lsq_unit_impl.hh (11097:da477ae38907) lsq_unit_impl.hh (11243:f876d08c7b21)
1
2/*
3 * Copyright (c) 2010-2014 ARM Limited
4 * Copyright (c) 2013 Advanced Micro Devices, Inc.
5 * All rights reserved
6 *
7 * The license below extends only to copyright in the software and shall
8 * not be construed as granting a license to any other intellectual
9 * property including but not limited to intellectual property relating
10 * to a hardware implementation of the functionality of the software
11 * licensed hereunder. You may use the software subject to the license
12 * terms below provided that you ensure that this notice is replicated
13 * unmodified and in its entirety in all distributions of the software,
14 * modified or unmodified, in source code or in binary form.
15 *
16 * Copyright (c) 2004-2005 The Regents of The University of Michigan
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 * Korey Sewell
44 */
45
46#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
47#define __CPU_O3_LSQ_UNIT_IMPL_HH__
48
49#include "arch/generic/debugfaults.hh"
50#include "arch/locked_mem.hh"
51#include "base/str.hh"
52#include "config/the_isa.hh"
53#include "cpu/checker/cpu.hh"
54#include "cpu/o3/lsq.hh"
55#include "cpu/o3/lsq_unit.hh"
56#include "debug/Activity.hh"
57#include "debug/IEW.hh"
58#include "debug/LSQUnit.hh"
59#include "debug/O3PipeView.hh"
60#include "mem/packet.hh"
61#include "mem/request.hh"
62
63template<class Impl>
64LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
65 LSQUnit *lsq_ptr)
66 : Event(Default_Pri, AutoDelete),
67 inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
68{
69}
70
71template<class Impl>
72void
73LSQUnit<Impl>::WritebackEvent::process()
74{
75 assert(!lsqPtr->cpu->switchedOut());
76
77 lsqPtr->writeback(inst, pkt);
78
79 if (pkt->senderState)
80 delete pkt->senderState;
81
82 delete pkt->req;
83 delete pkt;
84}
85
86template<class Impl>
87const char *
88LSQUnit<Impl>::WritebackEvent::description() const
89{
90 return "Store writeback";
91}
92
93template<class Impl>
94void
95LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
96{
97 LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
98 DynInstPtr inst = state->inst;
99 DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
100 DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
101
102 if (state->cacheBlocked) {
103 // This is the first half of a previous split load,
104 // where the 2nd half blocked, ignore this response
105 DPRINTF(IEW, "[sn:%lli]: Response from first half of earlier "
106 "blocked split load recieved. Ignoring.\n", inst->seqNum);
107 delete state;
108 return;
109 }
110
111 // If this is a split access, wait until all packets are received.
112 if (TheISA::HasUnalignedMemAcc && !state->complete()) {
113 return;
114 }
115
116 assert(!cpu->switchedOut());
117 if (!inst->isSquashed()) {
118 if (!state->noWB) {
119 if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
120 !state->isLoad) {
121 writeback(inst, pkt);
122 } else {
123 writeback(inst, state->mainPkt);
124 }
125 }
126
127 if (inst->isStore()) {
128 completeStore(state->idx);
129 }
130 }
131
132 if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
133 delete state->mainPkt->req;
134 delete state->mainPkt;
135 }
136
137 pkt->req->setAccessLatency();
138 cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));
139
140 delete state;
141}
142
143template <class Impl>
144LSQUnit<Impl>::LSQUnit()
145 : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
1
2/*
3 * Copyright (c) 2010-2014 ARM Limited
4 * Copyright (c) 2013 Advanced Micro Devices, Inc.
5 * All rights reserved
6 *
7 * The license below extends only to copyright in the software and shall
8 * not be construed as granting a license to any other intellectual
9 * property including but not limited to intellectual property relating
10 * to a hardware implementation of the functionality of the software
11 * licensed hereunder. You may use the software subject to the license
12 * terms below provided that you ensure that this notice is replicated
13 * unmodified and in its entirety in all distributions of the software,
14 * modified or unmodified, in source code or in binary form.
15 *
16 * Copyright (c) 2004-2005 The Regents of The University of Michigan
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 * Korey Sewell
44 */
45
46#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
47#define __CPU_O3_LSQ_UNIT_IMPL_HH__
48
49#include "arch/generic/debugfaults.hh"
50#include "arch/locked_mem.hh"
51#include "base/str.hh"
52#include "config/the_isa.hh"
53#include "cpu/checker/cpu.hh"
54#include "cpu/o3/lsq.hh"
55#include "cpu/o3/lsq_unit.hh"
56#include "debug/Activity.hh"
57#include "debug/IEW.hh"
58#include "debug/LSQUnit.hh"
59#include "debug/O3PipeView.hh"
60#include "mem/packet.hh"
61#include "mem/request.hh"
62
63template<class Impl>
64LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
65 LSQUnit *lsq_ptr)
66 : Event(Default_Pri, AutoDelete),
67 inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
68{
69}
70
71template<class Impl>
72void
73LSQUnit<Impl>::WritebackEvent::process()
74{
75 assert(!lsqPtr->cpu->switchedOut());
76
77 lsqPtr->writeback(inst, pkt);
78
79 if (pkt->senderState)
80 delete pkt->senderState;
81
82 delete pkt->req;
83 delete pkt;
84}
85
86template<class Impl>
87const char *
88LSQUnit<Impl>::WritebackEvent::description() const
89{
90 return "Store writeback";
91}
92
93template<class Impl>
94void
95LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
96{
97 LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
98 DynInstPtr inst = state->inst;
99 DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
100 DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
101
102 if (state->cacheBlocked) {
103 // This is the first half of a previous split load,
104 // where the 2nd half blocked, ignore this response
105 DPRINTF(IEW, "[sn:%lli]: Response from first half of earlier "
106 "blocked split load recieved. Ignoring.\n", inst->seqNum);
107 delete state;
108 return;
109 }
110
111 // If this is a split access, wait until all packets are received.
112 if (TheISA::HasUnalignedMemAcc && !state->complete()) {
113 return;
114 }
115
116 assert(!cpu->switchedOut());
117 if (!inst->isSquashed()) {
118 if (!state->noWB) {
119 if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
120 !state->isLoad) {
121 writeback(inst, pkt);
122 } else {
123 writeback(inst, state->mainPkt);
124 }
125 }
126
127 if (inst->isStore()) {
128 completeStore(state->idx);
129 }
130 }
131
132 if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
133 delete state->mainPkt->req;
134 delete state->mainPkt;
135 }
136
137 pkt->req->setAccessLatency();
138 cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));
139
140 delete state;
141}
142
143template <class Impl>
144LSQUnit<Impl>::LSQUnit()
145 : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
146 isStoreBlocked(false), storeInFlight(false), hasPendingPkt(false)
146 isStoreBlocked(false), storeInFlight(false), hasPendingPkt(false),
147 pendingPkt(nullptr)
147{
148}
149
150template<class Impl>
151void
152LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
153 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
154 unsigned id)
155{
156 cpu = cpu_ptr;
157 iewStage = iew_ptr;
158
159 lsq = lsq_ptr;
160
161 lsqID = id;
162
163 DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
164
165 // Add 1 for the sentinel entry (they are circular queues).
