Deleted Added
sdiff udiff text old ( 9944:4ff1c5c6dcbc ) new ( 10020:2f33cb012383 )
full compact
1
2/*
3 * Copyright (c) 2010-2012 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 * Korey Sewell
43 */
44
45#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
46#define __CPU_O3_LSQ_UNIT_IMPL_HH__
47
48#include "arch/generic/debugfaults.hh"
49#include "arch/locked_mem.hh"
50#include "base/str.hh"
51#include "config/the_isa.hh"
52#include "cpu/checker/cpu.hh"
53#include "cpu/o3/lsq.hh"
54#include "cpu/o3/lsq_unit.hh"
55#include "debug/Activity.hh"
56#include "debug/IEW.hh"
57#include "debug/LSQUnit.hh"
58#include "debug/O3PipeView.hh"
59#include "mem/packet.hh"
60#include "mem/request.hh"
61
62template<class Impl>
63LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
64 LSQUnit *lsq_ptr)
65 : Event(Default_Pri, AutoDelete),
66 inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
67{
68}
69
70template<class Impl>
71void
72LSQUnit<Impl>::WritebackEvent::process()
73{
74 assert(!lsqPtr->cpu->switchedOut());
75
76 lsqPtr->writeback(inst, pkt);
77
78 if (pkt->senderState)
79 delete pkt->senderState;
80
81 delete pkt->req;
82 delete pkt;
83}
84
85template<class Impl>
86const char *
87LSQUnit<Impl>::WritebackEvent::description() const
88{
89 return "Store writeback";
90}
91
92template<class Impl>
93void
94LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
95{
96 LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
97 DynInstPtr inst = state->inst;
98 DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
99 DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);
100
101 //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
102
103 // If this is a split access, wait until all packets are received.
104 if (TheISA::HasUnalignedMemAcc && !state->complete()) {
105 delete pkt->req;
106 delete pkt;
107 return;
108 }
109
110 assert(!cpu->switchedOut());
111 if (inst->isSquashed()) {
112 iewStage->decrWb(inst->seqNum);
113 } else {
114 if (!state->noWB) {
115 if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
116 !state->isLoad) {
117 writeback(inst, pkt);
118 } else {
119 writeback(inst, state->mainPkt);
120 }
121 }
122
123 if (inst->isStore()) {
124 completeStore(state->idx);
125 }
126 }
127
128 if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
129 delete state->mainPkt->req;
130 delete state->mainPkt;
131 }
132
133 pkt->req->setAccessLatency();
134 delete state;
135 delete pkt->req;
136 delete pkt;
137}
138
139template <class Impl>
140LSQUnit<Impl>::LSQUnit()
141 : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
142 isStoreBlocked(false), isLoadBlocked(false),
143 loadBlockedHandled(false), storeInFlight(false), hasPendingPkt(false)
144{
145}
146
147template<class Impl>
148void
149LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
150 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
151 unsigned id)
152{
153 cpu = cpu_ptr;
154 iewStage = iew_ptr;
155
156 DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);
157
158 lsq = lsq_ptr;
159
160 lsqID = id;
161
162 // Add 1 for the sentinel entry (they are circular queues).
