_sq_entries - 1;
418 }
419}
420
421template <class Impl>
422int
423LSQUnit<Impl>::numLoadsReady()
424{
425 int load_idx = loadHead;
426 int retval = 0;
427
428 while (load_idx != loadTail) {
429 assert(loadQueue[load_idx]);
430
431 if (loadQueue[load_idx]->readyToIssue()) {
432 ++retval;
433 }
434 }
435
436 return retval;
437}
438
439template <class Impl>
440Fault
441LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
442{
443 using namespace TheISA;
444 // Execute a specific load.
445 Fault load_fault = NoFault;
446
447 DPRINTF(LSQUnit, "Executing load PC %#x, [sn:%lli]\n",
448 inst->readPC(),inst->seqNum);
449
450 assert(!inst->isSquashed());
451
452 load_fault = inst->initiateAcc();
453
454 // If the instruction faulted or predicated false, then we need to send it
455 // along to commit without the instruction completing.
456 if (load_fault != NoFault || inst->readPredicate() == false) {
457 // Send this instruction to commit, also make sure iew stage
458 // realizes there is activity.
459 // Mark it as executed unless it is an uncached load that
460 // needs to hit the head of commit.
461 if (!(inst->hasRequest() && inst->uncacheable()) ||
462 inst->isAtCommit()) {
463 inst->setExecuted();
464 }
465 iewStage->instToCommit(inst);
466 iewStage->activityThisCycle();
467 } else if (!loadBlocked()) {
468 assert(inst->effAddrValid);
469 int load_idx = inst->lqIdx;
470 incrLdIdx(load_idx);
471 while (load_idx != loadTail) {
472 // Really only need to check loads that have actually executed
473
474 // @todo: For now this is extra conservative, detecting a
475 // violation if the addresses match assuming all accesses
476 // are quad word accesses.
477
478 // @todo: Fix this, magic number being used here
479 if (loadQueue[load_idx]->effAddrValid &&
480 (loadQueue[load_idx]->effAddr >> 8) ==
481 (inst->effAddr >> 8)) {
482 // A load incorrectly passed this load. Squash and refetch.
483 // For now return a fault to show that it was unsuccessful.
484 DynInstPtr violator = loadQueue[load_idx];
485 if (!memDepViolator ||
486 (violator->seqNum < memDepViolator->seqNum)) {
487 memDepViolator = violator;
488 } else {
489 break;
490 }
491
492 ++lsqMemOrderViolation;
493
494 return genMachineCheckFault();
495 }
496
497 incrLdIdx(load_idx);
498 }
499 }
500
501 return load_fault;
502}
503
504template <class Impl>
505Fault
506LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
507{
508 using namespace TheISA;
509 // Make sure that a store exists.
510 assert(stores != 0);
511
512 int store_idx = store_inst->sqIdx;
513
514 DPRINTF(LSQUnit, "Executing store PC %#x [sn:%lli]\n",
515 store_inst->readPC(), store_inst->seqNum);
516
517 assert(!store_inst->isSquashed());
518
519 // Check the recently completed loads to see if any match this store's
520 // address. If so, then we have a memory ordering violation.
521 int load_idx = store_inst->lqIdx;
522
523 Fault store_fault = store_inst->initiateAcc();
524
525 if (storeQueue[store_idx].size == 0) {
526 DPRINTF(LSQUnit,"Fault on Store PC %#x, [sn:%lli],Size = 0\n",
527 store_inst->readPC(),store_inst->seqNum);
528
529 return store_fault;
530 }
531
532 assert(store_fault == NoFault);
533
534 if (store_inst->isStoreConditional()) {
535 // Store conditionals need to set themselves as able to
536 // writeback if we haven't had a fault by here.
537 storeQueue[store_idx].canWB = true;
538
539 ++storesToWB;
540 }
541
542 assert(store_inst->effAddrValid);
543 while (load_idx != loadTail) {
544 // Really only need to check loads that have actually executed
545 // It's safe to check all loads because effAddr is set to
546 // InvalAddr when the dyn inst is created.
547
548 // @todo: For now this is extra conservative, detecting a
549 // violation if the addresses match assuming all accesses
550 // are quad word accesses.
551
552 // @todo: Fix this, magic number being used here
553 if (loadQueue[load_idx]->effAddrValid &&
554 (loadQueue[load_idx]->effAddr >> 8) ==
555 (store_inst->effAddr >> 8)) {
556 // A load incorrectly passed this store. Squash and refetch.