166 LQEntries = maxLQEntries + 1;
167 SQEntries = maxSQEntries + 1;
168
169 //Due to uint8_t index in LSQSenderState
170 assert(LQEntries <= 256);
171 assert(SQEntries <= 256);
172
173 loadQueue.resize(LQEntries);
174 storeQueue.resize(SQEntries);
175
176 depCheckShift = params->LSQDepCheckShift;
177 checkLoads = params->LSQCheckLoads;
178 cachePorts = params->cachePorts;
179 needsTSO = params->needsTSO;
180
181 resetState();
182}
183
184
185template<class Impl>
186void
187LSQUnit<Impl>::resetState()
188{
189 loads = stores = storesToWB = 0;
190
191 loadHead = loadTail = 0;
192
193 storeHead = storeWBIdx = storeTail = 0;
194
195 usedPorts = 0;
196
197 retryPkt = NULL;
198 memDepViolator = NULL;
199
200 stalled = false;
201
202 cacheBlockMask = ~(cpu->cacheLineSize() - 1);
203}
204
205template<class Impl>
206std::string
207LSQUnit<Impl>::name() const
208{
209 if (Impl::MaxThreads == 1) {
210 return iewStage->name() + ".lsq";
211 } else {
212 return iewStage->name() + ".lsq.thread" + std::to_string(lsqID);
213 }
214}
215
216template<class Impl>
217void
218LSQUnit<Impl>::regStats()
219{
220 lsqForwLoads
221 .name(name() + ".forwLoads")
222 .desc("Number of loads that had data forwarded from stores");
223
224 invAddrLoads
225 .name(name() + ".invAddrLoads")
226 .desc("Number of loads ignored due to an invalid address");
227
228 lsqSquashedLoads
229 .name(name() + ".squashedLoads")
230 .desc("Number of loads squashed");
231
232 lsqIgnoredResponses
233 .name(name() + ".ignoredResponses")
234 .desc("Number of memory responses ignored because the instruction is squashed");
235
236 lsqMemOrderViolation
237 .name(name() + ".memOrderViolation")
238 .desc("Number of memory ordering violations");
239
240 lsqSquashedStores
241 .name(name() + ".squashedStores")
242 .desc("Number of stores squashed");
243
244 invAddrSwpfs
245 .name(name() + ".invAddrSwpfs")
246 .desc("Number of software prefetches ignored due to an invalid address");
247
248 lsqBlockedLoads
249 .name(name() + ".blockedLoads")
250 .desc("Number of blocked loads due to partial load-store forwarding");
251
252 lsqRescheduledLoads
253 .name(name() + ".rescheduledLoads")
254 .desc("Number of loads that were rescheduled");
255
256 lsqCacheBlocked
257 .name(name() + ".cacheBlocked")
258 .desc("Number of times an access to memory failed due to the cache being blocked");
259}
260
261template<class Impl>
262void
263LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
264{
265 dcachePort = dcache_port;
266}
267
268template<class Impl>
269void
270LSQUnit<Impl>::clearLQ()
271{
272 loadQueue.clear();
273}
274
275template<class Impl>
276void
277LSQUnit<Impl>::clearSQ()
278{
279 storeQueue.clear();
280}
281
282template<class Impl>
283void
284LSQUnit<Impl>::drainSanityCheck() const
285{
286 for (int i = 0; i < loadQueue.size(); ++i)
287 assert(!loadQueue[i]);
288
289 assert(storesToWB == 0);
290 assert(!retryPkt);
291}
292
293template<class Impl>
294void
295LSQUnit<Impl>::takeOverFrom()
296{
297 resetState();
298}
299
300template<class Impl>
301void
302LSQUnit<Impl>::resizeLQ(unsigned size)
303{
304 unsigned size_plus_sentinel = size + 1;
305 assert(size_plus_sentinel >= LQEntries);
306
307 if (size_plus_sentinel > LQEntries) {
308 while (size_plus_sentinel > loadQueue.size()) {
309 DynInstPtr dummy;
310 loadQueue.push_back(dummy);
311 LQEntries++;
312 }
313 } else {
314 LQEntries = size_plus_sentinel;
315 }
316
317 assert(LQEntries <= 256);
318}
319
320template<class Impl>
321void
322LSQUnit<Impl>::resizeSQ(unsigned size)
323{
324 unsigned size_plus_sentinel = size + 1;
325 if (size_plus_sentinel > SQEntries) {
326 while (size_plus_sentinel > storeQueue.size()) {
327 SQEntry dummy;
328 storeQueue.push_back(dummy);
329 SQEntries++;
330 }
331 } else {
332 SQEntries = size_plus_sentinel;
333 }
334
335 assert(SQEntries <= 256);
336}
337
338template <class Impl>
339void
340LSQUnit<Impl>::insert(DynInstPtr &inst)
341{
342 assert(inst->isMemRef());
343
344 assert(inst->isLoad() || inst->isStore());
345
346 if (inst->isLoad()) {
347 insertLoad(inst);
348 } else {
349 insertStore(inst);
350 }
351
352 inst->setInLSQ();
353}
354
355template <class Impl>
356void
357LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
358{
359 assert((loadTail + 1) % LQEntries != loadHead);
360 assert(loads < LQEntries);
361
362 DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
363 load_inst->pcState(), loadTail, load_inst->seqNum);
364
365 load_inst->lqIdx = loadTail;
366
367 if (stores == 0) {
368 load_inst->sqIdx = -1;
369 } else {
370 load_inst->sqIdx = storeTail;
371 }
372
373 loadQueue[loadTail] = load_inst;
374
375 incrLdIdx(loadTail);
376
377 ++loads;
378}
379
380template <class Impl>
381void
382LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
383{
384 // Make sure it is not full before inserting an instruction.
385 assert((storeTail + 1) % SQEntries != storeHead);
386 assert(stores < SQEntries);
387
388 DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
389 store_inst->pcState(), storeTail, store_inst->seqNum);
390
391 store_inst->sqIdx = storeTail;
392 store_inst->lqIdx = loadTail;
393
394 storeQueue[storeTail] = SQEntry(store_inst);
395
396 incrStIdx(storeTail);
397
398 ++stores;
399}
400
401template <class Impl>
402typename Impl::DynInstPtr
403LSQUnit<Impl>::getMemDepViolator()
404{
405 DynInstPtr temp = memDepViolator;
406
407 memDepViolator = NULL;
408
409 return temp;
410}
411
412template <class Impl>
413unsigned
414LSQUnit<Impl>::numFreeLoadEntries()
415{
416 //LQ has an extra dummy entry to differentiate
417 //empty/full conditions. Subtract 1 from the free entries.
418 DPRINTF(LSQUnit, "LQ size: %d, #loads occupied: %d\n", LQEntries, loads);
419 return LQEntries - loads - 1;
420}
421
422template <class Impl>
423unsigned
424LSQUnit<Impl>::numFreeStoreEntries()
425{
426 //SQ has an extra dummy entry to differentiate
427 //empty/full conditions. Subtract 1 from the free entries.
428 DPRINTF(LSQUnit, "SQ size: %d, #stores occupied: %d\n", SQEntries, stores);
429 return SQEntries - stores - 1;
430
431 }
432
433template <class Impl>
434void
435LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
436{
437 int load_idx = loadHead;
438 DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
439
440 // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
441 // address. The CPU can speculatively execute a LL operation after a pending
442 // SC operation in the pipeline and that can make the cache monitor the CPU
443 // is connected to valid while it really shouldn't be.
444 for (int x = 0; x < cpu->numContexts(); x++) {
445 ThreadContext *tc = cpu->getContext(x);
446 bool no_squash = cpu->thread[x]->noSquashFromTC;
447 cpu->thread[x]->noSquashFromTC = true;
448 TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
449 cpu->thread[x]->noSquashFromTC = no_squash;
450 }
451
452 Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
453
454 DynInstPtr ld_inst = loadQueue[load_idx];
455 if (ld_inst) {
456 Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask;
457 Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask;
458
459 // Check that this snoop didn't just invalidate our lock flag
460 if (ld_inst->effAddrValid() && (load_addr_low == invalidate_addr
461 || load_addr_high == invalidate_addr)
462 && ld_inst->memReqFlags & Request::LLSC)
463 TheISA::handleLockedSnoopHit(ld_inst.get());
464 }
465
466 // If this is the only load in the LSQ we don't care
467 if (load_idx == loadTail)
468 return;
469
470 incrLdIdx(load_idx);
471
472 bool force_squash = false;
473
474 while (load_idx != loadTail) {
475 DynInstPtr ld_inst = loadQueue[load_idx];
476
477 if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
478 incrLdIdx(load_idx);
479 continue;
480 }
481
482 Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask;
483 Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask;
484
485 DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
486 ld_inst->seqNum, load_addr_low, invalidate_addr);
487
488 if ((load_addr_low == invalidate_addr
489 || load_addr_high == invalidate_addr) || force_squash) {
490 if (needsTSO) {
491 // If we have a TSO system, as all loads must be ordered with
492 // all other loads, this load as well as *all* subsequent loads
493 // need to be squashed to prevent possible load reordering.
494 force_squash = true;
495 }
496 if (ld_inst->possibleLoadViolation() || force_squash) {
497 DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
498 pkt->getAddr(), ld_inst->seqNum);
499
500 // Mark the load for re-execution
501 ld_inst->fault = std::make_shared<ReExec>();
502 } else {
503 DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n",
504 pkt->getAddr(), ld_inst->seqNum);
505
506 // Make sure that we don't lose a snoop hitting a LOCKED
507 // address since the LOCK* flags don't get updated until
508 // commit.
509 if (ld_inst->memReqFlags & Request::LLSC)
510 TheISA::handleLockedSnoopHit(ld_inst.get());
511
512 // If a older load checks this and it's true
513 // then we might have missed the snoop
514 // in which case we need to invalidate to be sure
515 ld_inst->hitExternalSnoop(true);
516 }
517 }
518 incrLdIdx(load_idx);
519 }
520 return;
521}
522
523template <class Impl>
524Fault
525LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
526{
527 Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
528 Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
529
530 /** @todo in theory you only need to check an instruction that has executed
531 * however, there isn't a good way in the pipeline at the moment to check
532 * all instructions that will execute before the store writes back. Thus,
533 * like the implementation that came before it, we're overly conservative.
534 */
535 while (load_idx != loadTail) {
536 DynInstPtr ld_inst = loadQueue[load_idx];
537 if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
538 incrLdIdx(load_idx);
539 continue;
540 }
541
542 Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
543 Addr ld_eff_addr2 =
544 (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
545
546 if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
547 if (inst->isLoad()) {
548 // If this load is to the same block as an external snoop
549 // invalidate that we've observed then the load needs to be
550 // squashed as it could have newer data
551 if (ld_inst->hitExternalSnoop()) {
552 if (!memDepViolator ||
553 ld_inst->seqNum < memDepViolator->seqNum) {
554 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
555 "and [sn:%lli] at address %#x\n",
556 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
557 memDepViolator = ld_inst;
558
559 ++lsqMemOrderViolation;
560
561 return std::make_shared<GenericISA::M5PanicFault>(
562 "Detected fault with inst [sn:%lli] and "
563 "[sn:%lli] at address %#x\n",
564 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
565 }
566 }
567
568 // Otherwise, mark the load has a possible load violation
569 // and if we see a snoop before it's commited, we need to squash
570 ld_inst->possibleLoadViolation(true);
571 DPRINTF(LSQUnit, "Found possible load violation at addr: %#x"
572 " between instructions [sn:%lli] and [sn:%lli]\n",
573 inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
574 } else {
575 // A load/store incorrectly passed this store.