163 LQEntries = maxLQEntries + 1;
164 SQEntries = maxSQEntries + 1;
165
166 //Due to uint8_t index in LSQSenderState
167 assert(LQEntries <= 256);
168 assert(SQEntries <= 256);
169
170 loadQueue.resize(LQEntries);
171 storeQueue.resize(SQEntries);
172
173 depCheckShift = params->LSQDepCheckShift;
174 checkLoads = params->LSQCheckLoads;
175 cachePorts = params->cachePorts;
176 needsTSO = params->needsTSO;
177
178 resetState();
179}
180
181
182template<class Impl>
183void
184LSQUnit<Impl>::resetState()
185{
186 loads = stores = storesToWB = 0;
187
188 loadHead = loadTail = 0;
189
190 storeHead = storeWBIdx = storeTail = 0;
191
192 usedPorts = 0;
193
194 retryPkt = NULL;
195 memDepViolator = NULL;
196
197 blockedLoadSeqNum = 0;
198
199 stalled = false;
200 isLoadBlocked = false;
201 loadBlockedHandled = false;
202
203 cacheBlockMask = ~(cpu->cacheLineSize() - 1);
204}
205
206template<class Impl>
207std::string
208LSQUnit<Impl>::name() const
209{
210 if (Impl::MaxThreads == 1) {
211 return iewStage->name() + ".lsq";
212 } else {
213 return iewStage->name() + ".lsq.thread" + to_string(lsqID);
214 }
215}
216
217template<class Impl>
218void
219LSQUnit<Impl>::regStats()
220{
221 lsqForwLoads
222 .name(name() + ".forwLoads")
223 .desc("Number of loads that had data forwarded from stores");
224
225 invAddrLoads
226 .name(name() + ".invAddrLoads")
227 .desc("Number of loads ignored due to an invalid address");
228
229 lsqSquashedLoads
230 .name(name() + ".squashedLoads")
231 .desc("Number of loads squashed");
232
233 lsqIgnoredResponses
234 .name(name() + ".ignoredResponses")
235 .desc("Number of memory responses ignored because the instruction is squashed");
236
237 lsqMemOrderViolation
238 .name(name() + ".memOrderViolation")
239 .desc("Number of memory ordering violations");
240
241 lsqSquashedStores
242 .name(name() + ".squashedStores")
243 .desc("Number of stores squashed");
244
245 invAddrSwpfs
246 .name(name() + ".invAddrSwpfs")
247 .desc("Number of software prefetches ignored due to an invalid address");
248
249 lsqBlockedLoads
250 .name(name() + ".blockedLoads")
251 .desc("Number of blocked loads due to partial load-store forwarding");
252
253 lsqRescheduledLoads
254 .name(name() + ".rescheduledLoads")
255 .desc("Number of loads that were rescheduled");
256
257 lsqCacheBlocked
258 .name(name() + ".cacheBlocked")
259 .desc("Number of times an access to memory failed due to the cache being blocked");
260}
261
262template<class Impl>
263void
264LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
265{
266 dcachePort = dcache_port;
267}
268
269template<class Impl>
270void
271LSQUnit<Impl>::clearLQ()
272{
273 loadQueue.clear();
274}
275
276template<class Impl>
277void
278LSQUnit<Impl>::clearSQ()
279{
280 storeQueue.clear();
281}
282
283template<class Impl>
284void
285LSQUnit<Impl>::drainSanityCheck() const
286{
287 for (int i = 0; i < loadQueue.size(); ++i)
288 assert(!loadQueue[i]);
289
290 assert(storesToWB == 0);
291 assert(!retryPkt);
292}
293
294template<class Impl>
295void
296LSQUnit<Impl>::takeOverFrom()
297{
298 resetState();
299}
300
301template<class Impl>
302void
303LSQUnit<Impl>::resizeLQ(unsigned size)
304{
305 unsigned size_plus_sentinel = size + 1;
306 assert(size_plus_sentinel >= LQEntries);
307
308 if (size_plus_sentinel > LQEntries) {
309 while (size_plus_sentinel > loadQueue.size()) {
310 DynInstPtr dummy;
311 loadQueue.push_back(dummy);
312 LQEntries++;
313 }
314 } else {
315 LQEntries = size_plus_sentinel;
316 }
317
318 assert(LQEntries <= 256);
319}
320
321template<class Impl>
322void
323LSQUnit<Impl>::resizeSQ(unsigned size)
324{
325 unsigned size_plus_sentinel = size + 1;
326 if (size_plus_sentinel > SQEntries) {
327 while (size_plus_sentinel > storeQueue.size()) {
328 SQEntry dummy;
329 storeQueue.push_back(dummy);
330 SQEntries++;
331 }
332 } else {
333 SQEntries = size_plus_sentinel;
334 }
335
336 assert(SQEntries <= 256);
337}
338
339template <class Impl>
340void
341LSQUnit<Impl>::insert(DynInstPtr &inst)
342{
343 assert(inst->isMemRef());
344
345 assert(inst->isLoad() || inst->isStore());
346
347 if (inst->isLoad()) {
348 insertLoad(inst);
349 } else {
350 insertStore(inst);
351 }
352
353 inst->setInLSQ();
354}
355
356template <class Impl>
357void
358LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
359{
360 assert((loadTail + 1) % LQEntries != loadHead);
361 assert(loads < LQEntries);
362
363 DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
364 load_inst->pcState(), loadTail, load_inst->seqNum);
365
366 load_inst->lqIdx = loadTail;
367
368 if (stores == 0) {
369 load_inst->sqIdx = -1;
370 } else {
371 load_inst->sqIdx = storeTail;
372 }
373
374 loadQueue[loadTail] = load_inst;
375
376 incrLdIdx(loadTail);
377
378 ++loads;
379}
380
381template <class Impl>
382void
383LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
384{
385 // Make sure it is not full before inserting an instruction.
