lsq_unit_impl.hh (12216:70bb3ae0fbfc) lsq_unit_impl.hh (12217:0a16f4c03c02)
1
2/*
3 * Copyright (c) 2010-2014, 2017 ARM Limited
4 * Copyright (c) 2013 Advanced Micro Devices, Inc.
5 * All rights reserved
6 *
7 * The license below extends only to copyright in the software and shall
8 * not be construed as granting a license to any other intellectual
9 * property including but not limited to intellectual property relating
10 * to a hardware implementation of the functionality of the software
11 * licensed hereunder. You may use the software subject to the license
12 * terms below provided that you ensure that this notice is replicated
13 * unmodified and in its entirety in all distributions of the software,
14 * modified or unmodified, in source code or in binary form.
15 *
16 * Copyright (c) 2004-2005 The Regents of The University of Michigan
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 * Korey Sewell
44 */
45
46#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
47#define __CPU_O3_LSQ_UNIT_IMPL_HH__
48
49#include "arch/generic/debugfaults.hh"
50#include "arch/locked_mem.hh"
51#include "base/str.hh"
52#include "config/the_isa.hh"
53#include "cpu/checker/cpu.hh"
54#include "cpu/o3/lsq.hh"
55#include "cpu/o3/lsq_unit.hh"
56#include "debug/Activity.hh"
57#include "debug/IEW.hh"
58#include "debug/LSQUnit.hh"
59#include "debug/O3PipeView.hh"
60#include "mem/packet.hh"
61#include "mem/request.hh"
62
63template<class Impl>
64LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
65 LSQUnit *lsq_ptr)
66 : Event(Default_Pri, AutoDelete),
67 inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
68{
69}
70
71template<class Impl>
72void
73LSQUnit<Impl>::WritebackEvent::process()
74{
75 assert(!lsqPtr->cpu->switchedOut());
76
77 lsqPtr->writeback(inst, pkt);
78
79 if (pkt->senderState)
80 delete pkt->senderState;
81
82 delete pkt->req;
83 delete pkt;
84}
85
86template<class Impl>
87const char *
88LSQUnit<Impl>::WritebackEvent::description() const
89{
90 return "Store writeback";
91}
92
93template<class Impl>
94void
95LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
96{
97 LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
98 DynInstPtr inst = state->inst;
99 DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
100 DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
101
102 if (state->cacheBlocked) {
103 // This is the first half of a previous split load,
104 // where the 2nd half blocked, ignore this response
105 DPRINTF(IEW, "[sn:%lli]: Response from first half of earlier "
106 "blocked split load recieved. Ignoring.\n", inst->seqNum);
107 delete state;
108 return;
109 }
110
111 // If this is a split access, wait until all packets are received.
112 if (TheISA::HasUnalignedMemAcc && !state->complete()) {
113 return;
114 }
115
116 assert(!cpu->switchedOut());
117 if (!inst->isSquashed()) {
118 if (!state->noWB) {
119 // Only loads and store conditionals perform the writeback
120 // after receving the response from the memory
121 assert(inst->isLoad() || inst->isStoreConditional());
122 if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
123 !state->isLoad) {
124 writeback(inst, pkt);
125 } else {
126 writeback(inst, state->mainPkt);
127 }
128 }
129
130 if (inst->isStore()) {
131 completeStore(state->idx);
132 }
133 }
134
135 if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
136 delete state->mainPkt->req;
137 delete state->mainPkt;
138 }
139
140 pkt->req->setAccessLatency();
141 cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));
142
143 delete state;
144}
145
146template <class Impl>
147LSQUnit<Impl>::LSQUnit()
148 : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
149 isStoreBlocked(false), storeInFlight(false), hasPendingPkt(false),
150 pendingPkt(nullptr)
151{
152}
153
154template<class Impl>
155void
156LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
157 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
158 unsigned id)
159{
160 cpu = cpu_ptr;
161 iewStage = iew_ptr;
162
163 lsq = lsq_ptr;
164
165 lsqID = id;
166
167 DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
168
169 // Add 1 for the sentinel entry (they are circular queues).
170 LQEntries = maxLQEntries + 1;
171 SQEntries = maxSQEntries + 1;
172
173 //Due to uint8_t index in LSQSenderState
174 assert(LQEntries <= 256);
175 assert(SQEntries <= 256);
176
177 loadQueue.resize(LQEntries);
178 storeQueue.resize(SQEntries);
179
180 depCheckShift = params->LSQDepCheckShift;
181 checkLoads = params->LSQCheckLoads;
182 cacheStorePorts = params->cacheStorePorts;
183 needsTSO = params->needsTSO;
184
185 resetState();
186}
187
188
189template<class Impl>
190void
191LSQUnit<Impl>::resetState()
192{
193 loads = stores = storesToWB = 0;
194
195 loadHead = loadTail = 0;
196
197 storeHead = storeWBIdx = storeTail = 0;
198
199 usedStorePorts = 0;
200
201 retryPkt = NULL;
202 memDepViolator = NULL;
203
204 stalled = false;
205
206 cacheBlockMask = ~(cpu->cacheLineSize() - 1);
207}
208
209template<class Impl>
210std::string
211LSQUnit<Impl>::name() const
212{
213 if (Impl::MaxThreads == 1) {
214 return iewStage->name() + ".lsq";
215 } else {
216 return iewStage->name() + ".lsq.thread" + std::to_string(lsqID);
217 }
218}
219
220template<class Impl>
221void
222LSQUnit<Impl>::regStats()
223{
224 lsqForwLoads
225 .name(name() + ".forwLoads")
226 .desc("Number of loads that had data forwarded from stores");
227
228 invAddrLoads
229 .name(name() + ".invAddrLoads")
230 .desc("Number of loads ignored due to an invalid address");
231
232 lsqSquashedLoads
233 .name(name() + ".squashedLoads")
234 .desc("Number of loads squashed");
235
236 lsqIgnoredResponses
237 .name(name() + ".ignoredResponses")
238 .desc("Number of memory responses ignored because the instruction is squashed");
239
240 lsqMemOrderViolation
241 .name(name() + ".memOrderViolation")
242 .desc("Number of memory ordering violations");
243
244 lsqSquashedStores
245 .name(name() + ".squashedStores")
246 .desc("Number of stores squashed");
247
248 invAddrSwpfs
249 .name(name() + ".invAddrSwpfs")
250 .desc("Number of software prefetches ignored due to an invalid address");
251
252 lsqBlockedLoads
253 .name(name() + ".blockedLoads")
254 .desc("Number of blocked loads due to partial load-store forwarding");
255
256 lsqRescheduledLoads
257 .name(name() + ".rescheduledLoads")
258 .desc("Number of loads that were rescheduled");
259
260 lsqCacheBlocked
261 .name(name() + ".cacheBlocked")
262 .desc("Number of times an access to memory failed due to the cache being blocked");
263}
264
265template<class Impl>
266void
267LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
268{
269 dcachePort = dcache_port;
270}
271
272template<class Impl>
273void
274LSQUnit<Impl>::clearLQ()
275{
276 loadQueue.clear();
277}
278
279template<class Impl>
280void
281LSQUnit<Impl>::clearSQ()
282{
283 storeQueue.clear();
284}
285
286template<class Impl>
287void
288LSQUnit<Impl>::drainSanityCheck() const
289{
290 for (int i = 0; i < loadQueue.size(); ++i)
291 assert(!loadQueue[i]);
292
293 assert(storesToWB == 0);
294 assert(!retryPkt);
295}
296
297template<class Impl>
298void
299LSQUnit<Impl>::takeOverFrom()
300{
301 resetState();
302}
303
304template<class Impl>
305void
306LSQUnit<Impl>::resizeLQ(unsigned size)
307{
308 unsigned size_plus_sentinel = size + 1;
309 assert(size_plus_sentinel >= LQEntries);
310
311 if (size_plus_sentinel > LQEntries) {
312 while (size_plus_sentinel > loadQueue.size()) {
313 DynInstPtr dummy;
314 loadQueue.push_back(dummy);
315 LQEntries++;
316 }
317 } else {
318 LQEntries = size_plus_sentinel;
319 }
320
321 assert(LQEntries <= 256);
322}
323
324template<class Impl>
325void
326LSQUnit<Impl>::resizeSQ(unsigned size)
327{
328 unsigned size_plus_sentinel = size + 1;
329 if (size_plus_sentinel > SQEntries) {
330 while (size_plus_sentinel > storeQueue.size()) {
331 SQEntry dummy;
332 storeQueue.push_back(dummy);
333 SQEntries++;
334 }
335 } else {
336 SQEntries = size_plus_sentinel;
337 }
338
339 assert(SQEntries <= 256);
340}
341
342template <class Impl>
343void
344LSQUnit<Impl>::insert(DynInstPtr &inst)
345{
346 assert(inst->isMemRef());
347
348 assert(inst->isLoad() || inst->isStore());
349
350 if (inst->isLoad()) {
351 insertLoad(inst);
352 } else {
353 insertStore(inst);
354 }
355
356 inst->setInLSQ();
357}
358
359template <class Impl>
360void
361LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
362{
363 assert((loadTail + 1) % LQEntries != loadHead);
364 assert(loads < LQEntries);
365
366 DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
367 load_inst->pcState(), loadTail, load_inst->seqNum);
368
369 load_inst->lqIdx = loadTail;
370
371 if (stores == 0) {
372 load_inst->sqIdx = -1;
373 } else {
374 load_inst->sqIdx = storeTail;
375 }
376
377 loadQueue[loadTail] = load_inst;
378
379 incrLdIdx(loadTail);
380
381 ++loads;
382}
383
384template <class Impl>
385void
386LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
387{
388 // Make sure it is not full before inserting an instruction.