576 // Check if we already have a violator, or if it's newer
577 // squash and refetch.
578 if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
579 break;
580
581 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
582 "[sn:%lli] at address %#x\n",
583 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
584 memDepViolator = ld_inst;
585
586 ++lsqMemOrderViolation;
587
588 return std::make_shared<GenericISA::M5PanicFault>(
589 "Detected fault with "
590 "inst [sn:%lli] and [sn:%lli] at address %#x\n",
591 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
592 }
593 }
594
595 incrLdIdx(load_idx);
596 }
597 return NoFault;
598}
599
600
601
602
603template <class Impl>
604Fault
605LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
606{
607 using namespace TheISA;
608 // Execute a specific load.
609 Fault load_fault = NoFault;
610
611 DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
612 inst->pcState(), inst->seqNum);
613
614 assert(!inst->isSquashed());
615
616 load_fault = inst->initiateAcc();
617
618 if (inst->isTranslationDelayed() &&
619 load_fault == NoFault)
620 return load_fault;
621
622 // If the instruction faulted or predicated false, then we need to send it
623 // along to commit without the instruction completing.
624 if (load_fault != NoFault || !inst->readPredicate()) {
625 // Send this instruction to commit, also make sure iew stage
626 // realizes there is activity. Mark it as executed unless it
627 // is a strictly ordered load that needs to hit the head of
628 // commit.
629 if (!inst->readPredicate())
630 inst->forwardOldRegs();
631 DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
632 inst->seqNum,
633 (load_fault != NoFault ? "fault" : "predication"));
634 if (!(inst->hasRequest() && inst->strictlyOrdered()) ||
635 inst->isAtCommit()) {
636 inst->setExecuted();
637 }
638 iewStage->instToCommit(inst);
639 iewStage->activityThisCycle();
640 } else {
641 assert(inst->effAddrValid());
642 int load_idx = inst->lqIdx;
643 incrLdIdx(load_idx);
644
645 if (checkLoads)
646 return checkViolations(load_idx, inst);
647 }
648
649 return load_fault;
650}
651
652template <class Impl>
653Fault
654LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
655{
656 using namespace TheISA;
657 // Make sure that a store exists.
658 assert(stores != 0);
659
660 int store_idx = store_inst->sqIdx;
661
662 DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
663 store_inst->pcState(), store_inst->seqNum);
664
665 assert(!store_inst->isSquashed());
666
667 // Check the recently completed loads to see if any match this store's
668 // address. If so, then we have a memory ordering violation.
669 int load_idx = store_inst->lqIdx;
670
671 Fault store_fault = store_inst->initiateAcc();
672
673 if (store_inst->isTranslationDelayed() &&
674 store_fault == NoFault)
675 return store_fault;
676
677 if (!store_inst->readPredicate())
678 store_inst->forwardOldRegs();
679
680 if (storeQueue[store_idx].size == 0) {
681 DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
682 store_inst->pcState(), store_inst->seqNum);
683
684 return store_fault;
685 } else if (!store_inst->readPredicate()) {
686 DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
687 store_inst->seqNum);
688 return store_fault;
689 }
690
691 assert(store_fault == NoFault);
692
693 if (store_inst->isStoreConditional()) {
694 // Store conditionals need to set themselves as able to
695 // writeback if we haven't had a fault by here.
696 storeQueue[store_idx].canWB = true;
697
698 ++storesToWB;
699 }
700
701 return checkViolations(load_idx, store_inst);
702
703}
704
705template <class Impl>
706void
707LSQUnit<Impl>::commitLoad()
708{
709 assert(loadQueue[loadHead]);
710
711 DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
712 loadQueue[loadHead]->pcState());
713
714 loadQueue[loadHead] = NULL;
715
716 incrLdIdx(loadHead);
717
718 --loads;
719}
720
721template <class Impl>
722void
723LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
724{
725 assert(loads == 0 || loadQueue[loadHead]);
726
727 while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
728 commitLoad();
729 }
730}
731
732template <class Impl>
733void
734LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
735{
736 assert(stores == 0 || storeQueue[storeHead].inst);
737
738 int store_idx = storeHead;
739
740 while (store_idx != storeTail) {
741 assert(storeQueue[store_idx].inst);
742 // Mark any stores that are now committed and have not yet
743 // been marked as able to write back.
744 if (!storeQueue[store_idx].canWB) {
745 if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
746 break;
747 }
748 DPRINTF(LSQUnit, "Marking store as able to write back, PC "
749 "%s [sn:%lli]\n",
750 storeQueue[store_idx].inst->pcState(),
751 storeQueue[store_idx].inst->seqNum);
752
753 storeQueue[store_idx].canWB = true;
754
755 ++storesToWB;
756 }
757
758 incrStIdx(store_idx);
759 }
760}
761
762template <class Impl>
763void
764LSQUnit<Impl>::writebackPendingStore()
765{
766 if (hasPendingPkt) {
767 assert(pendingPkt != NULL);
768
769 // If the cache is blocked, this will store the packet for retry.
770 if (sendStore(pendingPkt)) {
771 storePostSend(pendingPkt);
772 }
773 pendingPkt = NULL;
774 hasPendingPkt = false;
775 }
776}
777
778template <class Impl>
779void
780LSQUnit<Impl>::writebackStores()
781{
782 // First writeback the second packet from any split store that didn't
783 // complete last cycle because there weren't enough cache ports available.
784 if (TheISA::HasUnalignedMemAcc) {
785 writebackPendingStore();
786 }
787
788 while (storesToWB > 0 &&
789 storeWBIdx != storeTail &&
790 storeQueue[storeWBIdx].inst &&
791 storeQueue[storeWBIdx].canWB &&
792 ((!needsTSO) || (!storeInFlight)) &&
793 usedPorts < cachePorts) {
794
795 if (isStoreBlocked) {
796 DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
797 " is blocked!\n");
798 break;
799 }
800
801 // Store didn't write any data so no need to write it back to
802 // memory.
803 if (storeQueue[storeWBIdx].size == 0) {
804 completeStore(storeWBIdx);
805
806 incrStIdx(storeWBIdx);
807
808 continue;
809 }
810
811 ++usedPorts;
812
813 if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
814 incrStIdx(storeWBIdx);
815
816 continue;
817 }
818
819 assert(storeQueue[storeWBIdx].req);
820 assert(!storeQueue[storeWBIdx].committed);
821
822 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
823 assert(storeQueue[storeWBIdx].sreqLow);
824 assert(storeQueue[storeWBIdx].sreqHigh);
825 }
826
827 DynInstPtr inst = storeQueue[storeWBIdx].inst;
828
829 Request *req = storeQueue[storeWBIdx].req;
830 RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
831 RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
832
833 storeQueue[storeWBIdx].committed = true;
834
835 assert(!inst->memData);
836 inst->memData = new uint8_t[req->getSize()];
837
838 if (storeQueue[storeWBIdx].isAllZeros)
839 memset(inst->memData, 0, req->getSize());
840 else
841 memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
842
843 PacketPtr data_pkt;
844 PacketPtr snd_data_pkt = NULL;
845
846 LSQSenderState *state = new LSQSenderState;
847 state->isLoad = false;
848 state->idx = storeWBIdx;
849 state->inst = inst;
850
851 if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
852
853 // Build a single data packet if the store isn't split.
854 data_pkt = Packet::createWrite(req);
855 data_pkt->dataStatic(inst->memData);
856 data_pkt->senderState = state;
857 } else {
858 // Create two packets if the store is split in two.
859 data_pkt = Packet::createWrite(sreqLow);
860 snd_data_pkt = Packet::createWrite(sreqHigh);
861
862 data_pkt->dataStatic(inst->memData);
863 snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
864
865 data_pkt->senderState = state;
866 snd_data_pkt->senderState = state;
867
868 state->isSplit = true;
869 state->outstanding = 2;
870
871 // Can delete the main request now.
872 delete req;
873 req = sreqLow;
874 }
875
876 DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
877 "to Addr:%#x, data:%#x [sn:%lli]\n",
878 storeWBIdx, inst->pcState(),
879 req->getPaddr(), (int)*(inst->memData),
880 inst->seqNum);
881
882 // @todo: Remove this SC hack once the memory system handles it.
883 if (inst->isStoreConditional()) {
884 assert(!storeQueue[storeWBIdx].isSplit);
885 // Disable recording the result temporarily. Writing to
886 // misc regs normally updates the result, but this is not
887 // the desired behavior when handling store conditionals.