386 assert((storeTail + 1) % SQEntries != storeHead);
387 assert(stores < SQEntries);
388
389 DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
390 store_inst->pcState(), storeTail, store_inst->seqNum);
391
392 store_inst->sqIdx = storeTail;
393 store_inst->lqIdx = loadTail;
394
395 storeQueue[storeTail] = SQEntry(store_inst);
396
397 incrStIdx(storeTail);
398
399 ++stores;
400}
401
402template <class Impl>
403typename Impl::DynInstPtr
404LSQUnit<Impl>::getMemDepViolator()
405{
406 DynInstPtr temp = memDepViolator;
407
408 memDepViolator = NULL;
409
410 return temp;
411}
412
413template <class Impl>
414unsigned
415LSQUnit<Impl>::numFreeEntries()
416{
417 unsigned free_lq_entries = LQEntries - loads;
418 unsigned free_sq_entries = SQEntries - stores;
419
420 // Both the LQ and SQ entries have an extra dummy entry to differentiate
421 // empty/full conditions. Subtract 1 from the free entries.
422 if (free_lq_entries < free_sq_entries) {
423 return free_lq_entries - 1;
424 } else {
425 return free_sq_entries - 1;
426 }
427}
428
429template <class Impl>
430void
431LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
432{
433 int load_idx = loadHead;
434
435 // Unlock the cpu-local monitor when the CPU sees a snoop to a locked
436 // address. The CPU can speculatively execute a LL operation after a pending
437 // SC operation in the pipeline and that can make the cache monitor the CPU
438 // is connected to valid while it really shouldn't be.
439 for (int x = 0; x < cpu->numActiveThreads(); x++) {
440 ThreadContext *tc = cpu->getContext(x);
441 bool no_squash = cpu->thread[x]->noSquashFromTC;
442 cpu->thread[x]->noSquashFromTC = true;
443 TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
444 cpu->thread[x]->noSquashFromTC = no_squash;
445 }
446
447 // If this is the only load in the LSQ we don't care
448 if (load_idx == loadTail)
449 return;
450 incrLdIdx(load_idx);
451
452 DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
453 Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
454 while (load_idx != loadTail) {
455 DynInstPtr ld_inst = loadQueue[load_idx];
456
457 if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
458 incrLdIdx(load_idx);
459 continue;
460 }
461
462 Addr load_addr = ld_inst->physEffAddr & cacheBlockMask;
463 DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
464 ld_inst->seqNum, load_addr, invalidate_addr);
465
466 if (load_addr == invalidate_addr) {
467 if (ld_inst->possibleLoadViolation()) {
468 DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
469 ld_inst->physEffAddr, pkt->getAddr(), ld_inst->seqNum);
470
471 // Mark the load for re-execution
472 ld_inst->fault = new ReExec;
473 } else {
474 // If a older load checks this and it's true
475 // then we might have missed the snoop
476 // in which case we need to invalidate to be sure
477 ld_inst->hitExternalSnoop(true);
478 }
479 }
480 incrLdIdx(load_idx);
481 }
482 return;
483}
484
485template <class Impl>
486Fault
487LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
488{
489 Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
490 Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
491
492 /** @todo in theory you only need to check an instruction that has executed
493 * however, there isn't a good way in the pipeline at the moment to check
494 * all instructions that will execute before the store writes back. Thus,
495 * like the implementation that came before it, we're overly conservative.