389 assert((storeTail + 1) % SQEntries != storeHead);
390 assert(stores < SQEntries);
391
392 DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
393 store_inst->pcState(), storeTail, store_inst->seqNum);
394
395 store_inst->sqIdx = storeTail;
396 store_inst->lqIdx = loadTail;
397
398 storeQueue[storeTail] = SQEntry(store_inst);
399
400 incrStIdx(storeTail);
401
402 ++stores;
403}
404
405template <class Impl>
406typename Impl::DynInstPtr
407LSQUnit<Impl>::getMemDepViolator()
408{
409 DynInstPtr temp = memDepViolator;
410
411 memDepViolator = NULL;
412
413 return temp;
414}
415
416template <class Impl>
417unsigned
418LSQUnit<Impl>::numFreeLoadEntries()
419{
420 //LQ has an extra dummy entry to differentiate
421 //empty/full conditions. Subtract 1 from the free entries.
422 DPRINTF(LSQUnit, "LQ size: %d, #loads occupied: %d\n", LQEntries, loads);
423 return LQEntries - loads - 1;
424}
425
426template <class Impl>
427unsigned
428LSQUnit<Impl>::numFreeStoreEntries()
429{
430 //SQ has an extra dummy entry to differentiate
431 //empty/full conditions. Subtract 1 from the free entries.
432 DPRINTF(LSQUnit, "SQ size: %d, #stores occupied: %d\n", SQEntries, stores);
433 return SQEntries - stores - 1;
434
435 }
436
437template <class Impl>
438void
439LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
440{
441 // Should only ever get invalidations in here
442 assert(pkt->isInvalidate());
443
444 int load_idx = loadHead;
445 DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
446
447 // Only Invalidate packet calls checkSnoop
448 assert(pkt->isInvalidate());
449 for (int x = 0; x < cpu->numContexts(); x++) {
450 ThreadContext *tc = cpu->getContext(x);
451 bool no_squash = cpu->thread[x]->noSquashFromTC;
452 cpu->thread[x]->noSquashFromTC = true;
453 TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
454 cpu->thread[x]->noSquashFromTC = no_squash;
455 }
456
457 Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
458
459 DynInstPtr ld_inst = loadQueue[load_idx];
460 if (ld_inst) {
461 Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask;
462 Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask;
463
464 // Check that this snoop didn't just invalidate our lock flag
465 if (ld_inst->effAddrValid() && (load_addr_low == invalidate_addr
466 || load_addr_high == invalidate_addr)
467 && ld_inst->memReqFlags & Request::LLSC)
468 TheISA::handleLockedSnoopHit(ld_inst.get());
469 }
470
471 // If this is the only load in the LSQ we don't care
472 if (load_idx == loadTail)
473 return;
474
475 incrLdIdx(load_idx);
476
477 bool force_squash = false;
478
479 while (load_idx != loadTail) {
480 DynInstPtr ld_inst = loadQueue[load_idx];
481
482 if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
483 incrLdIdx(load_idx);
484 continue;
485 }
486
487 Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask;
488 Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask;
489
490 DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
491 ld_inst->seqNum, load_addr_low, invalidate_addr);
492
493 if ((load_addr_low == invalidate_addr
494 || load_addr_high == invalidate_addr) || force_squash) {
495 if (needsTSO) {
496 // If we have a TSO system, as all loads must be ordered with
497 // all other loads, this load as well as *all* subsequent loads
498 // need to be squashed to prevent possible load reordering.
499 force_squash = true;
500 }
501 if (ld_inst->possibleLoadViolation() || force_squash) {
502 DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
503 pkt->getAddr(), ld_inst->seqNum);
504
505 // Mark the load for re-execution
506 ld_inst->fault = std::make_shared<ReExec>();
507 } else {
508 DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n",
509 pkt->getAddr(), ld_inst->seqNum);
510
511 // Make sure that we don't lose a snoop hitting a LOCKED
512 // address since the LOCK* flags don't get updated until
513 // commit.
514 if (ld_inst->memReqFlags & Request::LLSC)
515 TheISA::handleLockedSnoopHit(ld_inst.get());
516
517 // If a older load checks this and it's true
518 // then we might have missed the snoop
519 // in which case we need to invalidate to be sure
520 ld_inst->hitExternalSnoop(true);
521 }
522 }
523 incrLdIdx(load_idx);
524 }
525 return;
526}
527
528template <class Impl>
529Fault
530LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
531{
532 Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
533 Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
534
535 /** @todo in theory you only need to check an instruction that has executed
536 * however, there isn't a good way in the pipeline at the moment to check
537 * all instructions that will execute before the store writes back. Thus,
538 * like the implementation that came before it, we're overly conservative.
539 */
540 while (load_idx != loadTail) {
541 DynInstPtr ld_inst = loadQueue[load_idx];
542 if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
543 incrLdIdx(load_idx);
544 continue;
545 }
546
547 Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
548 Addr ld_eff_addr2 =
549 (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
550
551 if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
552 if (inst->isLoad()) {
553 // If this load is to the same block as an external snoop
554 // invalidate that we've observed then the load needs to be
555 // squashed as it could have newer data
556 if (ld_inst->hitExternalSnoop()) {
557 if (!memDepViolator ||
558 ld_inst->seqNum < memDepViolator->seqNum) {
559 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
560 "and [sn:%lli] at address %#x\n",
561 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
562 memDepViolator = ld_inst;
563
564 ++lsqMemOrderViolation;
565
566 return std::make_shared<GenericISA::M5PanicFault>(
567 "Detected fault with inst [sn:%lli] and "
568 "[sn:%lli] at address %#x\n",
569 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
570 }
571 }
572
573 // Otherwise, mark the load has a possible load violation
574 // and if we see a snoop before it's commited, we need to squash
575 ld_inst->possibleLoadViolation(true);
576 DPRINTF(LSQUnit, "Found possible load violation at addr: %#x"
577 " between instructions [sn:%lli] and [sn:%lli]\n",
578 inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
579 } else {
580 // A load/store incorrectly passed this store.
581 // Check if we already have a violator, or if it's newer
582 // squash and refetch.
583 if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
584 break;
585
586 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
587 "[sn:%lli] at address %#x\n",
588 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
589 memDepViolator = ld_inst;
590
591 ++lsqMemOrderViolation;
592
593 return std::make_shared<GenericISA::M5PanicFault>(
594 "Detected fault with "
595 "inst [sn:%lli] and [sn:%lli] at address %#x\n",
596 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
597 }
598 }
599
600 incrLdIdx(load_idx);
601 }
602 return NoFault;
603}
604
605
606
607
608template <class Impl>
609Fault
610LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
611{
612 using namespace TheISA;
613 // Execute a specific load.
614 Fault load_fault = NoFault;
615
616 DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
617 inst->pcState(), inst->seqNum);
618
619 assert(!inst->isSquashed());
620
621 load_fault = inst->initiateAcc();
622
623 if (inst->isTranslationDelayed() &&
624 load_fault == NoFault)
625 return load_fault;
626
627 // If the instruction faulted or predicated false, then we need to send it
628 // along to commit without the instruction completing.
629 if (load_fault != NoFault || !inst->readPredicate()) {
630 // Send this instruction to commit, also make sure iew stage
631 // realizes there is activity. Mark it as executed unless it
632 // is a strictly ordered load that needs to hit the head of
633 // commit.
634 if (!inst->readPredicate())
635 inst->forwardOldRegs();
636 DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
637 inst->seqNum,
638 (load_fault != NoFault ? "fault" : "predication"));
639 if (!(inst->hasRequest() && inst->strictlyOrdered()) ||
640 inst->isAtCommit()) {
641 inst->setExecuted();
642 }
643 iewStage->instToCommit(inst);
644 iewStage->activityThisCycle();
645 } else {
646 assert(inst->effAddrValid());
647 int load_idx = inst->lqIdx;
648 incrLdIdx(load_idx);
649
650 if (checkLoads)
651 return checkViolations(load_idx, inst);
652 }
653
654 return load_fault;
655}
656
657template <class Impl>
658Fault
659LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
660{
661 using namespace TheISA;
662 // Make sure that a store exists.
663 assert(stores != 0);
664
665 int store_idx = store_inst->sqIdx;
666
667 DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
668 store_inst->pcState(), store_inst->seqNum);
669
670 assert(!store_inst->isSquashed());
671
672 // Check the recently completed loads to see if any match this store's
673 // address. If so, then we have a memory ordering violation.
674 int load_idx = store_inst->lqIdx;
675
676 Fault store_fault = store_inst->initiateAcc();
677
678 if (store_inst->isTranslationDelayed() &&
679 store_fault == NoFault)
680 return store_fault;
681
1
2/*
3 * Copyright (c) 2010-2014, 2017 ARM Limited
4 * Copyright (c) 2013 Advanced Micro Devices, Inc.