888 inst->recordResult(false);
889 bool success = TheISA::handleLockedWrite(inst.get(), req, cacheBlockMask);
890 inst->recordResult(true);
891
892 if (!success) {
893 // Instantly complete this store.
894 DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. "
895 "Instantly completing it.\n",
896 inst->seqNum);
897 WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
898 cpu->schedule(wb, curTick() + 1);
899 if (cpu->checker) {
900 // Make sure to set the LLSC data for verification
901 // if checker is loaded
902 inst->reqToVerify->setExtraData(0);
903 inst->completeAcc(data_pkt);
904 }
905 completeStore(storeWBIdx);
906 incrStIdx(storeWBIdx);
907 continue;
908 }
909 } else {
910 // Non-store conditionals do not need a writeback.
911 state->noWB = true;
912 }
913
914 bool split =
915 TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
916
917 ThreadContext *thread = cpu->tcBase(lsqID);
918
919 if (req->isMmappedIpr()) {
920 assert(!inst->isStoreConditional());
921 TheISA::handleIprWrite(thread, data_pkt);
922 delete data_pkt;
923 if (split) {
924 assert(snd_data_pkt->req->isMmappedIpr());
925 TheISA::handleIprWrite(thread, snd_data_pkt);
926 delete snd_data_pkt;
927 delete sreqLow;
928 delete sreqHigh;
929 }
930 delete state;
931 delete req;
932 completeStore(storeWBIdx);
933 incrStIdx(storeWBIdx);
934 } else if (!sendStore(data_pkt)) {
935 DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
936 "retry later\n",
937 inst->seqNum);
938
939 // Need to store the second packet, if split.
940 if (split) {
941 state->pktToSend = true;
942 state->pendingPacket = snd_data_pkt;
943 }
944 } else {
945
946 // If split, try to send the second packet too
947 if (split) {
948 assert(snd_data_pkt);
949
950 // Ensure there are enough ports to use.
951 if (usedPorts < cachePorts) {
952 ++usedPorts;
953 if (sendStore(snd_data_pkt)) {
954 storePostSend(snd_data_pkt);
955 } else {
956 DPRINTF(IEW, "D-Cache became blocked when writing"
957 " [sn:%lli] second packet, will retry later\n",
958 inst->seqNum);
959 }
960 } else {
961
962 // Store the packet for when there's free ports.
963 assert(pendingPkt == NULL);
964 pendingPkt = snd_data_pkt;
965 hasPendingPkt = true;
966 }
967 } else {
968
969 // Not a split store.
970 storePostSend(data_pkt);
971 }
972 }
973 }
974
975 // Not sure this should set it to 0.
976 usedPorts = 0;
977
978 assert(stores >= 0 && storesToWB >= 0);
979}
980
981/*template <class Impl>
982void
983LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
984{
985 list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
986 mshrSeqNums.end(),
987 seqNum);
988
989 if (mshr_it != mshrSeqNums.end()) {
990 mshrSeqNums.erase(mshr_it);
991 DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
992 }
993}*/
994
995template <class Impl>
996void
997LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
998{
999 DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
1000 "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
1001
1002 int load_idx = loadTail;
1003 decrLdIdx(load_idx);
1004
1005 while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
1006 DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
1007 "[sn:%lli]\n",
1008 loadQueue[load_idx]->pcState(),
1009 loadQueue[load_idx]->seqNum);
1010
1011 if (isStalled() && load_idx == stallingLoadIdx) {
1012 stalled = false;
1013 stallingStoreIsn = 0;
1014 stallingLoadIdx = 0;
1015 }
1016
1017 // Clear the smart pointer to make sure it is decremented.
1018 loadQueue[load_idx]->setSquashed();
1019 loadQueue[load_idx] = NULL;
1020 --loads;
1021
1022 // Inefficient!
1023 loadTail = load_idx;
1024
1025 decrLdIdx(load_idx);
1026 ++lsqSquashedLoads;
1027 }
1028
1029 if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1030 memDepViolator = NULL;
1031 }
1032
1033 int store_idx = storeTail;
1034 decrStIdx(store_idx);
1035
1036 while (stores != 0 &&
1037 storeQueue[store_idx].inst->seqNum > squashed_num) {
1038 // Instructions marked as can WB are already committed.
1039 if (storeQueue[store_idx].canWB) {
1040 break;
1041 }
1042
1043 DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1044 "idx:%i [sn:%lli]\n",
1045 storeQueue[store_idx].inst->pcState(),
1046 store_idx, storeQueue[store_idx].inst->seqNum);
1047
1048 // I don't think this can happen. It should have been cleared
1049 // by the stalling load.
1050 if (isStalled() &&
1051 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1052 panic("Is stalled should have been cleared by stalling load!\n");
1053 stalled = false;
1054 stallingStoreIsn = 0;
1055 }
1056
1057 // Clear the smart pointer to make sure it is decremented.
1058 storeQueue[store_idx].inst->setSquashed();
1059 storeQueue[store_idx].inst = NULL;
1060 storeQueue[store_idx].canWB = 0;
1061
1062 // Must delete request now that it wasn't handed off to
1063 // memory. This is quite ugly. @todo: Figure out the proper
1064 // place to really handle request deletes.
1065 delete storeQueue[store_idx].req;
1066 if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1067 delete storeQueue[store_idx].sreqLow;
1068 delete storeQueue[store_idx].sreqHigh;
1069
1070 storeQueue[store_idx].sreqLow = NULL;
1071 storeQueue[store_idx].sreqHigh = NULL;
1072 }
1073
1074 storeQueue[store_idx].req = NULL;
1075 --stores;
1076
1077 // Inefficient!
1078 storeTail = store_idx;
1079
1080 decrStIdx(store_idx);
1081 ++lsqSquashedStores;
1082 }
1083}
1084
1085template <class Impl>
1086void
1087LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1088{
1089 if (isStalled() &&
1090 storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1091 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1092 "load idx:%i\n",
1093 stallingStoreIsn, stallingLoadIdx);
1094 stalled = false;
1095 stallingStoreIsn = 0;
1096 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1097 }
1098
1099 if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1100 // The store is basically completed at this time. This
1101 // only works so long as the checker doesn't try to
1102 // verify the value in memory for stores.
1103 storeQueue[storeWBIdx].inst->setCompleted();
1104
1105 if (cpu->checker) {
1106 cpu->checker->verify(storeQueue[storeWBIdx].inst);
1107 }
1108 }
1109
1110 if (needsTSO) {
1111 storeInFlight = true;
1112 }
1113
1114 incrStIdx(storeWBIdx);
1115}
1116
1117template <class Impl>
1118void
1119LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1120{
1121 iewStage->wakeCPU();
1122
1123 // Squashed instructions do not need to complete their access.
1124 if (inst->isSquashed()) {
1125 assert(!inst->isStore());
1126 ++lsqIgnoredResponses;
1127 return;
1128 }
1129
1130 if (!inst->isExecuted()) {
1131 inst->setExecuted();
1132
1133 if (inst->fault == NoFault) {
1134 // Complete access to copy data to proper place.
1135 inst->completeAcc(pkt);
1136 } else {
1137 // If the instruction has an outstanding fault, we cannot complete
1138 // the access as this discards the current fault.
1139
1140 // If we have an outstanding fault, the fault should only be of
1141 // type ReExec.
1142 assert(dynamic_cast<ReExec*>(inst->fault.get()) != nullptr);
1143
1144 DPRINTF(LSQUnit, "Not completing instruction [sn:%lli] access "
1145 "due to pending fault.\n", inst->seqNum);
1146 }
1147 }
1148
1149 // Need to insert instruction into queue to commit
1150 iewStage->instToCommit(inst);
1151
1152 iewStage->activityThisCycle();
1153
1154 // see if this load changed the PC
1155 iewStage->checkMisprediction(inst);
1156}
1157
1158template <class Impl>
1159void
1160LSQUnit<Impl>::completeStore(int store_idx)
1161{
1162 assert(storeQueue[store_idx].inst);
1163 storeQueue[store_idx].completed = true;
1164 --storesToWB;
1165 // A bit conservative because a store completion may not free up entries,
1166 // but hopefully avoids two store completions in one cycle from making
1167 // the CPU tick twice.
1168 cpu->wakeCPU();
1169 cpu->activityThisCycle();
1170
1171 if (store_idx == storeHead) {
1172 do {
1173 incrStIdx(storeHead);
1174
1175 --stores;
1176 } while (storeQueue[storeHead].completed &&
1177 storeHead != storeTail);
1178
1179 iewStage->updateLSQNextCycle = true;
1180 }
1181
1182 DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1183 "idx:%i\n",
1184 storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1185
1186#if TRACING_ON
1187 if (DTRACE(O3PipeView)) {
1188 storeQueue[store_idx].inst->storeTick =
1189 curTick() - storeQueue[store_idx].inst->fetchTick;
1190 }
1191#endif
1192
1193 if (isStalled() &&
1194 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1195 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1196 "load idx:%i\n",
1197 stallingStoreIsn, stallingLoadIdx);
1198 stalled = false;
1199 stallingStoreIsn = 0;
1200 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1201 }
1202
1203 storeQueue[store_idx].inst->setCompleted();
1204
1205 if (needsTSO) {
1206 storeInFlight = false;
1207 }
1208
1209 // Tell the checker we've completed this instruction. Some stores
1210 // may get reported twice to the checker, but the checker can
1211 // handle that case.