557 // For now return a fault to show that it was unsuccessful.
558 DynInstPtr violator = loadQueue[load_idx];
559 if (!memDepViolator ||
560 (violator->seqNum < memDepViolator->seqNum)) {
561 memDepViolator = violator;
562 } else {
563 break;
564 }
565
566 ++lsqMemOrderViolation;
567
568 return genMachineCheckFault();
569 }
570
571 incrLdIdx(load_idx);
572 }
573
574 return store_fault;
575}
576
577template <class Impl>
578void
579LSQUnit<Impl>::commitLoad()
580{
581 assert(loadQueue[loadHead]);
582
583 DPRINTF(LSQUnit, "Committing head load instruction, PC %#x\n",
584 loadQueue[loadHead]->readPC());
585
586 loadQueue[loadHead] = NULL;
587
588 incrLdIdx(loadHead);
589
590 --loads;
591}
592
593template <class Impl>
594void
595LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
596{
597 assert(loads == 0 || loadQueue[loadHead]);
598
599 while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
600 commitLoad();
601 }
602}
603
604template <class Impl>
605void
606LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
607{
608 assert(stores == 0 || storeQueue[storeHead].inst);
609
610 int store_idx = storeHead;
611
612 while (store_idx != storeTail) {
613 assert(storeQueue[store_idx].inst);
614 // Mark any stores that are now committed and have not yet
615 // been marked as able to write back.
616 if (!storeQueue[store_idx].canWB) {
617 if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
618 break;
619 }
620 DPRINTF(LSQUnit, "Marking store as able to write back, PC "
621 "%#x [sn:%lli]\n",
622 storeQueue[store_idx].inst->readPC(),
623 storeQueue[store_idx].inst->seqNum);
624
625 storeQueue[store_idx].canWB = true;
626
627 ++storesToWB;
628 }
629
630 incrStIdx(store_idx);
631 }
632}
633
634template <class Impl>
635void
636LSQUnit<Impl>::writebackPendingStore()
637{
638 if (hasPendingPkt) {
639 assert(pendingPkt != NULL);
640
641 // If the cache is blocked, this will store the packet for retry.
642 if (sendStore(pendingPkt)) {
643 storePostSend(pendingPkt);
644 }
645 pendingPkt = NULL;
646 hasPendingPkt = false;
647 }
648}
649
650template <class Impl>
651void
652LSQUnit<Impl>::writebackStores()
653{
654 // First writeback the second packet from any split store that didn't
655 // complete last cycle because there weren't enough cache ports available.
656 if (TheISA::HasUnalignedMemAcc) {
657 writebackPendingStore();
658 }
659
660 while (storesToWB > 0 &&
661 storeWBIdx != storeTail &&
662 storeQueue[storeWBIdx].inst &&
663 storeQueue[storeWBIdx].canWB &&
664 usedPorts < cachePorts) {
665
666 if (isStoreBlocked || lsq->cacheBlocked()) {
667 DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
668 " is blocked!\n");
669 break;
670 }
671
672 // Store didn't write any data so no need to write it back to
673 // memory.
674 if (storeQueue[storeWBIdx].size == 0) {
675 completeStore(storeWBIdx);
676
677 incrStIdx(storeWBIdx);
678
679 continue;
680 }
681
682 ++usedPorts;
683
684 if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
685 incrStIdx(storeWBIdx);
686
687 continue;
688 }
689
690 assert(storeQueue[storeWBIdx].req);
691 assert(!storeQueue[storeWBIdx].committed);
692
693 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
694 assert(storeQueue[storeWBIdx].sreqLow);
695 assert(storeQueue[storeWBIdx].sreqHigh);
696 }
697
698 DynInstPtr inst = storeQueue[storeWBIdx].inst;
699
700 Request *req = storeQueue[storeWBIdx].req;
701 storeQueue[storeWBIdx].committed = true;
702
703 assert(!inst->memData);
704 inst->memData = new uint8_t[64];
705
706 memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
707
708 MemCmd command =
709 req->isSwap() ? MemCmd::SwapReq :
710 (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
711 PacketPtr data_pkt;
712 PacketPtr snd_data_pkt = NULL;
713
714 LSQSenderState *state = new LSQSenderState;
715 state->isLoad = false;
716 state->idx = storeWBIdx;
717 state->inst = inst;
718
719 if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
720
721 // Build a single data packet if the store isn't split.