5 * All rights reserved
6 *
7 * The license below extends only to copyright in the software and shall
8 * not be construed as granting a license to any other intellectual
9 * property including but not limited to intellectual property relating
10 * to a hardware implementation of the functionality of the software
11 * licensed hereunder. You may use the software subject to the license
12 * terms below provided that you ensure that this notice is replicated
13 * unmodified and in its entirety in all distributions of the software,
14 * modified or unmodified, in source code or in binary form.
15 *
16 * Copyright (c) 2004-2005 The Regents of The University of Michigan
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 * Korey Sewell
44 */
45
46#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
47#define __CPU_O3_LSQ_UNIT_IMPL_HH__
48
49#include "arch/generic/debugfaults.hh"
50#include "arch/locked_mem.hh"
51#include "base/str.hh"
52#include "config/the_isa.hh"
53#include "cpu/checker/cpu.hh"
54#include "cpu/o3/lsq.hh"
55#include "cpu/o3/lsq_unit.hh"
56#include "debug/Activity.hh"
57#include "debug/IEW.hh"
58#include "debug/LSQUnit.hh"
59#include "debug/O3PipeView.hh"
60#include "mem/packet.hh"
61#include "mem/request.hh"
62
63template<class Impl>
64LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
65 LSQUnit *lsq_ptr)
66 : Event(Default_Pri, AutoDelete),
67 inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
68{
69}
70
71template<class Impl>
72void
73LSQUnit<Impl>::WritebackEvent::process()
74{
75 assert(!lsqPtr->cpu->switchedOut());
76
77 lsqPtr->writeback(inst, pkt);
78
79 if (pkt->senderState)
80 delete pkt->senderState;
81
82 delete pkt->req;
83 delete pkt;
84}
85
86template<class Impl>
87const char *
88LSQUnit<Impl>::WritebackEvent::description() const
89{
90 return "Store writeback";
91}
92
93template<class Impl>
94void
95LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
96{
97 LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
98 DynInstPtr inst = state->inst;
99 DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
100 DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
101
102 if (state->cacheBlocked) {
103 // This is the first half of a previous split load,
104 // where the 2nd half blocked, ignore this response
105 DPRINTF(IEW, "[sn:%lli]: Response from first half of earlier "
106 "blocked split load recieved. Ignoring.\n", inst->seqNum);
107 delete state;
108 return;
109 }
110
111 // If this is a split access, wait until all packets are received.
112 if (TheISA::HasUnalignedMemAcc && !state->complete()) {
113 return;
114 }
115
116 assert(!cpu->switchedOut());
117 if (!inst->isSquashed()) {
118 if (!state->noWB) {
119 // Only loads and store conditionals perform the writeback
120 // after receving the response from the memory
121 assert(inst->isLoad() || inst->isStoreConditional());
122 if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
123 !state->isLoad) {
124 writeback(inst, pkt);
125 } else {
126 writeback(inst, state->mainPkt);
127 }
128 }
129
130 if (inst->isStore()) {
131 completeStore(state->idx);
132 }
133 }
134
135 if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
136 delete state->mainPkt->req;
137 delete state->mainPkt;
138 }
139
140 pkt->req->setAccessLatency();
141 cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));
142
143 delete state;
144}
145
146template <class Impl>
147LSQUnit<Impl>::LSQUnit()
148 : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
149 isStoreBlocked(false), storeInFlight(false), hasPendingPkt(false),
150 pendingPkt(nullptr)
151{
152}
153
154template<class Impl>
155void
156LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
157 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
158 unsigned id)
159{
160 cpu = cpu_ptr;
161 iewStage = iew_ptr;
162
163 lsq = lsq_ptr;
164
165 lsqID = id;
166
167 DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
168
169 // Add 1 for the sentinel entry (they are circular queues).
170 LQEntries = maxLQEntries + 1;
171 SQEntries = maxSQEntries + 1;
172
173 //Due to uint8_t index in LSQSenderState
174 assert(LQEntries <= 256);
175 assert(SQEntries <= 256);
176
177 loadQueue.resize(LQEntries);
178 storeQueue.resize(SQEntries);
179
180 depCheckShift = params->LSQDepCheckShift;
181 checkLoads = params->LSQCheckLoads;
182 cacheStorePorts = params->cacheStorePorts;
183 needsTSO = params->needsTSO;
184
185 resetState();
186}
187
188
189template<class Impl>
190void
191LSQUnit<Impl>::resetState()
192{
193 loads = stores = storesToWB = 0;
194
195 loadHead = loadTail = 0;
196
197 storeHead = storeWBIdx = storeTail = 0;
198
199 usedStorePorts = 0;
200
201 retryPkt = NULL;
202 memDepViolator = NULL;
203
204 stalled = false;
205
206 cacheBlockMask = ~(cpu->cacheLineSize() - 1);
207}
208
209template<class Impl>
210std::string
211LSQUnit<Impl>::name() const
212{
213 if (Impl::MaxThreads == 1) {
214 return iewStage->name() + ".lsq";
215 } else {
216 return iewStage->name() + ".lsq.thread" + std::to_string(lsqID);
217 }
218}
219
220template<class Impl>
221void
222LSQUnit<Impl>::regStats()
223{
224 lsqForwLoads
225 .name(name() + ".forwLoads")
226 .desc("Number of loads that had data forwarded from stores");
227
228 invAddrLoads
229 .name(name() + ".invAddrLoads")
230 .desc("Number of loads ignored due to an invalid address");
231
232 lsqSquashedLoads
233 .name(name() + ".squashedLoads")
234 .desc("Number of loads squashed");
235
236 lsqIgnoredResponses
237 .name(name() + ".ignoredResponses")
238 .desc("Number of memory responses ignored because the instruction is squashed");
239
240 lsqMemOrderViolation
241 .name(name() + ".memOrderViolation")
242 .desc("Number of memory ordering violations");
243
244 lsqSquashedStores
245 .name(name() + ".squashedStores")
246 .desc("Number of stores squashed");
247
248 invAddrSwpfs
249 .name(name() + ".invAddrSwpfs")
250 .desc("Number of software prefetches ignored due to an invalid address");
251
252 lsqBlockedLoads
253 .name(name() + ".blockedLoads")
254 .desc("Number of blocked loads due to partial load-store forwarding");
255
256 lsqRescheduledLoads
257 .name(name() + ".rescheduledLoads")
258 .desc("Number of loads that were rescheduled");
259
260 lsqCacheBlocked
261 .name(name() + ".cacheBlocked")
262 .desc("Number of times an access to memory failed due to the cache being blocked");
263}
264
265template<class Impl>
266void
267LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
268{
269 dcachePort = dcache_port;
270}
271
272template<class Impl>
273void
274LSQUnit<Impl>::clearLQ()
275{
276 loadQueue.clear();
277}
278
279template<class Impl>
280void
281LSQUnit<Impl>::clearSQ()
282{
283 storeQueue.clear();
284}
285
286template<class Impl>
287void
288LSQUnit<Impl>::drainSanityCheck() const
289{
290 for (int i = 0; i < loadQueue.size(); ++i)
291 assert(!loadQueue[i]);
292
293 assert(storesToWB == 0);
294 assert(!retryPkt);
295}
296
297template<class Impl>
298void
299LSQUnit<Impl>::takeOverFrom()
300{
301 resetState();
302}
303
304template<class Impl>
305void
306LSQUnit<Impl>::resizeLQ(unsigned size)
307{
308 unsigned size_plus_sentinel = size + 1;
309 assert(size_plus_sentinel >= LQEntries);
310
311 if (size_plus_sentinel > LQEntries) {
312 while (size_plus_sentinel > loadQueue.size()) {
313 DynInstPtr dummy;
314 loadQueue.push_back(dummy);
315 LQEntries++;
316 }
317 } else {
318 LQEntries = size_plus_sentinel;
319 }
320
321 assert(LQEntries <= 256);
322}
323
324template<class Impl>
325void
326LSQUnit<Impl>::resizeSQ(unsigned size)
327{
328 unsigned size_plus_sentinel = size + 1;
329 if (size_plus_sentinel > SQEntries) {
330 while (size_plus_sentinel > storeQueue.size()) {
331 SQEntry dummy;
332 storeQueue.push_back(dummy);
333 SQEntries++;
334 }
335 } else {
336 SQEntries = size_plus_sentinel;
337 }
338
339 assert(SQEntries <= 256);
340}
341
342template <class Impl>
343void
344LSQUnit<Impl>::insert(DynInstPtr &inst)
345{
346 assert(inst->isMemRef());
347
348 assert(inst->isLoad() || inst->isStore());
349
350 if (inst->isLoad()) {
351 insertLoad(inst);
352 } else {
353 insertStore(inst);
354 }
355
356 inst->setInLSQ();
357}
358
359template <class Impl>
360void
361LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
362{
363 assert((loadTail + 1) % LQEntries != loadHead);
364 assert(loads < LQEntries);
365
366 DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
367 load_inst->pcState(), loadTail, load_inst->seqNum);
368
369 load_inst->lqIdx = loadTail;
370
371 if (stores == 0) {
372 load_inst->sqIdx = -1;
373 } else {
374 load_inst->sqIdx = storeTail;
375 }
376
377 loadQueue[loadTail] = load_inst;
378
379 incrLdIdx(loadTail);
380
381 ++loads;
382}
383
384template <class Impl>
385void
386LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
387{
388 // Make sure it is not full before inserting an instruction.