1212 if (cpu->checker) {
1213 cpu->checker->verify(storeQueue[store_idx].inst);
1214 }
1215}
1216
1217template <class Impl>
1218bool
1219LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1220{
1221 if (!dcachePort->sendTimingReq(data_pkt)) {
1222 // Need to handle becoming blocked on a store.
1223 isStoreBlocked = true;
1224 ++lsqCacheBlocked;
1225 assert(retryPkt == NULL);
1226 retryPkt = data_pkt;
1227 return false;
1228 }
1229 return true;
1230}
1231
1232template <class Impl>
1233void
1234LSQUnit<Impl>::recvRetry()
1235{
1236 if (isStoreBlocked) {
1237 DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1238 assert(retryPkt != NULL);
1239
1240 LSQSenderState *state =
1241 dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1242
1243 if (dcachePort->sendTimingReq(retryPkt)) {
1244 // Don't finish the store unless this is the last packet.
1245 if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1246 state->pendingPacket == retryPkt) {
1247 state->pktToSend = false;
1248 storePostSend(retryPkt);
1249 }
1250 retryPkt = NULL;
1251 isStoreBlocked = false;
1252
1253 // Send any outstanding packet.
1254 if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1255 assert(state->pendingPacket);
1256 if (sendStore(state->pendingPacket)) {
1257 storePostSend(state->pendingPacket);
1258 }
1259 }
1260 } else {
1261 // Still blocked!
1262 ++lsqCacheBlocked;
1263 }
1264 }
1265}
1266
1267template <class Impl>
1268inline void
1269LSQUnit<Impl>::incrStIdx(int &store_idx) const
1270{
1271 if (++store_idx >= SQEntries)
1272 store_idx = 0;
1273}
1274
1275template <class Impl>
1276inline void
1277LSQUnit<Impl>::decrStIdx(int &store_idx) const
1278{
1279 if (--store_idx < 0)
1280 store_idx += SQEntries;
1281}
1282
1283template <class Impl>
1284inline void
1285LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1286{
1287 if (++load_idx >= LQEntries)
1288 load_idx = 0;
1289}
1290
1291template <class Impl>
1292inline void
1293LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1294{
1295 if (--load_idx < 0)
1296 load_idx += LQEntries;
1297}
1298
1299template <class Impl>
1300void
1301LSQUnit<Impl>::dumpInsts() const
1302{
1303 cprintf("Load store queue: Dumping instructions.\n");
1304 cprintf("Load queue size: %i\n", loads);
1305 cprintf("Load queue: ");
1306
1307 int load_idx = loadHead;
1308
1309 while (load_idx != loadTail && loadQueue[load_idx]) {
1310 const DynInstPtr &inst(loadQueue[load_idx]);
1311 cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1312
1313 incrLdIdx(load_idx);
1314 }
1315 cprintf("\n");
1316
1317 cprintf("Store queue size: %i\n", stores);
1318 cprintf("Store queue: ");
1319
1320 int store_idx = storeHead;
1321
1322 while (store_idx != storeTail && storeQueue[store_idx].inst) {
1323 const DynInstPtr &inst(storeQueue[store_idx].inst);
1324 cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1325
1326 incrStIdx(store_idx);
1327 }
1328
1329 cprintf("\n");
1330}
1331
1332#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__
148{
149}
150
151template<class Impl>
152void
153LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
154 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
155 unsigned id)
156{
157 cpu = cpu_ptr;
158 iewStage = iew_ptr;
159
160 lsq = lsq_ptr;
161
162 lsqID = id;
163
164 DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
165
166 // Add 1 for the sentinel entry (they are circular queues).
167 LQEntries = maxLQEntries + 1;
168 SQEntries = maxSQEntries + 1;
169
170 //Due to uint8_t index in LSQSenderState
171 assert(LQEntries <= 256);
172 assert(SQEntries <= 256);
173
174 loadQueue.resize(LQEntries);
175 storeQueue.resize(SQEntries);
176
177 depCheckShift = params->LSQDepCheckShift;
178 checkLoads = params->LSQCheckLoads;
179 cachePorts = params->cachePorts;
180 needsTSO = params->needsTSO;
181
182 resetState();
183}
184
185
186template<class Impl>
187void
188LSQUnit<Impl>::resetState()
189{
190 loads = stores = storesToWB = 0;
191
192 loadHead = loadTail = 0;
193
194 storeHead = storeWBIdx = storeTail = 0;
195
196 usedPorts = 0;
197
198 retryPkt = NULL;
199 memDepViolator = NULL;
200
201 stalled = false;
202
203 cacheBlockMask = ~(cpu->cacheLineSize() - 1);
204}
205
206template<class Impl>
207std::string
208LSQUnit<Impl>::name() const
209{
210 if (Impl::MaxThreads == 1) {
211 return iewStage->name() + ".lsq";
212 } else {
213 return iewStage->name() + ".lsq.thread" + std::to_string(lsqID);
214 }
215}
216
217template<class Impl>
218void
219LSQUnit<Impl>::regStats()
220{
221 lsqForwLoads
222 .name(name() + ".forwLoads")
223 .desc("Number of loads that had data forwarded from stores");
224
225 invAddrLoads
226 .name(name() + ".invAddrLoads")
227 .desc("Number of loads ignored due to an invalid address");
228
229 lsqSquashedLoads
230 .name(name() + ".squashedLoads")
231 .desc("Number of loads squashed");
232
233 lsqIgnoredResponses
234 .name(name() + ".ignoredResponses")
235 .desc("Number of memory responses ignored because the instruction is squashed");
236
237 lsqMemOrderViolation
238 .name(name() + ".memOrderViolation")
239 .desc("Number of memory ordering violations");
240
241 lsqSquashedStores
242 .name(name() + ".squashedStores")
243 .desc("Number of stores squashed");
244
245 invAddrSwpfs
246 .name(name() + ".invAddrSwpfs")
247 .desc("Number of software prefetches ignored due to an invalid address");
248
249 lsqBlockedLoads
250 .name(name() + ".blockedLoads")
251 .desc("Number of blocked loads due to partial load-store forwarding");
252
253 lsqRescheduledLoads
254 .name(name() + ".rescheduledLoads")
255 .desc("Number of loads that were rescheduled");
256
257 lsqCacheBlocked
258 .name(name() + ".cacheBlocked")
259 .desc("Number of times an access to memory failed due to the cache being blocked");
260}
261
262template<class Impl>
263void
264LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
265{
266 dcachePort = dcache_port;
267}
268
269template<class Impl>
270void
271LSQUnit<Impl>::clearLQ()
272{
273 loadQueue.clear();
274}
275
276template<class Impl>
277void
278LSQUnit<Impl>::clearSQ()
279{
280 storeQueue.clear();
281}
282
283template<class Impl>
284void
285LSQUnit<Impl>::drainSanityCheck() const
286{
287 for (int i = 0; i < loadQueue.size(); ++i)
288 assert(!loadQueue[i]);
289
290 assert(storesToWB == 0);
291 assert(!retryPkt);
292}
293
294template<class Impl>
295void
296LSQUnit<Impl>::takeOverFrom()
297{
298 resetState();
299}
300
301template<class Impl>
302void
303LSQUnit<Impl>::resizeLQ(unsigned size)
304{
305 unsigned size_plus_sentinel = size + 1;
306 assert(size_plus_sentinel >= LQEntries);
307
308 if (size_plus_sentinel > LQEntries) {
309 while (size_plus_sentinel > loadQueue.size()) {
310 DynInstPtr dummy;
311 loadQueue.push_back(dummy);
312 LQEntries++;
313 }
314 } else {
315 LQEntries = size_plus_sentinel;
316 }
317
318 assert(LQEntries <= 256);
319}
320
321template<class Impl>
322void
323LSQUnit<Impl>::resizeSQ(unsigned size)
324{
325 unsigned size_plus_sentinel = size + 1;
326 if (size_plus_sentinel > SQEntries) {
327 while (size_plus_sentinel > storeQueue.size()) {
328 SQEntry dummy;
329 storeQueue.push_back(dummy);
330 SQEntries++;
331 }
332 } else {
333 SQEntries = size_plus_sentinel;
334 }
335
336 assert(SQEntries <= 256);
337}
338
339template <class Impl>
340void
341LSQUnit<Impl>::insert(DynInstPtr &inst)
342{
343 assert(inst->isMemRef());
344
345 assert(inst->isLoad() || inst->isStore());
346
347 if (inst->isLoad()) {
348 insertLoad(inst);
349 } else {
350 insertStore(inst);
351 }
352
353 inst->setInLSQ();
354}
355
356template <class Impl>
357void
358LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
359{
360 assert((loadTail + 1) % LQEntries != loadHead);
361 assert(loads < LQEntries);
362
363 DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
364 load_inst->pcState(), loadTail, load_inst->seqNum);
365
366 load_inst->lqIdx = loadTail;
367
368 if (stores == 0) {
369 load_inst->sqIdx = -1;
370 } else {
371 load_inst->sqIdx = storeTail;
372 }
373
374 loadQueue[loadTail] = load_inst;
375
376 incrLdIdx(loadTail);
377
378 ++loads;
379}
380
381template <class Impl>
382void
383LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
384{
385 // Make sure it is not full before inserting an instruction.