722 data_pkt = new Packet(req, command, Packet::Broadcast);
723 data_pkt->dataStatic(inst->memData);
724 data_pkt->senderState = state;
725 } else {
726 RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
727 RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
728
729 // Create two packets if the store is split in two.
730 data_pkt = new Packet(sreqLow, command, Packet::Broadcast);
731 snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast);
732
733 data_pkt->dataStatic(inst->memData);
734 snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
735
736 data_pkt->senderState = state;
737 snd_data_pkt->senderState = state;
738
739 state->isSplit = true;
740 state->outstanding = 2;
741
742 // Can delete the main request now.
743 delete req;
744 req = sreqLow;
745 }
746
747 DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%#x "
748 "to Addr:%#x, data:%#x [sn:%lli]\n",
749 storeWBIdx, inst->readPC(),
750 req->getPaddr(), (int)*(inst->memData),
751 inst->seqNum);
752
753 // @todo: Remove this SC hack once the memory system handles it.
754 if (inst->isStoreConditional()) {
755 assert(!storeQueue[storeWBIdx].isSplit);
756 // Disable recording the result temporarily. Writing to
757 // misc regs normally updates the result, but this is not
758 // the desired behavior when handling store conditionals.
759 inst->recordResult = false;
760 bool success = TheISA::handleLockedWrite(inst.get(), req);
761 inst->recordResult = true;
762
763 if (!success) {
764 // Instantly complete this store.
765 DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. "
766 "Instantly completing it.\n",
767 inst->seqNum);
768 WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
769 cpu->schedule(wb, curTick + 1);
770 completeStore(storeWBIdx);
771 incrStIdx(storeWBIdx);
772 continue;
773 }
774 } else {
775 // Non-store conditionals do not need a writeback.
776 state->noWB = true;
777 }
778
779 if (!sendStore(data_pkt)) {
780 DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
781 "retry later\n",
782 inst->seqNum);
783
784 // Need to store the second packet, if split.
785 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
786 state->pktToSend = true;
787 state->pendingPacket = snd_data_pkt;
788 }
789 } else {
790
791 // If split, try to send the second packet too
792 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
793 assert(snd_data_pkt);
794
795 // Ensure there are enough ports to use.
796 if (usedPorts < cachePorts) {
797 ++usedPorts;
798 if (sendStore(snd_data_pkt)) {
799 storePostSend(snd_data_pkt);
800 } else {
801 DPRINTF(IEW, "D-Cache became blocked when writing"
802 " [sn:%lli] second packet, will retry later\n",
803 inst->seqNum);
804 }
805 } else {
806
807 // Store the packet for when there's free ports.
808 assert(pendingPkt == NULL);
809 pendingPkt = snd_data_pkt;
810 hasPendingPkt = true;
811 }
812 } else {
813
814 // Not a split store.
815 storePostSend(data_pkt);
816 }
817 }
818 }
819
820 // Not sure this should set it to 0.
821 usedPorts = 0;
822
823 assert(stores >= 0 && storesToWB >= 0);
824}
825
826/*template <class Impl>
827void
828LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
829{
830 list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
831 mshrSeqNums.end(),
832 seqNum);
833
834 if (mshr_it != mshrSeqNums.end()) {
835 mshrSeqNums.erase(mshr_it);
836 DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
837 }
838}*/
839
840template <class Impl>
841void
842LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
843{
844 DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
845 "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
846
847 int load_idx = loadTail;
848 decrLdIdx(load_idx);
849
850 while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
851 DPRINTF(LSQUnit,"Load Instruction PC %#x squashed, "
852 "[sn:%lli]\n",
853 loadQueue[load_idx]->readPC(),
854 loadQueue[load_idx]->seqNum);
855
856 if (isStalled() && load_idx == stallingLoadIdx) {
857 stalled = false;
858 stallingStoreIsn = 0;
859 stallingLoadIdx = 0;
860 }
861
862 // Clear the smart pointer to make sure it is decremented.
863 loadQueue[load_idx]->setSquashed();
864 loadQueue[load_idx] = NULL;
865 --loads;
866
867 // Inefficient!