389 assert((storeTail + 1) % SQEntries != storeHead);
390 assert(stores < SQEntries);
391
392 DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
393 store_inst->pcState(), storeTail, store_inst->seqNum);
394
395 store_inst->sqIdx = storeTail;
396 store_inst->lqIdx = loadTail;
397
398 storeQueue[storeTail] = SQEntry(store_inst);
399
400 incrStIdx(storeTail);
401
402 ++stores;
403}
404
405template <class Impl>
406typename Impl::DynInstPtr
407LSQUnit<Impl>::getMemDepViolator()
408{
409 DynInstPtr temp = memDepViolator;
410
411 memDepViolator = NULL;
412
413 return temp;
414}
415
416template <class Impl>
417unsigned
418LSQUnit<Impl>::numFreeLoadEntries()
419{
420 //LQ has an extra dummy entry to differentiate
421 //empty/full conditions. Subtract 1 from the free entries.
422 DPRINTF(LSQUnit, "LQ size: %d, #loads occupied: %d\n", LQEntries, loads);
423 return LQEntries - loads - 1;
424}
425
426template <class Impl>
427unsigned
428LSQUnit<Impl>::numFreeStoreEntries()
429{
430 //SQ has an extra dummy entry to differentiate
431 //empty/full conditions. Subtract 1 from the free entries.
432 DPRINTF(LSQUnit, "SQ size: %d, #stores occupied: %d\n", SQEntries, stores);
433 return SQEntries - stores - 1;
434
435 }
436
437template <class Impl>
438void
439LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
440{
441 // Should only ever get invalidations in here
442 assert(pkt->isInvalidate());
443
444 int load_idx = loadHead;
445 DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
446
447 // Only Invalidate packet calls checkSnoop
448 assert(pkt->isInvalidate());
449 for (int x = 0; x < cpu->numContexts(); x++) {
450 ThreadContext *tc = cpu->getContext(x);
451 bool no_squash = cpu->thread[x]->noSquashFromTC;
452 cpu->thread[x]->noSquashFromTC = true;
453 TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
454 cpu->thread[x]->noSquashFromTC = no_squash;
455 }
456
457 Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
458
459 DynInstPtr ld_inst = loadQueue[load_idx];
460 if (ld_inst) {
461 Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask;
462 Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask;
463
464 // Check that this snoop didn't just invalidate our lock flag
465 if (ld_inst->effAddrValid() && (load_addr_low == invalidate_addr
466 || load_addr_high == invalidate_addr)
467 && ld_inst->memReqFlags & Request::LLSC)
468 TheISA::handleLockedSnoopHit(ld_inst.get());
469 }
470
471 // If this is the only load in the LSQ we don't care
472 if (load_idx == loadTail)
473 return;
474
475 incrLdIdx(load_idx);
476
477 bool force_squash = false;
478
479 while (load_idx != loadTail) {
480 DynInstPtr ld_inst = loadQueue[load_idx];
481
482 if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
483 incrLdIdx(load_idx);
484 continue;
485 }
486
487 Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask;
488 Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask;
489
490 DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
491 ld_inst->seqNum, load_addr_low, invalidate_addr);
492
493 if ((load_addr_low == invalidate_addr
494 || load_addr_high == invalidate_addr) || force_squash) {
495 if (needsTSO) {
496 // If we have a TSO system, as all loads must be ordered with
497 // all other loads, this load as well as *all* subsequent loads
498 // need to be squashed to prevent possible load reordering.
499 force_squash = true;
500 }
501 if (ld_inst->possibleLoadViolation() || force_squash) {
502 DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
503 pkt->getAddr(), ld_inst->seqNum);
504
505 // Mark the load for re-execution
506 ld_inst->fault = std::make_shared<ReExec>();
507 } else {
508 DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n",
509 pkt->getAddr(), ld_inst->seqNum);
510
511 // Make sure that we don't lose a snoop hitting a LOCKED
512 // address since the LOCK* flags don't get updated until
513 // commit.
514 if (ld_inst->memReqFlags & Request::LLSC)
515 TheISA::handleLockedSnoopHit(ld_inst.get());
516
517 // If a older load checks this and it's true
518 // then we might have missed the snoop
519 // in which case we need to invalidate to be sure
520 ld_inst->hitExternalSnoop(true);
521 }
522 }
523 incrLdIdx(load_idx);
524 }
525 return;
526}
527
528template <class Impl>
529Fault
530LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
531{
532 Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
533 Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
534
535 /** @todo in theory you only need to check an instruction that has executed
536 * however, there isn't a good way in the pipeline at the moment to check
537 * all instructions that will execute before the store writes back. Thus,
538 * like the implementation that came before it, we're overly conservative.
539 */
540 while (load_idx != loadTail) {
541 DynInstPtr ld_inst = loadQueue[load_idx];
542 if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
543 incrLdIdx(load_idx);
544 continue;
545 }
546
547 Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
548 Addr ld_eff_addr2 =
549 (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
550
551 if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
552 if (inst->isLoad()) {
553 // If this load is to the same block as an external snoop
554 // invalidate that we've observed then the load needs to be
555 // squashed as it could have newer data
556 if (ld_inst->hitExternalSnoop()) {
557 if (!memDepViolator ||
558 ld_inst->seqNum < memDepViolator->seqNum) {
559 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
560 "and [sn:%lli] at address %#x\n",
561 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
562 memDepViolator = ld_inst;
563
564 ++lsqMemOrderViolation;
565
566 return std::make_shared<GenericISA::M5PanicFault>(
567 "Detected fault with inst [sn:%lli] and "
568 "[sn:%lli] at address %#x\n",
569 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
570 }
571 }
572
573 // Otherwise, mark the load has a possible load violation
574 // and if we see a snoop before it's commited, we need to squash
575 ld_inst->possibleLoadViolation(true);
576 DPRINTF(LSQUnit, "Found possible load violation at addr: %#x"
577 " between instructions [sn:%lli] and [sn:%lli]\n",
578 inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
579 } else {
580 // A load/store incorrectly passed this store.
581 // Check if we already have a violator, or if it's newer
582 // squash and refetch.
583 if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
584 break;
585
586 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
587 "[sn:%lli] at address %#x\n",
588 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
589 memDepViolator = ld_inst;
590
591 ++lsqMemOrderViolation;
592
593 return std::make_shared<GenericISA::M5PanicFault>(
594 "Detected fault with "
595 "inst [sn:%lli] and [sn:%lli] at address %#x\n",
596 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
597 }
598 }
599
600 incrLdIdx(load_idx);
601 }
602 return NoFault;
603}
604
605
606
607
608template <class Impl>
609Fault
610LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
611{
612 using namespace TheISA;
613 // Execute a specific load.
614 Fault load_fault = NoFault;
615
616 DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
617 inst->pcState(), inst->seqNum);
618
619 assert(!inst->isSquashed());
620
621 load_fault = inst->initiateAcc();
622
623 if (inst->isTranslationDelayed() &&
624 load_fault == NoFault)
625 return load_fault;
626
627 // If the instruction faulted or predicated false, then we need to send it
628 // along to commit without the instruction completing.
629 if (load_fault != NoFault || !inst->readPredicate()) {
630 // Send this instruction to commit, also make sure iew stage
631 // realizes there is activity. Mark it as executed unless it
632 // is a strictly ordered load that needs to hit the head of
633 // commit.
634 if (!inst->readPredicate())
635 inst->forwardOldRegs();
636 DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
637 inst->seqNum,
638 (load_fault != NoFault ? "fault" : "predication"));
639 if (!(inst->hasRequest() && inst->strictlyOrdered()) ||
640 inst->isAtCommit()) {
641 inst->setExecuted();
642 }
643 iewStage->instToCommit(inst);
644 iewStage->activityThisCycle();
645 } else {
646 assert(inst->effAddrValid());
647 int load_idx = inst->lqIdx;
648 incrLdIdx(load_idx);
649
650 if (checkLoads)
651 return checkViolations(load_idx, inst);
652 }
653
654 return load_fault;
655}
656
657template <class Impl>
658Fault
659LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
660{
661 using namespace TheISA;
662 // Make sure that a store exists.
663 assert(stores != 0);
664
665 int store_idx = store_inst->sqIdx;
666
667 DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
668 store_inst->pcState(), store_inst->seqNum);
669
670 assert(!store_inst->isSquashed());
671
672 // Check the recently completed loads to see if any match this store's
673 // address. If so, then we have a memory ordering violation.