386 assert((storeTail + 1) % SQEntries != storeHead);
387 assert(stores < SQEntries);
388
389 DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
390 store_inst->pcState(), storeTail, store_inst->seqNum);
391
392 store_inst->sqIdx = storeTail;
393 store_inst->lqIdx = loadTail;
394
395 storeQueue[storeTail] = SQEntry(store_inst);
396
397 incrStIdx(storeTail);
398
399 ++stores;
400}
401
402template <class Impl>
403typename Impl::DynInstPtr
404LSQUnit<Impl>::getMemDepViolator()
405{
406 DynInstPtr temp = memDepViolator;
407
408 memDepViolator = NULL;
409
410 return temp;
411}
412
413template <class Impl>
414unsigned
415LSQUnit<Impl>::numFreeLoadEntries()
416{
417 //LQ has an extra dummy entry to differentiate
418 //empty/full conditions. Subtract 1 from the free entries.
419 DPRINTF(LSQUnit, "LQ size: %d, #loads occupied: %d\n", LQEntries, loads);
420 return LQEntries - loads - 1;
421}
422
423template <class Impl>
424unsigned
425LSQUnit<Impl>::numFreeStoreEntries()
426{
427 //SQ has an extra dummy entry to differentiate
428 //empty/full conditions. Subtract 1 from the free entries.
429 DPRINTF(LSQUnit, "SQ size: %d, #stores occupied: %d\n", SQEntries, stores);
430 return SQEntries - stores - 1;
431
432 }
433
434template <class Impl>
435void
436LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
437{
438 int load_idx = loadHead;
439 DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
440
441 // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
442 // address. The CPU can speculatively execute a LL operation after a pending
443 // SC operation in the pipeline and that can make the cache monitor the CPU
444 // is connected to valid while it really shouldn't be.
445 for (int x = 0; x < cpu->numContexts(); x++) {
446 ThreadContext *tc = cpu->getContext(x);
447 bool no_squash = cpu->thread[x]->noSquashFromTC;
448 cpu->thread[x]->noSquashFromTC = true;
449 TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
450 cpu->thread[x]->noSquashFromTC = no_squash;
451 }
452
453 Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
454
455 DynInstPtr ld_inst = loadQueue[load_idx];
456 if (ld_inst) {
457 Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask;
458 Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask;
459
460 // Check that this snoop didn't just invalidate our lock flag
461 if (ld_inst->effAddrValid() && (load_addr_low == invalidate_addr
462 || load_addr_high == invalidate_addr)
463 && ld_inst->memReqFlags & Request::LLSC)
464 TheISA::handleLockedSnoopHit(ld_inst.get());
465 }
466
467 // If this is the only load in the LSQ we don't care
468 if (load_idx == loadTail)
469 return;
470
471 incrLdIdx(load_idx);
472
473 bool force_squash = false;
474
475 while (load_idx != loadTail) {
476 DynInstPtr ld_inst = loadQueue[load_idx];
477
478 if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
479 incrLdIdx(load_idx);
480 continue;
481 }
482
483 Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask;
484 Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask;
485
486 DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
487 ld_inst->seqNum, load_addr_low, invalidate_addr);
488
489 if ((load_addr_low == invalidate_addr
490 || load_addr_high == invalidate_addr) || force_squash) {
491 if (needsTSO) {
492 // If we have a TSO system, as all loads must be ordered with
493 // all other loads, this load as well as *all* subsequent loads
494 // need to be squashed to prevent possible load reordering.
495 force_squash = true;
496 }
497 if (ld_inst->possibleLoadViolation() || force_squash) {
498 DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
499 pkt->getAddr(), ld_inst->seqNum);
500
501 // Mark the load for re-execution
502 ld_inst->fault = std::make_shared<ReExec>();
503 } else {
504 DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n",
505 pkt->getAddr(), ld_inst->seqNum);
506
507 // Make sure that we don't lose a snoop hitting a LOCKED
508 // address since the LOCK* flags don't get updated until
509 // commit.
510 if (ld_inst->memReqFlags & Request::LLSC)
511 TheISA::handleLockedSnoopHit(ld_inst.get());
512
513 // If a older load checks this and it's true
514 // then we might have missed the snoop
515 // in which case we need to invalidate to be sure
516 ld_inst->hitExternalSnoop(true);
517 }
518 }
519 incrLdIdx(load_idx);
520 }
521 return;
522}
523
524template <class Impl>
525Fault
526LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
527{
528 Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
529 Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
530
531 /** @todo in theory you only need to check an instruction that has executed
532 * however, there isn't a good way in the pipeline at the moment to check
533 * all instructions that will execute before the store writes back. Thus,
534 * like the implementation that came before it, we're overly conservative.
535 */
536 while (load_idx != loadTail) {
537 DynInstPtr ld_inst = loadQueue[load_idx];
538 if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
539 incrLdIdx(load_idx);
540 continue;
541 }
542
543 Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
544 Addr ld_eff_addr2 =
545 (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
546
547 if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
548 if (inst->isLoad()) {
549 // If this load is to the same block as an external snoop
550 // invalidate that we've observed then the load needs to be
551 // squashed as it could have newer data
552 if (ld_inst->hitExternalSnoop()) {
553 if (!memDepViolator ||
554 ld_inst->seqNum < memDepViolator->seqNum) {
555 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
556 "and [sn:%lli] at address %#x\n",
557 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
558 memDepViolator = ld_inst;
559
560 ++lsqMemOrderViolation;
561
562 return std::make_shared<GenericISA::M5PanicFault>(
563 "Detected fault with inst [sn:%lli] and "
564 "[sn:%lli] at address %#x\n",
565 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
566 }
567 }
568
569 // Otherwise, mark the load has a possible load violation
570 // and if we see a snoop before it's commited, we need to squash
571 ld_inst->possibleLoadViolation(true);
572 DPRINTF(LSQUnit, "Found possible load violation at addr: %#x"
573 " between instructions [sn:%lli] and [sn:%lli]\n",
574 inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
575 } else {
576 // A load/store incorrectly passed this store.
577 // Check if we already have a violator, or if it's newer
578 // squash and refetch.
579 if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
580 break;
581
582 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
583 "[sn:%lli] at address %#x\n",
584 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
585 memDepViolator = ld_inst;
586
587 ++lsqMemOrderViolation;
588
589 return std::make_shared<GenericISA::M5PanicFault>(
590 "Detected fault with "
591 "inst [sn:%lli] and [sn:%lli] at address %#x\n",
592 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
593 }
594 }
595
596 incrLdIdx(load_idx);
597 }
598 return NoFault;
599}
600
601
602
603
604template <class Impl>
605Fault
606LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
607{
608 using namespace TheISA;
609 // Execute a specific load.
610 Fault load_fault = NoFault;
611
612 DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
613 inst->pcState(), inst->seqNum);
614
615 assert(!inst->isSquashed());
616
617 load_fault = inst->initiateAcc();
618
619 if (inst->isTranslationDelayed() &&
620 load_fault == NoFault)
621 return load_fault;
622
623 // If the instruction faulted or predicated false, then we need to send it
624 // along to commit without the instruction completing.
625 if (load_fault != NoFault || !inst->readPredicate()) {
626 // Send this instruction to commit, also make sure iew stage
627 // realizes there is activity. Mark it as executed unless it
628 // is a strictly ordered load that needs to hit the head of
629 // commit.
630 if (!inst->readPredicate())
631 inst->forwardOldRegs();
632 DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
633 inst->seqNum,
634 (load_fault != NoFault ? "fault" : "predication"));
635 if (!(inst->hasRequest() && inst->strictlyOrdered()) ||
636 inst->isAtCommit()) {
637 inst->setExecuted();
638 }
639 iewStage->instToCommit(inst);
640 iewStage->activityThisCycle();
641 } else {
642 assert(inst->effAddrValid());
643 int load_idx = inst->lqIdx;
644 incrLdIdx(load_idx);
645
646 if (checkLoads)
647 return checkViolations(load_idx, inst);
648 }
649
650 return load_fault;
651}
652
653template <class Impl>
654Fault
655LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
656{
657 using namespace TheISA;
658 // Make sure that a store exists.
659 assert(stores != 0);
660
661 int store_idx = store_inst->sqIdx;
662
663 DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
664 store_inst->pcState(), store_inst->seqNum);
665
666 assert(!store_inst->isSquashed());
667
668 // Check the recently completed loads to see if any match this store's
669 // address. If so, then we have a memory ordering violation.
670 int load_idx = store_inst->lqIdx;
671
672 Fault store_fault = store_inst->initiateAcc();
673
674 if (store_inst->isTranslationDelayed() &&
675 store_fault == NoFault)
676 return store_fault;
677
678 if (!store_inst->readPredicate())
679 store_inst->forwardOldRegs();
680
681 if (storeQueue[store_idx].size == 0) {
682 DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
683 store_inst->pcState(), store_inst->seqNum);
684
685 return store_fault;
686 } else if (!store_inst->readPredicate()) {
687 DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
688 store_inst->seqNum);
689 return store_fault;
690 }
691
692 assert(store_fault == NoFault);
693
694 if (store_inst->isStoreConditional()) {
695 // Store conditionals need to set themselves as able to
696 // writeback if we haven't had a fault by here.