496 */
497 while (load_idx != loadTail) {
498 DynInstPtr ld_inst = loadQueue[load_idx];
499 if (!ld_inst->effAddrValid() || ld_inst->uncacheable()) {
500 incrLdIdx(load_idx);
501 continue;
502 }
503
504 Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
505 Addr ld_eff_addr2 =
506 (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
507
508 if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
509 if (inst->isLoad()) {
510 // If this load is to the same block as an external snoop
511 // invalidate that we've observed then the load needs to be
512 // squashed as it could have newer data
513 if (ld_inst->hitExternalSnoop()) {
514 if (!memDepViolator ||
515 ld_inst->seqNum < memDepViolator->seqNum) {
516 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
517 "and [sn:%lli] at address %#x\n",
518 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
519 memDepViolator = ld_inst;
520
521 ++lsqMemOrderViolation;
522
523 return new GenericISA::M5PanicFault(
524 "Detected fault with inst [sn:%lli] and "
525 "[sn:%lli] at address %#x\n",
526 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
527 }
528 }
529
530 // Otherwise, mark the load has a possible load violation
531 // and if we see a snoop before it's commited, we need to squash
532 ld_inst->possibleLoadViolation(true);
533 DPRINTF(LSQUnit, "Found possible load violaiton at addr: %#x"
534 " between instructions [sn:%lli] and [sn:%lli]\n",
535 inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
536 } else {
537 // A load/store incorrectly passed this store.
538 // Check if we already have a violator, or if it's newer
539 // squash and refetch.
540 if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
541 break;
542
543 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
544 "[sn:%lli] at address %#x\n",
545 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
546 memDepViolator = ld_inst;
547
548 ++lsqMemOrderViolation;
549
550 return new GenericISA::M5PanicFault("Detected fault with "
551 "inst [sn:%lli] and [sn:%lli] at address %#x\n",
552 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
553 }
554 }
555
556 incrLdIdx(load_idx);
557 }
558 return NoFault;
559}
560
561
562
563
564template <class Impl>
565Fault
566LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
567{
568 using namespace TheISA;
569 // Execute a specific load.
570 Fault load_fault = NoFault;
571
572 DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
573 inst->pcState(), inst->seqNum);
574
575 assert(!inst->isSquashed());
576
577 load_fault = inst->initiateAcc();
578
579 if (inst->isTranslationDelayed() &&
580 load_fault == NoFault)
581 return load_fault;
582
583 // If the instruction faulted or predicated false, then we need to send it
584 // along to commit without the instruction completing.
585 if (load_fault != NoFault || inst->readPredicate() == false) {
586 // Send this instruction to commit, also make sure iew stage
587 // realizes there is activity.
588 // Mark it as executed unless it is an uncached load that
589 // needs to hit the head of commit.
590 if (inst->readPredicate() == false)
591 inst->forwardOldRegs();
592 DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
593 inst->seqNum,
594 (load_fault != NoFault ? "fault" : "predication"));
595 if (!(inst->hasRequest() && inst->uncacheable()) ||
596 inst->isAtCommit()) {
597 inst->setExecuted();
598 }
599 iewStage->instToCommit(inst);
600 iewStage->activityThisCycle();
601 } else if (!loadBlocked()) {
602 assert(inst->effAddrValid());
603 int load_idx = inst->lqIdx;
604 incrLdIdx(load_idx);
605
606 if (checkLoads)
607 return checkViolations(load_idx, inst);
608 }
609
610 return load_fault;
611}
612
613template <class Impl>
614Fault
615LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
616{
617 using namespace TheISA;
618 // Make sure that a store exists.