868 loadTail = load_idx;
869
870 decrLdIdx(load_idx);
871 ++lsqSquashedLoads;
872 }
873
874 if (isLoadBlocked) {
875 if (squashed_num < blockedLoadSeqNum) {
876 isLoadBlocked = false;
877 loadBlockedHandled = false;
878 blockedLoadSeqNum = 0;
879 }
880 }
881
882 if (memDepViolator && squashed_num < memDepViolator->seqNum) {
883 memDepViolator = NULL;
884 }
885
886 int store_idx = storeTail;
887 decrStIdx(store_idx);
888
889 while (stores != 0 &&
890 storeQueue[store_idx].inst->seqNum > squashed_num) {
891 // Instructions marked as can WB are already committed.
892 if (storeQueue[store_idx].canWB) {
893 break;
894 }
895
896 DPRINTF(LSQUnit,"Store Instruction PC %#x squashed, "
897 "idx:%i [sn:%lli]\n",
898 storeQueue[store_idx].inst->readPC(),
899 store_idx, storeQueue[store_idx].inst->seqNum);
900
901 // I don't think this can happen. It should have been cleared
902 // by the stalling load.
903 if (isStalled() &&
904 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
905 panic("Is stalled should have been cleared by stalling load!\n");
906 stalled = false;
907 stallingStoreIsn = 0;
908 }
909
910 // Clear the smart pointer to make sure it is decremented.
911 storeQueue[store_idx].inst->setSquashed();
912 storeQueue[store_idx].inst = NULL;
913 storeQueue[store_idx].canWB = 0;
914
915 // Must delete request now that it wasn't handed off to
916 // memory. This is quite ugly. @todo: Figure out the proper
917 // place to really handle request deletes.
918 delete storeQueue[store_idx].req;
919 if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
920 delete storeQueue[store_idx].sreqLow;
921 delete storeQueue[store_idx].sreqHigh;
922
923 storeQueue[store_idx].sreqLow = NULL;
924 storeQueue[store_idx].sreqHigh = NULL;
925 }
926
927 storeQueue[store_idx].req = NULL;
928 --stores;
929
930 // Inefficient!
931 storeTail = store_idx;
932
933 decrStIdx(store_idx);
934 ++lsqSquashedStores;
935 }
936}
937
938template <class Impl>
939void
940LSQUnit<Impl>::storePostSend(PacketPtr pkt)
941{
942 if (isStalled() &&
943 storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
944 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
945 "load idx:%i\n",
946 stallingStoreIsn, stallingLoadIdx);
947 stalled = false;
948 stallingStoreIsn = 0;
949 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
950 }
951
952 if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
953 // The store is basically completed at this time. This
954 // only works so long as the checker doesn't try to
955 // verify the value in memory for stores.
956 storeQueue[storeWBIdx].inst->setCompleted();
957#if USE_CHECKER
958 if (cpu->checker) {
959 cpu->checker->verify(storeQueue[storeWBIdx].inst);
960 }
961#endif
962 }
963
964 incrStIdx(storeWBIdx);
965}
966
967template <class Impl>
968void
969LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
970{
971 iewStage->wakeCPU();
972
973 // Squashed instructions do not need to complete their access.
974 if (inst->isSquashed()) {
975 iewStage->decrWb(inst->seqNum);
976 assert(!inst->isStore());
977 ++lsqIgnoredResponses;
978 return;
979 }
980
981 if (!inst->isExecuted()) {
982 inst->setExecuted();
983
984 // Complete access to copy data to proper place.
985 inst->completeAcc(pkt);
986 }
987
988 // Need to insert instruction into queue to commit
989 iewStage->instToCommit(inst);
990
991 iewStage->activityThisCycle();
992
993 // see if this load changed the PC
994 iewStage->checkMisprediction(inst);
992}
993
994template <class Impl>
995void
996LSQUnit<Impl>::completeStore(int store_idx)
997{
998 assert(storeQueue[store_idx].inst);
999 storeQueue[store_idx].completed = true;
1000 --storesToWB;
1001 // A bit conservative because a store completion may not free up entries,
1002 // but hopefully avoids two store completions in one cycle from making
1003 // the CPU tick twice.
1004 cpu->wakeCPU();
1005 cpu->activityThisCycle();
1006
1007 if (store_idx == storeHead) {
1008 do {
1009 incrStIdx(storeHead);
1010
1011 --stores;
1012 } while (storeQueue[storeHead].completed &&
1013 storeHead != storeTail);
1014
1015 iewStage->updateLSQNextCycle = true;
1016 }
1017
1018 DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1019 "idx:%i\n",
1020 storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1021
1022 if (isStalled() &&
1023 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1024 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1025 "load idx:%i\n",
1026 stallingStoreIsn, stallingLoadIdx);
1027 stalled = false;
1028 stallingStoreIsn = 0;
1029 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1030 }
1031
1032 storeQueue[store_idx].inst->setCompleted();
1033
1034 // Tell the checker we've completed this instruction. Some stores
1035 // may get reported twice to the checker, but the checker can
1036 // handle that case.