697 storeQueue[store_idx].canWB = true;
698
699 ++storesToWB;
700 }
701
702 return checkViolations(load_idx, store_inst);
703
704}
705
706template <class Impl>
707void
708LSQUnit<Impl>::commitLoad()
709{
710 assert(loadQueue[loadHead]);
711
712 DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
713 loadQueue[loadHead]->pcState());
714
715 loadQueue[loadHead] = NULL;
716
717 incrLdIdx(loadHead);
718
719 --loads;
720}
721
722template <class Impl>
723void
724LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
725{
726 assert(loads == 0 || loadQueue[loadHead]);
727
728 while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
729 commitLoad();
730 }
731}
732
733template <class Impl>
734void
735LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
736{
737 assert(stores == 0 || storeQueue[storeHead].inst);
738
739 int store_idx = storeHead;
740
741 while (store_idx != storeTail) {
742 assert(storeQueue[store_idx].inst);
743 // Mark any stores that are now committed and have not yet
744 // been marked as able to write back.
745 if (!storeQueue[store_idx].canWB) {
746 if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
747 break;
748 }
749 DPRINTF(LSQUnit, "Marking store as able to write back, PC "
750 "%s [sn:%lli]\n",
751 storeQueue[store_idx].inst->pcState(),
752 storeQueue[store_idx].inst->seqNum);
753
754 storeQueue[store_idx].canWB = true;
755
756 ++storesToWB;
757 }
758
759 incrStIdx(store_idx);
760 }
761}
762
763template <class Impl>
764void
765LSQUnit<Impl>::writebackPendingStore()
766{
767 if (hasPendingPkt) {
768 assert(pendingPkt != NULL);
769
770 // If the cache is blocked, this will store the packet for retry.
771 if (sendStore(pendingPkt)) {
772 storePostSend(pendingPkt);
773 }
774 pendingPkt = NULL;
775 hasPendingPkt = false;
776 }
777}
778
779template <class Impl>
780void
781LSQUnit<Impl>::writebackStores()
782{
783 // First writeback the second packet from any split store that didn't
784 // complete last cycle because there weren't enough cache ports available.
785 if (TheISA::HasUnalignedMemAcc) {
786 writebackPendingStore();
787 }
788
789 while (storesToWB > 0 &&
790 storeWBIdx != storeTail &&
791 storeQueue[storeWBIdx].inst &&
792 storeQueue[storeWBIdx].canWB &&
793 ((!needsTSO) || (!storeInFlight)) &&
794 usedPorts < cachePorts) {
795
796 if (isStoreBlocked) {
797 DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
798 " is blocked!\n");
799 break;
800 }
801
802 // Store didn't write any data so no need to write it back to
803 // memory.
804 if (storeQueue[storeWBIdx].size == 0) {
805 completeStore(storeWBIdx);
806
807 incrStIdx(storeWBIdx);
808
809 continue;
810 }
811
812 ++usedPorts;
813
814 if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
815 incrStIdx(storeWBIdx);
816
817 continue;
818 }
819
820 assert(storeQueue[storeWBIdx].req);
821 assert(!storeQueue[storeWBIdx].committed);
822
823 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
824 assert(storeQueue[storeWBIdx].sreqLow);
825 assert(storeQueue[storeWBIdx].sreqHigh);
826 }
827
828 DynInstPtr inst = storeQueue[storeWBIdx].inst;
829
830 Request *req = storeQueue[storeWBIdx].req;
831 RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
832 RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
833
834 storeQueue[storeWBIdx].committed = true;
835
836 assert(!inst->memData);
837 inst->memData = new uint8_t[req->getSize()];
838
839 if (storeQueue[storeWBIdx].isAllZeros)
840 memset(inst->memData, 0, req->getSize());
841 else
842 memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
843
844 PacketPtr data_pkt;
845 PacketPtr snd_data_pkt = NULL;
846
847 LSQSenderState *state = new LSQSenderState;
848 state->isLoad = false;
849 state->idx = storeWBIdx;
850 state->inst = inst;
851
852 if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
853
854 // Build a single data packet if the store isn't split.
855 data_pkt = Packet::createWrite(req);
856 data_pkt->dataStatic(inst->memData);
857 data_pkt->senderState = state;
858 } else {
859 // Create two packets if the store is split in two.
860 data_pkt = Packet::createWrite(sreqLow);
861 snd_data_pkt = Packet::createWrite(sreqHigh);
862
863 data_pkt->dataStatic(inst->memData);
864 snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
865
866 data_pkt->senderState = state;
867 snd_data_pkt->senderState = state;
868
869 state->isSplit = true;
870 state->outstanding = 2;
871
872 // Can delete the main request now.
873 delete req;
874 req = sreqLow;
875 }
876
877 DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
878 "to Addr:%#x, data:%#x [sn:%lli]\n",
879 storeWBIdx, inst->pcState(),
880 req->getPaddr(), (int)*(inst->memData),
881 inst->seqNum);
882
883 // @todo: Remove this SC hack once the memory system handles it.
884 if (inst->isStoreConditional()) {
885 assert(!storeQueue[storeWBIdx].isSplit);
886 // Disable recording the result temporarily. Writing to
887 // misc regs normally updates the result, but this is not
888 // the desired behavior when handling store conditionals.
889 inst->recordResult(false);
890 bool success = TheISA::handleLockedWrite(inst.get(), req, cacheBlockMask);
891 inst->recordResult(true);
892
893 if (!success) {
894 // Instantly complete this store.
895 DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. "
896 "Instantly completing it.\n",
897 inst->seqNum);
898 WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
899 cpu->schedule(wb, curTick() + 1);
900 if (cpu->checker) {
901 // Make sure to set the LLSC data for verification
902 // if checker is loaded
903 inst->reqToVerify->setExtraData(0);
904 inst->completeAcc(data_pkt);
905 }
906 completeStore(storeWBIdx);
907 incrStIdx(storeWBIdx);
908 continue;
909 }
910 } else {
911 // Non-store conditionals do not need a writeback.
912 state->noWB = true;
913 }
914
915 bool split =
916 TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
917
918 ThreadContext *thread = cpu->tcBase(lsqID);
919
920 if (req->isMmappedIpr()) {
921 assert(!inst->isStoreConditional());
922 TheISA::handleIprWrite(thread, data_pkt);
923 delete data_pkt;
924 if (split) {
925 assert(snd_data_pkt->req->isMmappedIpr());
926 TheISA::handleIprWrite(thread, snd_data_pkt);
927 delete snd_data_pkt;
928 delete sreqLow;
929 delete sreqHigh;
930 }
931 delete state;
932 delete req;
933 completeStore(storeWBIdx);
934 incrStIdx(storeWBIdx);
935 } else if (!sendStore(data_pkt)) {
936 DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
937 "retry later\n",
938 inst->seqNum);
939
940 // Need to store the second packet, if split.
941 if (split) {
942 state->pktToSend = true;
943 state->pendingPacket = snd_data_pkt;
944 }
945 } else {
946
947 // If split, try to send the second packet too
948 if (split) {
949 assert(snd_data_pkt);
950
951 // Ensure there are enough ports to use.
952 if (usedPorts < cachePorts) {
953 ++usedPorts;
954 if (sendStore(snd_data_pkt)) {
955 storePostSend(snd_data_pkt);
956 } else {
957 DPRINTF(IEW, "D-Cache became blocked when writing"
958 " [sn:%lli] second packet, will retry later\n",
959 inst->seqNum);
960 }
961 } else {
962
963 // Store the packet for when there's free ports.
964 assert(pendingPkt == NULL);
965 pendingPkt = snd_data_pkt;
966 hasPendingPkt = true;
967 }
968 } else {
969
970 // Not a split store.
971 storePostSend(data_pkt);
972 }
973 }
974 }
975
976 // Not sure this should set it to 0.
977 usedPorts = 0;
978
979 assert(stores >= 0 && storesToWB >= 0);
980}
981
982/*template <class Impl>
983void
984LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
985{
986 list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
987 mshrSeqNums.end(),
988 seqNum);
989
990 if (mshr_it != mshrSeqNums.end()) {
991 mshrSeqNums.erase(mshr_it);
992 DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
993 }
994}*/
995
996template <class Impl>
997void
998LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
999{
1000 DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
1001 "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
1002
1003 int load_idx = loadTail;
1004 decrLdIdx(load_idx);
1005
1006 while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
1007 DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
1008 "[sn:%lli]\n",
1009 loadQueue[load_idx]->pcState(),
1010 loadQueue[load_idx]->seqNum);
1011
1012 if (isStalled() && load_idx == stallingLoadIdx) {
1013 stalled = false;
1014 stallingStoreIsn = 0;
1015 stallingLoadIdx = 0;
1016 }
1017
1018 // Clear the smart pointer to make sure it is decremented.