674 int load_idx = store_inst->lqIdx;
675
676 Fault store_fault = store_inst->initiateAcc();
677
678 if (store_inst->isTranslationDelayed() &&
679 store_fault == NoFault)
680 return store_fault;
681
682 if (!store_inst->readPredicate())
682 if (!store_inst->readPredicate()) {
683 DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
684 store_inst->seqNum);
683 store_inst->forwardOldRegs();
685 store_inst->forwardOldRegs();
686 return store_fault;
687 }
684
685 if (storeQueue[store_idx].size == 0) {
686 DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
687 store_inst->pcState(), store_inst->seqNum);
688
689 return store_fault;
688
689 if (storeQueue[store_idx].size == 0) {
690 DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
691 store_inst->pcState(), store_inst->seqNum);
692
693 return store_fault;
690 } else if (!store_inst->readPredicate()) {
691 DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
692 store_inst->seqNum);
693 return store_fault;
694 }
695
696 assert(store_fault == NoFault);
697
698 if (store_inst->isStoreConditional()) {
699 // Store conditionals need to set themselves as able to
700 // writeback if we haven't had a fault by here.
701 storeQueue[store_idx].canWB = true;
702
703 ++storesToWB;
704 }
705
706 return checkViolations(load_idx, store_inst);
707
708}
709
710template <class Impl>
711void
712LSQUnit<Impl>::commitLoad()
713{
714 assert(loadQueue[loadHead]);
715
716 DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
717 loadQueue[loadHead]->pcState());
718
719 loadQueue[loadHead] = NULL;
720
721 incrLdIdx(loadHead);
722
723 --loads;
724}
725
726template <class Impl>
727void
728LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
729{
730 assert(loads == 0 || loadQueue[loadHead]);
731
732 while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
733 commitLoad();
734 }
735}
736
737template <class Impl>
738void
739LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
740{
741 assert(stores == 0 || storeQueue[storeHead].inst);
742
743 int store_idx = storeHead;
744
745 while (store_idx != storeTail) {
746 assert(storeQueue[store_idx].inst);
747 // Mark any stores that are now committed and have not yet
748 // been marked as able to write back.
749 if (!storeQueue[store_idx].canWB) {
750 if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
751 break;
752 }
753 DPRINTF(LSQUnit, "Marking store as able to write back, PC "
754 "%s [sn:%lli]\n",
755 storeQueue[store_idx].inst->pcState(),
756 storeQueue[store_idx].inst->seqNum);
757
758 storeQueue[store_idx].canWB = true;
759
760 ++storesToWB;
761 }
762
763 incrStIdx(store_idx);
764 }
765}
766
767template <class Impl>
768void
769LSQUnit<Impl>::writebackPendingStore()
770{
771 if (hasPendingPkt) {
772 assert(pendingPkt != NULL);
773
774 // If the cache is blocked, this will store the packet for retry.
775 if (sendStore(pendingPkt)) {
776 storePostSend(pendingPkt);
777 }
778 pendingPkt = NULL;
779 hasPendingPkt = false;
780 }
781}
782
783template <class Impl>
784void
785LSQUnit<Impl>::writebackStores()
786{
787 // First writeback the second packet from any split store that didn't
788 // complete last cycle because there weren't enough cache ports available.
789 if (TheISA::HasUnalignedMemAcc) {
790 writebackPendingStore();
791 }
792
793 while (storesToWB > 0 &&
794 storeWBIdx != storeTail &&
795 storeQueue[storeWBIdx].inst &&
796 storeQueue[storeWBIdx].canWB &&
797 ((!needsTSO) || (!storeInFlight)) &&
798 usedStorePorts < cacheStorePorts) {
799
800 if (isStoreBlocked) {
801 DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
802 " is blocked!\n");
803 break;
804 }
805
806 // Store didn't write any data so no need to write it back to
807 // memory.
808 if (storeQueue[storeWBIdx].size == 0) {
809 completeStore(storeWBIdx);
810
811 incrStIdx(storeWBIdx);
812
813 continue;
814 }
815
816 ++usedStorePorts;
817
818 if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
819 incrStIdx(storeWBIdx);
820
821 continue;
822 }
823
824 assert(storeQueue[storeWBIdx].req);
825 assert(!storeQueue[storeWBIdx].committed);
826
827 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
828 assert(storeQueue[storeWBIdx].sreqLow);
829 assert(storeQueue[storeWBIdx].sreqHigh);
830 }
831
832 DynInstPtr inst = storeQueue[storeWBIdx].inst;
833
834 Request *req = storeQueue[storeWBIdx].req;
835 RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
836 RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
837
838 storeQueue[storeWBIdx].committed = true;
839
840 assert(!inst->memData);
841 inst->memData = new uint8_t[req->getSize()];
842
843 if (storeQueue[storeWBIdx].isAllZeros)
844 memset(inst->memData, 0, req->getSize());
845 else
846 memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
847
848 PacketPtr data_pkt;
849 PacketPtr snd_data_pkt = NULL;
850
851 LSQSenderState *state = new LSQSenderState;
852 state->isLoad = false;
853 state->idx = storeWBIdx;
854 state->inst = inst;
855
856 if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
857
858 // Build a single data packet if the store isn't split.
859 data_pkt = Packet::createWrite(req);
860 data_pkt->dataStatic(inst->memData);
861 data_pkt->senderState = state;
862 } else {
863 // Create two packets if the store is split in two.
864 data_pkt = Packet::createWrite(sreqLow);
865 snd_data_pkt = Packet::createWrite(sreqHigh);
866
867 data_pkt->dataStatic(inst->memData);
868 snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
869
870 data_pkt->senderState = state;
871 snd_data_pkt->senderState = state;
872
873 state->isSplit = true;
874 state->outstanding = 2;
875
876 // Can delete the main request now.
877 delete req;
878 req = sreqLow;
879 }
880
881 DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
882 "to Addr:%#x, data:%#x [sn:%lli]\n",
883 storeWBIdx, inst->pcState(),
884 req->getPaddr(), (int)*(inst->memData),
885 inst->seqNum);
886
887 // @todo: Remove this SC hack once the memory system handles it.
888 if (inst->isStoreConditional()) {
889 assert(!storeQueue[storeWBIdx].isSplit);
890 // Disable recording the result temporarily. Writing to
891 // misc regs normally updates the result, but this is not
892 // the desired behavior when handling store conditionals.
893 inst->recordResult(false);
894 bool success = TheISA::handleLockedWrite(inst.get(), req, cacheBlockMask);
895 inst->recordResult(true);
896
897 if (!success) {
898 // Instantly complete this store.
899 DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. "
900 "Instantly completing it.\n",
901 inst->seqNum);
902 WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
903 cpu->schedule(wb, curTick() + 1);
904 completeStore(storeWBIdx);
905 incrStIdx(storeWBIdx);
906 continue;
907 }
908 } else {
909 // Non-store conditionals do not need a writeback.
910 state->noWB = true;
911 }
912
913 bool split =
914 TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
915
916 ThreadContext *thread = cpu->tcBase(lsqID);
917
918 if (req->isMmappedIpr()) {
919 assert(!inst->isStoreConditional());
920 TheISA::handleIprWrite(thread, data_pkt);
921 delete data_pkt;
922 if (split) {
923 assert(snd_data_pkt->req->isMmappedIpr());
924 TheISA::handleIprWrite(thread, snd_data_pkt);
925 delete snd_data_pkt;
926 delete sreqLow;
927 delete sreqHigh;
928 }
929 delete state;
930 delete req;
931 completeStore(storeWBIdx);
932 incrStIdx(storeWBIdx);
933 } else if (!sendStore(data_pkt)) {
934 DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
935 "retry later\n",
936 inst->seqNum);
937
938 // Need to store the second packet, if split.
939 if (split) {
940 state->pktToSend = true;
941 state->pendingPacket = snd_data_pkt;
942 }
943 } else {
944
945 // If split, try to send the second packet too
946 if (split) {
947 assert(snd_data_pkt);
948
949 // Ensure there are enough ports to use.
950 if (usedStorePorts < cacheStorePorts) {
951 ++usedStorePorts;
952 if (sendStore(snd_data_pkt)) {
953 storePostSend(snd_data_pkt);
954 } else {
955 DPRINTF(IEW, "D-Cache became blocked when writing"
956 " [sn:%lli] second packet, will retry later\n",
957 inst->seqNum);
958 }
959 } else {
960
961 // Store the packet for when there's free ports.
962 assert(pendingPkt == NULL);
963 pendingPkt = snd_data_pkt;
964 hasPendingPkt = true;
965 }
966 } else {
967
968 // Not a split store.
969 storePostSend(data_pkt);
970 }
971 }
972 }
973
974 // Not sure this should set it to 0.
975 usedStorePorts = 0;
976
977 assert(stores >= 0 && storesToWB >= 0);
978}
979
980/*template <class Impl>
981void
982LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
983{
984 list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
985 mshrSeqNums.end(),
986 seqNum);
987
988 if (mshr_it != mshrSeqNums.end()) {
989 mshrSeqNums.erase(mshr_it);
990 DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
991 }
992}*/
993
994template <class Impl>
995void
996LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
997{
998 DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
999 "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
1000
1001 int load_idx = loadTail;
1002 decrLdIdx(load_idx);
1003
1004 while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
1005 DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
1006 "[sn:%lli]\n",
1007 loadQueue[load_idx]->pcState(),
1008 loadQueue[load_idx]->seqNum);
1009
1010 if (isStalled() && load_idx == stallingLoadIdx) {
1011 stalled = false;
1012 stallingStoreIsn = 0;
1013 stallingLoadIdx = 0;
1014 }
1015
1016 // Clear the smart pointer to make sure it is decremented.