619 assert(stores != 0);
620
621 int store_idx = store_inst->sqIdx;
622
623 DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
624 store_inst->pcState(), store_inst->seqNum);
625
626 assert(!store_inst->isSquashed());
627
628 // Check the recently completed loads to see if any match this store's
629 // address. If so, then we have a memory ordering violation.
630 int load_idx = store_inst->lqIdx;
631
632 Fault store_fault = store_inst->initiateAcc();
633
634 if (store_inst->isTranslationDelayed() &&
635 store_fault == NoFault)
636 return store_fault;
637
638 if (store_inst->readPredicate() == false)
639 store_inst->forwardOldRegs();
640
641 if (storeQueue[store_idx].size == 0) {
642 DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
643 store_inst->pcState(), store_inst->seqNum);
644
645 return store_fault;
646 } else if (store_inst->readPredicate() == false) {
647 DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
648 store_inst->seqNum);
649 return store_fault;
650 }
651
652 assert(store_fault == NoFault);
653
654 if (store_inst->isStoreConditional()) {
655 // Store conditionals need to set themselves as able to
656 // writeback if we haven't had a fault by here.
657 storeQueue[store_idx].canWB = true;
658
659 ++storesToWB;
660 }
661
662 return checkViolations(load_idx, store_inst);
663
664}
665
666template <class Impl>
667void
668LSQUnit<Impl>::commitLoad()
669{
670 assert(loadQueue[loadHead]);
671
672 DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
673 loadQueue[loadHead]->pcState());
674
675 loadQueue[loadHead] = NULL;
676
677 incrLdIdx(loadHead);
678
679 --loads;
680}
681
682template <class Impl>
683void
684LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
685{
686 assert(loads == 0 || loadQueue[loadHead]);
687
688 while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
689 commitLoad();
690 }
691}
692
693template <class Impl>
694void
695LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
696{
697 assert(stores == 0 || storeQueue[storeHead].inst);
698
699 int store_idx = storeHead;
700
701 while (store_idx != storeTail) {
702 assert(storeQueue[store_idx].inst);
703 // Mark any stores that are now committed and have not yet
704 // been marked as able to write back.
705 if (!storeQueue[store_idx].canWB) {
706 if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
707 break;
708 }
709 DPRINTF(LSQUnit, "Marking store as able to write back, PC "
710 "%s [sn:%lli]\n",
711 storeQueue[store_idx].inst->pcState(),
712 storeQueue[store_idx].inst->seqNum);
713
714 storeQueue[store_idx].canWB = true;
715
716 ++storesToWB;
717 }
718
719 incrStIdx(store_idx);
720 }
721}
722
723template <class Impl>
724void
725LSQUnit<Impl>::writebackPendingStore()
726{
727 if (hasPendingPkt) {
728 assert(pendingPkt != NULL);
729
730 // If the cache is blocked, this will store the packet for retry.
731 if (sendStore(pendingPkt)) {
732 storePostSend(pendingPkt);
733 }
734 pendingPkt = NULL;
735 hasPendingPkt = false;
736 }
737}
738
739template <class Impl>
740void
741LSQUnit<Impl>::writebackStores()
742{
743 // First writeback the second packet from any split store that didn't
744 // complete last cycle because there weren't enough cache ports available.
745 if (TheISA::HasUnalignedMemAcc) {
746 writebackPendingStore();
747 }
748
749 while (storesToWB > 0 &&
750 storeWBIdx != storeTail &&
751 storeQueue[storeWBIdx].inst &&
752 storeQueue[storeWBIdx].canWB &&
753 ((!needsTSO) || (!storeInFlight)) &&
754 usedPorts < cachePorts) {
755
756 if (isStoreBlocked || lsq->cacheBlocked()) {
757 DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
758 " is blocked!\n");
759 break;
760 }
761
762 // Store didn't write any data so no need to write it back to
763 // memory.