1019 loadQueue[load_idx]->setSquashed();
1020 loadQueue[load_idx] = NULL;
1021 --loads;
1022
1023 // Inefficient!
1024 loadTail = load_idx;
1025
1026 decrLdIdx(load_idx);
1027 ++lsqSquashedLoads;
1028 }
1029
1030 if (memDepViolator && squashed_num < memDepViolator->seqNum) {
1031 memDepViolator = NULL;
1032 }
1033
1034 int store_idx = storeTail;
1035 decrStIdx(store_idx);
1036
1037 while (stores != 0 &&
1038 storeQueue[store_idx].inst->seqNum > squashed_num) {
1039 // Instructions marked as can WB are already committed.
1040 if (storeQueue[store_idx].canWB) {
1041 break;
1042 }
1043
1044 DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1045 "idx:%i [sn:%lli]\n",
1046 storeQueue[store_idx].inst->pcState(),
1047 store_idx, storeQueue[store_idx].inst->seqNum);
1048
1049 // I don't think this can happen. It should have been cleared
1050 // by the stalling load.
1051 if (isStalled() &&
1052 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1053 panic("Is stalled should have been cleared by stalling load!\n");
1054 stalled = false;
1055 stallingStoreIsn = 0;
1056 }
1057
1058 // Clear the smart pointer to make sure it is decremented.
1059 storeQueue[store_idx].inst->setSquashed();
1060 storeQueue[store_idx].inst = NULL;
1061 storeQueue[store_idx].canWB = 0;
1062
1063 // Must delete request now that it wasn't handed off to
1064 // memory. This is quite ugly. @todo: Figure out the proper
1065 // place to really handle request deletes.
1066 delete storeQueue[store_idx].req;
1067 if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1068 delete storeQueue[store_idx].sreqLow;
1069 delete storeQueue[store_idx].sreqHigh;
1070
1071 storeQueue[store_idx].sreqLow = NULL;
1072 storeQueue[store_idx].sreqHigh = NULL;
1073 }
1074
1075 storeQueue[store_idx].req = NULL;
1076 --stores;
1077
1078 // Inefficient!
1079 storeTail = store_idx;
1080
1081 decrStIdx(store_idx);
1082 ++lsqSquashedStores;
1083 }
1084}
1085
1086template <class Impl>
1087void
1088LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1089{
1090 if (isStalled() &&
1091 storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1092 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1093 "load idx:%i\n",
1094 stallingStoreIsn, stallingLoadIdx);
1095 stalled = false;
1096 stallingStoreIsn = 0;
1097 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1098 }
1099
1100 if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1101 // The store is basically completed at this time. This
1102 // only works so long as the checker doesn't try to
1103 // verify the value in memory for stores.
1104 storeQueue[storeWBIdx].inst->setCompleted();
1105
1106 if (cpu->checker) {
1107 cpu->checker->verify(storeQueue[storeWBIdx].inst);
1108 }
1109 }
1110
1111 if (needsTSO) {
1112 storeInFlight = true;
1113 }
1114
1115 incrStIdx(storeWBIdx);
1116}
1117
1118template <class Impl>
1119void
1120LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1121{
1122 iewStage->wakeCPU();
1123
1124 // Squashed instructions do not need to complete their access.
1125 if (inst->isSquashed()) {
1126 assert(!inst->isStore());
1127 ++lsqIgnoredResponses;
1128 return;
1129 }
1130
1131 if (!inst->isExecuted()) {
1132 inst->setExecuted();
1133
1134 if (inst->fault == NoFault) {
1135 // Complete access to copy data to proper place.
1136 inst->completeAcc(pkt);
1137 } else {
1138 // If the instruction has an outstanding fault, we cannot complete
1139 // the access as this discards the current fault.
1140
1141 // If we have an outstanding fault, the fault should only be of
1142 // type ReExec.
1143 assert(dynamic_cast<ReExec*>(inst->fault.get()) != nullptr);
1144
1145 DPRINTF(LSQUnit, "Not completing instruction [sn:%lli] access "
1146 "due to pending fault.\n", inst->seqNum);
1147 }
1148 }
1149
1150 // Need to insert instruction into queue to commit
1151 iewStage->instToCommit(inst);
1152
1153 iewStage->activityThisCycle();
1154
1155 // see if this load changed the PC
1156 iewStage->checkMisprediction(inst);
1157}
1158
1159template <class Impl>
1160void
1161LSQUnit<Impl>::completeStore(int store_idx)
1162{
1163 assert(storeQueue[store_idx].inst);
1164 storeQueue[store_idx].completed = true;
1165 --storesToWB;
1166 // A bit conservative because a store completion may not free up entries,
1167 // but hopefully avoids two store completions in one cycle from making
1168 // the CPU tick twice.
1169 cpu->wakeCPU();
1170 cpu->activityThisCycle();
1171
1172 if (store_idx == storeHead) {
1173 do {
1174 incrStIdx(storeHead);
1175
1176 --stores;
1177 } while (storeQueue[storeHead].completed &&
1178 storeHead != storeTail);
1179
1180 iewStage->updateLSQNextCycle = true;
1181 }
1182
1183 DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1184 "idx:%i\n",
1185 storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1186
1187#if TRACING_ON
1188 if (DTRACE(O3PipeView)) {
1189 storeQueue[store_idx].inst->storeTick =
1190 curTick() - storeQueue[store_idx].inst->fetchTick;
1191 }
1192#endif
1193
1194 if (isStalled() &&
1195 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1196 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1197 "load idx:%i\n",
1198 stallingStoreIsn, stallingLoadIdx);
1199 stalled = false;
1200 stallingStoreIsn = 0;
1201 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1202 }
1203
1204 storeQueue[store_idx].inst->setCompleted();
1205
1206 if (needsTSO) {
1207 storeInFlight = false;
1208 }
1209
1210 // Tell the checker we've completed this instruction. Some stores
1211 // may get reported twice to the checker, but the checker can
1212 // handle that case.
1213 if (cpu->checker) {
1214 cpu->checker->verify(storeQueue[store_idx].inst);
1215 }
1216}
1217
1218template <class Impl>
1219bool
1220LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1221{
1222 if (!dcachePort->sendTimingReq(data_pkt)) {
1223 // Need to handle becoming blocked on a store.
1224 isStoreBlocked = true;
1225 ++lsqCacheBlocked;
1226 assert(retryPkt == NULL);
1227 retryPkt = data_pkt;
1228 return false;
1229 }
1230 return true;
1231}
1232
1233template <class Impl>
1234void
1235LSQUnit<Impl>::recvRetry()
1236{
1237 if (isStoreBlocked) {
1238 DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1239 assert(retryPkt != NULL);
1240
1241 LSQSenderState *state =
1242 dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1243
1244 if (dcachePort->sendTimingReq(retryPkt)) {
1245 // Don't finish the store unless this is the last packet.
1246 if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1247 state->pendingPacket == retryPkt) {
1248 state->pktToSend = false;
1249 storePostSend(retryPkt);
1250 }
1251 retryPkt = NULL;
1252 isStoreBlocked = false;
1253
1254 // Send any outstanding packet.
1255 if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1256 assert(state->pendingPacket);
1257 if (sendStore(state->pendingPacket)) {
1258 storePostSend(state->pendingPacket);
1259 }
1260 }
1261 } else {
1262 // Still blocked!
1263 ++lsqCacheBlocked;
1264 }
1265 }
1266}
1267
1268template <class Impl>
1269inline void
1270LSQUnit<Impl>::incrStIdx(int &store_idx) const
1271{
1272 if (++store_idx >= SQEntries)
1273 store_idx = 0;
1274}
1275
1276template <class Impl>
1277inline void
1278LSQUnit<Impl>::decrStIdx(int &store_idx) const
1279{
1280 if (--store_idx < 0)
1281 store_idx += SQEntries;
1282}
1283
1284template <class Impl>
1285inline void
1286LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1287{
1288 if (++load_idx >= LQEntries)
1289 load_idx = 0;
1290}
1291
1292template <class Impl>
1293inline void
1294LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1295{
1296 if (--load_idx < 0)
1297 load_idx += LQEntries;
1298}
1299
1300template <class Impl>
1301void
1302LSQUnit<Impl>::dumpInsts() const
1303{
1304 cprintf("Load store queue: Dumping instructions.\n");
1305 cprintf("Load queue size: %i\n", loads);
1306 cprintf("Load queue: ");
1307
1308 int load_idx = loadHead;
1309
1310 while (load_idx != loadTail && loadQueue[load_idx]) {
1311 const DynInstPtr &inst(loadQueue[load_idx]);
1312 cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1313
1314 incrLdIdx(load_idx);
1315 }
1316 cprintf("\n");
1317
1318 cprintf("Store queue size: %i\n", stores);
1319 cprintf("Store queue: ");
1320
1321 int store_idx = storeHead;
1322
1323 while (store_idx != storeTail && storeQueue[store_idx].inst) {
1324 const DynInstPtr &inst(storeQueue[store_idx].inst);
1325 cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1326
1327 incrStIdx(store_idx);
1328 }
1329
1330 cprintf("\n");
1331}
1332
1333#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__