1017 loadQueue[load_idx]->setSquashed();
1018 loadQueue[load_idx] = NULL;
1019 --loads;
1020
1021 // Inefficient!
1022 loadTail = load_idx;
1023
1024 decrLdIdx(load_idx);
1025 ++lsqSquashedLoads;
1026 }
1027
1028 if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1029 memDepViolator = NULL;
1030 }
1031
1032 int store_idx = storeTail;
1033 decrStIdx(store_idx);
1034
1035 while (stores != 0 &&
1036 storeQueue[store_idx].inst->seqNum > squashed_num) {
1037 // Instructions marked as can WB are already committed.
1038 if (storeQueue[store_idx].canWB) {
1039 break;
1040 }
1041
1042 DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1043 "idx:%i [sn:%lli]\n",
1044 storeQueue[store_idx].inst->pcState(),
1045 store_idx, storeQueue[store_idx].inst->seqNum);
1046
1047 // I don't think this can happen. It should have been cleared
1048 // by the stalling load.
1049 if (isStalled() &&
1050 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1051 panic("Is stalled should have been cleared by stalling load!\n");
1052 stalled = false;
1053 stallingStoreIsn = 0;
1054 }
1055
1056 // Clear the smart pointer to make sure it is decremented.
1057 storeQueue[store_idx].inst->setSquashed();
1058 storeQueue[store_idx].inst = NULL;
1059 storeQueue[store_idx].canWB = 0;
1060
1061 // Must delete request now that it wasn't handed off to
1062 // memory. This is quite ugly. @todo: Figure out the proper
1063 // place to really handle request deletes.
1064 delete storeQueue[store_idx].req;
1065 if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1066 delete storeQueue[store_idx].sreqLow;
1067 delete storeQueue[store_idx].sreqHigh;
1068
1069 storeQueue[store_idx].sreqLow = NULL;
1070 storeQueue[store_idx].sreqHigh = NULL;
1071 }
1072
1073 storeQueue[store_idx].req = NULL;
1074 --stores;
1075
1076 // Inefficient!
1077 storeTail = store_idx;
1078
1079 decrStIdx(store_idx);
1080 ++lsqSquashedStores;
1081 }
1082}
1083
1084template <class Impl>
1085void
1086LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1087{
1088 if (isStalled() &&
1089 storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1090 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1091 "load idx:%i\n",
1092 stallingStoreIsn, stallingLoadIdx);
1093 stalled = false;
1094 stallingStoreIsn = 0;
1095 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1096 }
1097
1098 if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1099 // The store is basically completed at this time. This
1100 // only works so long as the checker doesn't try to
1101 // verify the value in memory for stores.
1102 storeQueue[storeWBIdx].inst->setCompleted();
1103
1104 if (cpu->checker) {
1105 cpu->checker->verify(storeQueue[storeWBIdx].inst);
1106 }
1107 }
1108
1109 if (needsTSO) {
1110 storeInFlight = true;
1111 }
1112
1113 incrStIdx(storeWBIdx);
1114}
1115
1116template <class Impl>
1117void
1118LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1119{
1120 iewStage->wakeCPU();
1121
1122 // Squashed instructions do not need to complete their access.
1123 if (inst->isSquashed()) {
1124 assert(!inst->isStore());
1125 ++lsqIgnoredResponses;
1126 return;
1127 }
1128
1129 if (!inst->isExecuted()) {
1130 inst->setExecuted();
1131
1132 if (inst->fault == NoFault) {
1133 // Complete access to copy data to proper place.
1134 inst->completeAcc(pkt);
1135 } else {
1136 // If the instruction has an outstanding fault, we cannot complete
1137 // the access as this discards the current fault.
1138
1139 // If we have an outstanding fault, the fault should only be of
1140 // type ReExec.
1141 assert(dynamic_cast<ReExec*>(inst->fault.get()) != nullptr);
1142
1143 DPRINTF(LSQUnit, "Not completing instruction [sn:%lli] access "
1144 "due to pending fault.\n", inst->seqNum);
1145 }
1146 }
1147
1148 // Need to insert instruction into queue to commit
1149 iewStage->instToCommit(inst);
1150
1151 iewStage->activityThisCycle();
1152
1153 // see if this load changed the PC
1154 iewStage->checkMisprediction(inst);
1155}
1156
1157template <class Impl>
1158void
1159LSQUnit<Impl>::completeStore(int store_idx)
1160{
1161 assert(storeQueue[store_idx].inst);
1162 storeQueue[store_idx].completed = true;
1163 --storesToWB;
1164 // A bit conservative because a store completion may not free up entries,
1165 // but hopefully avoids two store completions in one cycle from making
1166 // the CPU tick twice.
1167 cpu->wakeCPU();
1168 cpu->activityThisCycle();
1169
1170 if (store_idx == storeHead) {
1171 do {
1172 incrStIdx(storeHead);
1173
1174 --stores;
1175 } while (storeQueue[storeHead].completed &&
1176 storeHead != storeTail);
1177
1178 iewStage->updateLSQNextCycle = true;
1179 }
1180
1181 DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1182 "idx:%i\n",
1183 storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1184
1185#if TRACING_ON
1186 if (DTRACE(O3PipeView)) {
1187 storeQueue[store_idx].inst->storeTick =
1188 curTick() - storeQueue[store_idx].inst->fetchTick;
1189 }
1190#endif
1191
1192 if (isStalled() &&
1193 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1194 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1195 "load idx:%i\n",
1196 stallingStoreIsn, stallingLoadIdx);
1197 stalled = false;
1198 stallingStoreIsn = 0;
1199 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1200 }
1201
1202 storeQueue[store_idx].inst->setCompleted();
1203
1204 if (needsTSO) {
1205 storeInFlight = false;
1206 }
1207
1208 // Tell the checker we've completed this instruction. Some stores
1209 // may get reported twice to the checker, but the checker can
1210 // handle that case.
1211
1212 // Store conditionals cannot be sent to the checker yet, they have
1213 // to update the misc registers first which should take place
1214 // when they commit
1215 if (cpu->checker && !storeQueue[store_idx].inst->isStoreConditional()) {
1216 cpu->checker->verify(storeQueue[store_idx].inst);
1217 }
1218}
1219
1220template <class Impl>
1221bool
1222LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1223{
1224 if (!dcachePort->sendTimingReq(data_pkt)) {
1225 // Need to handle becoming blocked on a store.
1226 isStoreBlocked = true;
1227 ++lsqCacheBlocked;
1228 assert(retryPkt == NULL);
1229 retryPkt = data_pkt;
1230 return false;
1231 }
1232 return true;
1233}
1234
1235template <class Impl>
1236void
1237LSQUnit<Impl>::recvRetry()
1238{
1239 if (isStoreBlocked) {
1240 DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1241 assert(retryPkt != NULL);
1242
1243 LSQSenderState *state =
1244 dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1245
1246 if (dcachePort->sendTimingReq(retryPkt)) {
1247 // Don't finish the store unless this is the last packet.
1248 if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1249 state->pendingPacket == retryPkt) {
1250 state->pktToSend = false;
1251 storePostSend(retryPkt);
1252 }
1253 retryPkt = NULL;
1254 isStoreBlocked = false;
1255
1256 // Send any outstanding packet.
1257 if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1258 assert(state->pendingPacket);
1259 if (sendStore(state->pendingPacket)) {
1260 storePostSend(state->pendingPacket);
1261 }
1262 }
1263 } else {
1264 // Still blocked!
1265 ++lsqCacheBlocked;
1266 }
1267 }
1268}
1269
1270template <class Impl>
1271inline void
1272LSQUnit<Impl>::incrStIdx(int &store_idx) const
1273{
1274 if (++store_idx >= SQEntries)
1275 store_idx = 0;
1276}
1277
1278template <class Impl>
1279inline void
1280LSQUnit<Impl>::decrStIdx(int &store_idx) const
1281{
1282 if (--store_idx < 0)
1283 store_idx += SQEntries;
1284}
1285
1286template <class Impl>
1287inline void
1288LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1289{
1290 if (++load_idx >= LQEntries)
1291 load_idx = 0;
1292}
1293
1294template <class Impl>
1295inline void
1296LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1297{
1298 if (--load_idx < 0)
1299 load_idx += LQEntries;
1300}
1301
1302template <class Impl>
1303void
1304LSQUnit<Impl>::dumpInsts() const
1305{
1306 cprintf("Load store queue: Dumping instructions.\n");
1307 cprintf("Load queue size: %i\n", loads);
1308 cprintf("Load queue: ");
1309
1310 int load_idx = loadHead;
1311
1312 while (load_idx != loadTail && loadQueue[load_idx]) {
1313 const DynInstPtr &inst(loadQueue[load_idx]);
1314 cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1315
1316 incrLdIdx(load_idx);
1317 }
1318 cprintf("\n");
1319
1320 cprintf("Store queue size: %i\n", stores);
1321 cprintf("Store queue: ");
1322
1323 int store_idx = storeHead;
1324
1325 while (store_idx != storeTail && storeQueue[store_idx].inst) {
1326 const DynInstPtr &inst(storeQueue[store_idx].inst);
1327 cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1328
1329 incrStIdx(store_idx);
1330 }
1331
1332 cprintf("\n");
1333}
1334
1335#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__
694 }
695
696 assert(store_fault == NoFault);
697
698 if (store_inst->isStoreConditional()) {
699 // Store conditionals need to set themselves as able to
700 // writeback if we haven't had a fault by here.