764 if (storeQueue[storeWBIdx].size == 0) {
765 completeStore(storeWBIdx);
766
767 incrStIdx(storeWBIdx);
768
769 continue;
770 }
771
772 ++usedPorts;
773
774 if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
775 incrStIdx(storeWBIdx);
776
777 continue;
778 }
779
780 assert(storeQueue[storeWBIdx].req);
781 assert(!storeQueue[storeWBIdx].committed);
782
783 if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
784 assert(storeQueue[storeWBIdx].sreqLow);
785 assert(storeQueue[storeWBIdx].sreqHigh);
786 }
787
788 DynInstPtr inst = storeQueue[storeWBIdx].inst;
789
790 Request *req = storeQueue[storeWBIdx].req;
791 RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
792 RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;
793
794 storeQueue[storeWBIdx].committed = true;
795
796 assert(!inst->memData);
797 inst->memData = new uint8_t[64];
798
799 memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());
800
801 MemCmd command =
802 req->isSwap() ? MemCmd::SwapReq :
803 (req->isLLSC() ? MemCmd::StoreCondReq : MemCmd::WriteReq);
804 PacketPtr data_pkt;
805 PacketPtr snd_data_pkt = NULL;
806
807 LSQSenderState *state = new LSQSenderState;
808 state->isLoad = false;
809 state->idx = storeWBIdx;
810 state->inst = inst;
811
812 if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {
813
814 // Build a single data packet if the store isn't split.
815 data_pkt = new Packet(req, command);
816 data_pkt->dataStatic(inst->memData);
817 data_pkt->senderState = state;
818 } else {
819 // Create two packets if the store is split in two.
820 data_pkt = new Packet(sreqLow, command);
821 snd_data_pkt = new Packet(sreqHigh, command);
822
823 data_pkt->dataStatic(inst->memData);
824 snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());
825
826 data_pkt->senderState = state;
827 snd_data_pkt->senderState = state;
828
829 state->isSplit = true;
830 state->outstanding = 2;
831
832 // Can delete the main request now.
833 delete req;
834 req = sreqLow;
835 }
836
837 DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
838 "to Addr:%#x, data:%#x [sn:%lli]\n",
839 storeWBIdx, inst->pcState(),
840 req->getPaddr(), (int)*(inst->memData),
841 inst->seqNum);
842
843 // @todo: Remove this SC hack once the memory system handles it.
844 if (inst->isStoreConditional()) {
845 assert(!storeQueue[storeWBIdx].isSplit);
846 // Disable recording the result temporarily. Writing to
847 // misc regs normally updates the result, but this is not
848 // the desired behavior when handling store conditionals.
849 inst->recordResult(false);
850 bool success = TheISA::handleLockedWrite(inst.get(), req);
851 inst->recordResult(true);
852
853 if (!success) {
854 // Instantly complete this store.
855 DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. "
856 "Instantly completing it.\n",
857 inst->seqNum);
858 WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
859 cpu->schedule(wb, curTick() + 1);
860 if (cpu->checker) {
861 // Make sure to set the LLSC data for verification
862 // if checker is loaded
863 inst->reqToVerify->setExtraData(0);
864 inst->completeAcc(data_pkt);
865 }
866 completeStore(storeWBIdx);
867 incrStIdx(storeWBIdx);
868 continue;
869 }
870 } else {
871 // Non-store conditionals do not need a writeback.
872 state->noWB = true;
873 }
874
875 bool split =
876 TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;
877
878 ThreadContext *thread = cpu->tcBase(lsqID);
879
880 if (req->isMmappedIpr()) {
881 assert(!inst->isStoreConditional());
882 TheISA::handleIprWrite(thread, data_pkt);
883 delete data_pkt;
884 if (split) {
885 assert(snd_data_pkt->req->isMmappedIpr());
886 TheISA::handleIprWrite(thread, snd_data_pkt);
887 delete snd_data_pkt;
888 delete sreqLow;
889 delete sreqHigh;
890 }
891 delete state;
892 delete req;
893 completeStore(storeWBIdx);
894 incrStIdx(storeWBIdx);
895 } else if (!sendStore(data_pkt)) {
896 DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
897 "retry later\n",
898 inst->seqNum);
899
900 // Need to store the second packet, if split.