1037#if USE_CHECKER
1038 if (cpu->checker) {
1039 cpu->checker->verify(storeQueue[store_idx].inst);
1040 }
1041#endif
1042}
1043
1044template <class Impl>
1045bool
1046LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1047{
1048 if (!dcachePort->sendTiming(data_pkt)) {
1049 // Need to handle becoming blocked on a store.
1050 isStoreBlocked = true;
1051 ++lsqCacheBlocked;
1052 assert(retryPkt == NULL);
1053 retryPkt = data_pkt;
1054 lsq->setRetryTid(lsqID);
1055 return false;
1056 }
1057 return true;
1058}
1059
1060template <class Impl>
1061void
1062LSQUnit<Impl>::recvRetry()
1063{
1064 if (isStoreBlocked) {
1065 DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1066 assert(retryPkt != NULL);
1067
1068 if (dcachePort->sendTiming(retryPkt)) {
1069 LSQSenderState *state =
1070 dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1071
1072 // Don't finish the store unless this is the last packet.
1073 if (!TheISA::HasUnalignedMemAcc || !state->pktToSend) {
1074 storePostSend(retryPkt);
1075 }
1076 retryPkt = NULL;
1077 isStoreBlocked = false;
1078 lsq->setRetryTid(InvalidThreadID);
1079
1080 // Send any outstanding packet.
1081 if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1082 assert(state->pendingPacket);
1083 if (sendStore(state->pendingPacket)) {
1084 storePostSend(state->pendingPacket);
1085 }
1086 }
1087 } else {
1088 // Still blocked!
1089 ++lsqCacheBlocked;
1090 lsq->setRetryTid(lsqID);
1091 }
1092 } else if (isLoadBlocked) {
1093 DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1094 "no need to resend packet.\n");
1095 } else {
1096 DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1097 }
1098}
1099
1100template <class Impl>
1101inline void
1102LSQUnit<Impl>::incrStIdx(int &store_idx)
1103{
1104 if (++store_idx >= SQEntries)
1105 store_idx = 0;
1106}
1107
1108template <class Impl>
1109inline void
1110LSQUnit<Impl>::decrStIdx(int &store_idx)
1111{
1112 if (--store_idx < 0)
1113 store_idx += SQEntries;
1114}
1115
1116template <class Impl>
1117inline void
1118LSQUnit<Impl>::incrLdIdx(int &load_idx)
1119{
1120 if (++load_idx >= LQEntries)
1121 load_idx = 0;
1122}
1123
1124template <class Impl>
1125inline void
1126LSQUnit<Impl>::decrLdIdx(int &load_idx)
1127{
1128 if (--load_idx < 0)
1129 load_idx += LQEntries;
1130}
1131
1132template <class Impl>
1133void
1134LSQUnit<Impl>::dumpInsts()
1135{
1136 cprintf("Load store queue: Dumping instructions.\n");
1137 cprintf("Load queue size: %i\n", loads);
1138 cprintf("Load queue: ");
1139
1140 int load_idx = loadHead;
1141
1142 while (load_idx != loadTail && loadQueue[load_idx]) {
1143 cprintf("%#x ", loadQueue[load_idx]->readPC());
1144
1145 incrLdIdx(load_idx);
1146 }
1147
1148 cprintf("Store queue size: %i\n", stores);
1149 cprintf("Store queue: ");
1150
1151 int store_idx = storeHead;
1152
1153 while (store_idx != storeTail && storeQueue[store_idx].inst) {
1154 cprintf("%#x ", storeQueue[store_idx].inst->readPC());
1155
1156 incrStIdx(store_idx);
1157 }
1158
1159 cprintf("\n");
1160}
995}
996
997template <class Impl>
998void
999LSQUnit<Impl>::completeStore(int store_idx)
1000{
1001 assert(storeQueue[store_idx].inst);
1002 storeQueue[store_idx].completed = true;
1003 --storesToWB;
1004 // A bit conservative because a store completion may not free up entries,
1005 // but hopefully avoids two store completions in one cycle from making
1006 // the CPU tick twice.