701 storeQueue[store_idx].canWB = true;
702
703 ++storesToWB;
704 }
705
706 return checkViolations(load_idx, store_inst);
707
708}
709
710template <class Impl>
711void
712LSQUnit<Impl>::commitLoad()
713{
714 assert(loadQueue[loadHead]);
715
716 DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
717 loadQueue[loadHead]->pcState());
718
719 loadQueue[loadHead] = NULL;
720
721 incrLdIdx(loadHead);
722
723 --loads;
724}
725
726template <class Impl>
727void
728LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
729{
730 assert(loads == 0 || loadQueue[loadHead]);
731
732 while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
733 commitLoad();
734 }
735}
736
737template <class Impl>
738void
739LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
740{
741 assert(stores == 0 || storeQueue[storeHead].inst);
742
743 int store_idx = storeHead;
744
745 while (store_idx != storeTail) {
746 assert(storeQueue[store_idx].inst);
747 // Mark any stores that are now committed and have not yet
748 // been marked as able to write back.
749 if (!storeQueue[store_idx].canWB) {
750 if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
751 break;
752 }
753 DPRINTF(LSQUnit, "Marking store as able to write back, PC "
754 "%s [sn:%lli]\n",
755 storeQueue[store_idx].inst->pcState(),
756 storeQueue[store_idx].inst->seqNum);
757
758 storeQueue[store_idx].canWB = true;
759
760 ++storesToWB;
761 }
762
763 incrStIdx(store_idx);
764 }
765}
766
767template <class Impl>
768void
769LSQUnit<Impl>::writebackPendingStore()
770{
771 if (hasPendingPkt) {
772 assert(pendingPkt != NULL);
773
774 // If the cache is blocked, this will store the packet for retry.
775 if (sendStore(pendingPkt)) {
776 storePostSend(pendingPkt);
777 }
778 pendingPkt = NULL;
779 hasPendingPkt = false;
780 }
781}
782
783template <class Impl>
784void
785LSQUnit<Impl>::writebackStores()
786{
787 // First writeback the second packet from any split store that didn't
788 // complete last cycle because there weren't enough cache ports available.
789 if (TheISA::HasUnalignedMemAcc) {
790 writebackPendingStore();
791 }
792
793 while (storesToWB > 0 &&
794 storeWBIdx != storeTail &&
795 storeQueue[storeWBIdx].inst &&
796 storeQueue[storeWBIdx].canWB &&
797 ((!needsTSO) || (!storeInFlight)) &&
798 usedStorePorts < cacheStorePorts) {
799
800 if (isStoreBlocked) {
801 DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
802 " is blocked!\n");
803 break;
804 }
805
806 // Store didn't write any data so no need to write it back to
807 // memory.
808 if (storeQueue[storeWBIdx].size == 0) {
809 completeStore(storeWBIdx);
810
811 incrStIdx(storeWBIdx);
812
813 continue;
814 }
815
816 ++usedStorePorts;
817
818 if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
819 incrStIdx(storeWBIdx);
820
821 continue;
822 }
823
824 assert(storeQueue[storeWBIdx].req);
825 assert(!storeQueue[storeWBIdx].committed);
826
827 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
828 assert(storeQueue[storeWBIdx].sreqLow);
829 assert(storeQueue[storeWBIdx].sreqHigh);
830 }
831
832 DynInstPtr inst = storeQueue[storeWBIdx].inst;
833
834 Request *req = storeQueue[storeWBIdx].req;
835 RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
836 RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
837
838 storeQueue[storeWBIdx].committed = true;
839
840 assert(!inst->memData);
841 inst->memData = new uint8_t[req->getSize()];
842
843 if (storeQueue[storeWBIdx].isAllZeros)
844 memset(inst->memData, 0, req->getSize());
845 else
846 memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
847
848 PacketPtr data_pkt;
849 PacketPtr snd_data_pkt = NULL;
850
851 LSQSenderState *state = new LSQSenderState;
852 state->isLoad = false;
853 state->idx = storeWBIdx;
854 state->inst = inst;
855
856 if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
857
858 // Build a single data packet if the store isn't split.
859 data_pkt = Packet::createWrite(req);
860 data_pkt->dataStatic(inst->memData);
861 data_pkt->senderState = state;
862 } else {
863 // Create two packets if the store is split in two.
864 data_pkt = Packet::createWrite(sreqLow);
865 snd_data_pkt = Packet::createWrite(sreqHigh);
866
867 data_pkt->dataStatic(inst->memData);
868 snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
869
870 data_pkt->senderState = state;
871 snd_data_pkt->senderState = state;
872
873 state->isSplit = true;
874 state->outstanding = 2;
875
876 // Can delete the main request now.
877 delete req;
878 req = sreqLow;
879 }
880
881 DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
882 "to Addr:%#x, data:%#x [sn:%lli]\n",
883 storeWBIdx, inst->pcState(),
884 req->getPaddr(), (int)*(inst->memData),
885 inst->seqNum);
886
887 // @todo: Remove this SC hack once the memory system handles it.
888 if (inst->isStoreConditional()) {
889 assert(!storeQueue[storeWBIdx].isSplit);
890 // Disable recording the result temporarily. Writing to
891 // misc regs normally updates the result, but this is not
892 // the desired behavior when handling store conditionals.
893 inst->recordResult(false);
894 bool success = TheISA::handleLockedWrite(inst.get(), req, cacheBlockMask);
895 inst->recordResult(true);
896
897 if (!success) {
898 // Instantly complete this store.
899 DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. "
900 "Instantly completing it.\n",
901 inst->seqNum);
902 WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
903 cpu->schedule(wb, curTick() + 1);
904 completeStore(storeWBIdx);
905 incrStIdx(storeWBIdx);
906 continue;
907 }
908 } else {
909 // Non-store conditionals do not need a writeback.
910 state->noWB = true;
911 }
912
913 bool split =
914 TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
915
916 ThreadContext *thread = cpu->tcBase(lsqID);
917
918 if (req->isMmappedIpr()) {
919 assert(!inst->isStoreConditional());
920 TheISA::handleIprWrite(thread, data_pkt);
921 delete data_pkt;
922 if (split) {
923 assert(snd_data_pkt->req->isMmappedIpr());
924 TheISA::handleIprWrite(thread, snd_data_pkt);
925 delete snd_data_pkt;
926 delete sreqLow;
927 delete sreqHigh;
928 }
929 delete state;
930 delete req;
931 completeStore(storeWBIdx);
932 incrStIdx(storeWBIdx);
933 } else if (!sendStore(data_pkt)) {
934 DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
935 "retry later\n",
936 inst->seqNum);
937
938 // Need to store the second packet, if split.
939 if (split) {
940 state->pktToSend = true;
941 state->pendingPacket = snd_data_pkt;
942 }
943 } else {
944
945 // If split, try to send the second packet too
946 if (split) {
947 assert(snd_data_pkt);
948
949 // Ensure there are enough ports to use.
950 if (usedStorePorts < cacheStorePorts) {
951 ++usedStorePorts;
952 if (sendStore(snd_data_pkt)) {
953 storePostSend(snd_data_pkt);
954 } else {
955 DPRINTF(IEW, "D-Cache became blocked when writing"
956 " [sn:%lli] second packet, will retry later\n",
957 inst->seqNum);
958 }
959 } else {
960
961 // Store the packet for when there's free ports.
962 assert(pendingPkt == NULL);
963 pendingPkt = snd_data_pkt;
964 hasPendingPkt = true;
965 }
966 } else {
967
968 // Not a split store.
969 storePostSend(data_pkt);
970 }
971 }
972 }
973
974 // Not sure this should set it to 0.
975 usedStorePorts = 0;
976
977 assert(stores >= 0 && storesToWB >= 0);
978}
979
980/*template <class Impl>
981void
982LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
983{
984 list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
985 mshrSeqNums.end(),
986 seqNum);
987
988 if (mshr_it != mshrSeqNums.end()) {
989 mshrSeqNums.erase(mshr_it);
990 DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
991 }
992}*/
993
994template <class Impl>
995void
996LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
997{
998 DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
999 "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
1000
1001 int load_idx = loadTail;
1002 decrLdIdx(load_idx);
1003
1004 while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
1005 DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
1006 "[sn:%lli]\n",
1007 loadQueue[load_idx]->pcState(),
1008 loadQueue[load_idx]->seqNum);
1009
1010 if (isStalled() && load_idx == stallingLoadIdx) {
1011 stalled = false;
1012 stallingStoreIsn = 0;
1013 stallingLoadIdx = 0;
1014 }
1015
1016 // Clear the smart pointer to make sure it is decremented.
1017 loadQueue[load_idx]->setSquashed();
1018 loadQueue[load_idx] = NULL;
1019 --loads;
1020
1021 // Inefficient!
1022 loadTail = load_idx;
1023
1024 decrLdIdx(load_idx);
1025 ++lsqSquashedLoads;
1026 }
1027
1028 if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1029 memDepViolator = NULL;
1030 }
1031
1032 int store_idx = storeTail;
1033 decrStIdx(store_idx);
1034
1035 while (stores != 0 &&
1036 storeQueue[store_idx].inst->seqNum > squashed_num) {
1037 // Instructions marked as can WB are already committed.
1038 if (storeQueue[store_idx].canWB) {
1039 break;
1040 }
1041
1042 DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1043 "idx:%i [sn:%lli]\n",
1044 storeQueue[store_idx].inst->pcState(),
1045 store_idx, storeQueue[store_idx].inst->seqNum);
1046
1047 // I don't think this can happen. It should have been cleared
1048 // by the stalling load.
1049 if (isStalled() &&
1050 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1051 panic("Is stalled should have been cleared by stalling load!\n");
1052 stalled = false;
1053 stallingStoreIsn = 0;
1054 }
1055
1056 // Clear the smart pointer to make sure it is decremented.
1057 storeQueue[store_idx].inst->setSquashed();
1058 storeQueue[store_idx].inst = NULL;
1059 storeQueue[store_idx].canWB = 0;
1060
1061 // Must delete request now that it wasn't handed off to
1062 // memory. This is quite ugly. @todo: Figure out the proper
1063 // place to really handle request deletes.
1064 delete storeQueue[store_idx].req;
1065 if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1066 delete storeQueue[store_idx].sreqLow;
1067 delete storeQueue[store_idx].sreqHigh;
1068
1069 storeQueue[store_idx].sreqLow = NULL;
1070 storeQueue[store_idx].sreqHigh = NULL;
1071 }
1072
1073 storeQueue[store_idx].req = NULL;
1074 --stores;
1075
1076 // Inefficient!
1077 storeTail = store_idx;
1078
1079 decrStIdx(store_idx);
1080 ++lsqSquashedStores;
1081 }
1082}
1083
1084template <class Impl>
1085void
1086LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1087{
1088 if (isStalled() &&
1089 storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1090 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1091 "load idx:%i\n",
1092 stallingStoreIsn, stallingLoadIdx);
1093 stalled = false;
1094 stallingStoreIsn = 0;
1095 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1096 }
1097
1098 if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1099 // The store is basically completed at this time. This
1100 // only works so long as the checker doesn't try to
1101 // verify the value in memory for stores.
1102 storeQueue[storeWBIdx].inst->setCompleted();
1103
1104 if (cpu->checker) {
1105 cpu->checker->verify(storeQueue[storeWBIdx].inst);
1106 }
1107 }
1108
1109 if (needsTSO) {
1110 storeInFlight = true;
1111 }
1112
1113 incrStIdx(storeWBIdx);
1114}
1115
1116template <class Impl>
1117void
1118LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1119{
1120 iewStage->wakeCPU();
1121
1122 // Squashed instructions do not need to complete their access.
1123 if (inst->isSquashed()) {
1124 assert(!inst->isStore());
1125 ++lsqIgnoredResponses;
1126 return;
1127 }
1128
1129 if (!inst->isExecuted()) {
1130 inst->setExecuted();
1131
1132 if (inst->fault == NoFault) {
1133 // Complete access to copy data to proper place.
1134 inst->completeAcc(pkt);
1135 } else {
1136 // If the instruction has an outstanding fault, we cannot complete
1137 // the access as this discards the current fault.
1138
1139 // If we have an outstanding fault, the fault should only be of
1140 // type ReExec.
1141 assert(dynamic_cast<ReExec*>(inst->fault.get()) != nullptr);
1142
1143 DPRINTF(LSQUnit, "Not completing instruction [sn:%lli] access "
1144 "due to pending fault.\n", inst->seqNum);
1145 }
1146 }
1147
1148 // Need to insert instruction into queue to commit
1149 iewStage->instToCommit(inst);
1150
1151 iewStage->activityThisCycle();
1152
1153 // see if this load changed the PC
1154 iewStage->checkMisprediction(inst);
1155}
1156
1157template <class Impl>
1158void
1159LSQUnit<Impl>::completeStore(int store_idx)
1160{
1161 assert(storeQueue[store_idx].inst);
1162 storeQueue[store_idx].completed = true;
1163 --storesToWB;
1164 // A bit conservative because a store completion may not free up entries,
1165 // but hopefully avoids two store completions in one cycle from making
1166 // the CPU tick twice.
1167 cpu->wakeCPU();
1168 cpu->activityThisCycle();
1169
1170 if (store_idx == storeHead) {
1171 do {
1172 incrStIdx(storeHead);
1173
1174 --stores;
1175 } while (storeQueue[storeHead].completed &&
1176 storeHead != storeTail);
1177
1178 iewStage->updateLSQNextCycle = true;
1179 }
1180
1181 DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1182 "idx:%i\n",
1183 storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1184
1185#if TRACING_ON
1186 if (DTRACE(O3PipeView)) {
1187 storeQueue[store_idx].inst->storeTick =
1188 curTick() - storeQueue[store_idx].inst->fetchTick;
1189 }
1190#endif
1191
1192 if (isStalled() &&
1193 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1194 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1195 "load idx:%i\n",
1196 stallingStoreIsn, stallingLoadIdx);
1197 stalled = false;
1198 stallingStoreIsn = 0;
1199 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1200 }
1201
1202 storeQueue[store_idx].inst->setCompleted();
1203
1204 if (needsTSO) {
1205 storeInFlight = false;
1206 }
1207
1208 // Tell the checker we've completed this instruction. Some stores
1209 // may get reported twice to the checker, but the checker can
1210 // handle that case.
1211
1212 // Store conditionals cannot be sent to the checker yet, they have
1213 // to update the misc registers first which should take place
1214 // when they commit
1215 if (cpu->checker && !storeQueue[store_idx].inst->isStoreConditional()) {
1216 cpu->checker->verify(storeQueue[store_idx].inst);
1217 }
1218}
1219
1220template <class Impl>
1221bool
1222LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1223{
1224 if (!dcachePort->sendTimingReq(data_pkt)) {
1225 // Need to handle becoming blocked on a store.
1226 isStoreBlocked = true;
1227 ++lsqCacheBlocked;
1228 assert(retryPkt == NULL);
1229 retryPkt = data_pkt;
1230 return false;
1231 }
1232 return true;
1233}
1234
1235template <class Impl>
1236void
1237LSQUnit<Impl>::recvRetry()
1238{
1239 if (isStoreBlocked) {
1240 DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1241 assert(retryPkt != NULL);
1242
1243 LSQSenderState *state =
1244 dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1245
1246 if (dcachePort->sendTimingReq(retryPkt)) {
1247 // Don't finish the store unless this is the last packet.
1248 if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1249 state->pendingPacket == retryPkt) {
1250 state->pktToSend = false;
1251 storePostSend(retryPkt);
1252 }
1253 retryPkt = NULL;
1254 isStoreBlocked = false;
1255
1256 // Send any outstanding packet.
1257 if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1258 assert(state->pendingPacket);
1259 if (sendStore(state->pendingPacket)) {
1260 storePostSend(state->pendingPacket);
1261 }
1262 }
1263 } else {
1264 // Still blocked!
1265 ++lsqCacheBlocked;
1266 }
1267 }
1268}
1269
1270template <class Impl>
1271inline void
1272LSQUnit<Impl>::incrStIdx(int &store_idx) const
1273{
1274 if (++store_idx >= SQEntries)
1275 store_idx = 0;
1276}
1277
1278template <class Impl>
1279inline void
1280LSQUnit<Impl>::decrStIdx(int &store_idx) const
1281{
1282 if (--store_idx < 0)
1283 store_idx += SQEntries;
1284}
1285
1286template <class Impl>
1287inline void
1288LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1289{
1290 if (++load_idx >= LQEntries)
1291 load_idx = 0;
1292}
1293
1294template <class Impl>
1295inline void
1296LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1297{
1298 if (--load_idx < 0)
1299 load_idx += LQEntries;
1300}
1301
1302template <class Impl>
1303void
1304LSQUnit<Impl>::dumpInsts() const
1305{
1306 cprintf("Load store queue: Dumping instructions.\n");
1307 cprintf("Load queue size: %i\n", loads);
1308 cprintf("Load queue: ");
1309
1310 int load_idx = loadHead;
1311
1312 while (load_idx != loadTail && loadQueue[load_idx]) {
1313 const DynInstPtr &inst(loadQueue[load_idx]);
1314 cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1315
1316 incrLdIdx(load_idx);
1317 }
1318 cprintf("\n");
1319
1320 cprintf("Store queue size: %i\n", stores);
1321 cprintf("Store queue: ");
1322
1323 int store_idx = storeHead;
1324
1325 while (store_idx != storeTail && storeQueue[store_idx].inst) {
1326 const DynInstPtr &inst(storeQueue[store_idx].inst);
1327 cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1328
1329 incrStIdx(store_idx);
1330 }
1331
1332 cprintf("\n");
1333}
1334
1335#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__