1007 cpu->wakeCPU();
1008 cpu->activityThisCycle();
1009
1010 if (store_idx == storeHead) {
1011 do {
1012 incrStIdx(storeHead);
1013
1014 --stores;
1015 } while (storeQueue[storeHead].completed &&
1016 storeHead != storeTail);
1017
1018 iewStage->updateLSQNextCycle = true;
1019 }
1020
1021 DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1022 "idx:%i\n",
1023 storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1024
1025 if (isStalled() &&
1026 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1027 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1028 "load idx:%i\n",
1029 stallingStoreIsn, stallingLoadIdx);
1030 stalled = false;
1031 stallingStoreIsn = 0;
1032 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1033 }
1034
1035 storeQueue[store_idx].inst->setCompleted();
1036
1037 // Tell the checker we've completed this instruction. Some stores
1038 // may get reported twice to the checker, but the checker can
1039 // handle that case.
1040#if USE_CHECKER
1041 if (cpu->checker) {
1042 cpu->checker->verify(storeQueue[store_idx].inst);
1043 }
1044#endif
1045}
1046
1047template <class Impl>
1048bool
1049LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1050{
1051 if (!dcachePort->sendTiming(data_pkt)) {
1052 // Need to handle becoming blocked on a store.
1053 isStoreBlocked = true;
1054 ++lsqCacheBlocked;
1055 assert(retryPkt == NULL);
1056 retryPkt = data_pkt;
1057 lsq->setRetryTid(lsqID);
1058 return false;
1059 }
1060 return true;
1061}
1062
1063template <class Impl>
1064void
1065LSQUnit<Impl>::recvRetry()
1066{
1067 if (isStoreBlocked) {
1068 DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1069 assert(retryPkt != NULL);
1070
1071 if (dcachePort->sendTiming(retryPkt)) {
1072 LSQSenderState *state =
1073 dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1074
1075 // Don't finish the store unless this is the last packet.
1076 if (!TheISA::HasUnalignedMemAcc || !state->pktToSend) {
1077 storePostSend(retryPkt);
1078 }
1079 retryPkt = NULL;
1080 isStoreBlocked = false;
1081 lsq->setRetryTid(InvalidThreadID);
1082
1083 // Send any outstanding packet.
1084 if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1085 assert(state->pendingPacket);
1086 if (sendStore(state->pendingPacket)) {
1087 storePostSend(state->pendingPacket);
1088 }
1089 }
1090 } else {
1091 // Still blocked!
1092 ++lsqCacheBlocked;
1093 lsq->setRetryTid(lsqID);
1094 }
1095 } else if (isLoadBlocked) {
1096 DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1097 "no need to resend packet.\n");
1098 } else {
1099 DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1100 }
1101}
1102
1103template <class Impl>
1104inline void
1105LSQUnit<Impl>::incrStIdx(int &store_idx)
1106{
1107 if (++store_idx >= SQEntries)
1108 store_idx = 0;
1109}
1110
1111template <class Impl>
1112inline void
1113LSQUnit<Impl>::decrStIdx(int &store_idx)
1114{
1115 if (--store_idx < 0)
1116 store_idx += SQEntries;
1117}
1118
1119template <class Impl>
1120inline void
1121LSQUnit<Impl>::incrLdIdx(int &load_idx)
1122{
1123 if (++load_idx >= LQEntries)
1124 load_idx = 0;
1125}
1126
1127template <class Impl>
1128inline void
1129LSQUnit<Impl>::decrLdIdx(int &load_idx)
1130{
1131 if (--load_idx < 0)
1132 load_idx += LQEntries;
1133}
1134
1135template <class Impl>
1136void
1137LSQUnit<Impl>::dumpInsts()
1138{
1139 cprintf("Load store queue: Dumping instructions.\n");
1140 cprintf("Load queue size: %i\n", loads);
1141 cprintf("Load queue: ");
1142
1143 int load_idx = loadHead;
1144
1145 while (load_idx != loadTail && loadQueue[load_idx]) {
1146 cprintf("%#x ", loadQueue[load_idx]->readPC());
1147
1148 incrLdIdx(load_idx);
1149 }
1150
1151 cprintf("Store queue size: %i\n", stores);
1152 cprintf("Store queue: ");
1153
1154 int store_idx = storeHead;
1155
1156 while (store_idx != storeTail && storeQueue[store_idx].inst) {
1157 cprintf("%#x ", storeQueue[store_idx].inst->readPC());
1158
1159 incrStIdx(store_idx);
1160 }
1161
1162 cprintf("\n");
1163}