901 if (split) {
902 state->pktToSend = true;
903 state->pendingPacket = snd_data_pkt;
904 }
905 } else {
906
907 // If split, try to send the second packet too
908 if (split) {
909 assert(snd_data_pkt);
910
911 // Ensure there are enough ports to use.
912 if (usedPorts < cachePorts) {
913 ++usedPorts;
914 if (sendStore(snd_data_pkt)) {
915 storePostSend(snd_data_pkt);
916 } else {
917 DPRINTF(IEW, "D-Cache became blocked when writing"
918 " [sn:%lli] second packet, will retry later\n",
919 inst->seqNum);
920 }
921 } else {
922
923 // Store the packet for when there's free ports.
924 assert(pendingPkt == NULL);
925 pendingPkt = snd_data_pkt;
926 hasPendingPkt = true;
927 }
928 } else {
929
930 // Not a split store.
931 storePostSend(data_pkt);
932 }
933 }
934 }
935
936 // Not sure this should set it to 0.
937 usedPorts = 0;
938
939 assert(stores >= 0 && storesToWB >= 0);
940}
941
942/*template <class Impl>
943void
944LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
945{
946 list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
947 mshrSeqNums.end(),
948 seqNum);
949
950 if (mshr_it != mshrSeqNums.end()) {
951 mshrSeqNums.erase(mshr_it);
952 DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
953 }
954}*/
955
956template <class Impl>
957void
958LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
959{
960 DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
961 "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
962
963 int load_idx = loadTail;
964 decrLdIdx(load_idx);
965
966 while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
967 DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
968 "[sn:%lli]\n",
969 loadQueue[load_idx]->pcState(),
970 loadQueue[load_idx]->seqNum);
971
972 if (isStalled() && load_idx == stallingLoadIdx) {
973 stalled = false;
974 stallingStoreIsn = 0;
975 stallingLoadIdx = 0;
976 }
977
978 // Clear the smart pointer to make sure it is decremented.
979 loadQueue[load_idx]->setSquashed();
980 loadQueue[load_idx] = NULL;
981 --loads;
982
983 // Inefficient!
984 loadTail = load_idx;
985
986 decrLdIdx(load_idx);
987 ++lsqSquashedLoads;
988 }
989
990 if (isLoadBlocked) {
991 if (squashed_num < blockedLoadSeqNum) {
992 isLoadBlocked = false;
993 loadBlockedHandled = false;
994 blockedLoadSeqNum = 0;
995 }
996 }
997
998 if (memDepViolator && squashed_num < memDepViolator->seqNum) {
999 memDepViolator = NULL;
1000 }
1001
1002 int store_idx = storeTail;
1003 decrStIdx(store_idx);
1004
1005 while (stores != 0 &&
1006 storeQueue[store_idx].inst->seqNum > squashed_num) {
1007 // Instructions marked as can WB are already committed.
1008 if (storeQueue[store_idx].canWB) {
1009 break;
1010 }
1011
1012 DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
1013 "idx:%i [sn:%lli]\n",
1014 storeQueue[store_idx].inst->pcState(),
1015 store_idx, storeQueue[store_idx].inst->seqNum);
1016
1017 // I don't think this can happen. It should have been cleared
1018 // by the stalling load.
1019 if (isStalled() &&
1020 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1021 panic("Is stalled should have been cleared by stalling load!\n");
1022 stalled = false;
1023 stallingStoreIsn = 0;
1024 }
1025
1026 // Clear the smart pointer to make sure it is decremented.
1027 storeQueue[store_idx].inst->setSquashed();
1028 storeQueue[store_idx].inst = NULL;
1029 storeQueue[store_idx].canWB = 0;
1030
1031 // Must delete request now that it wasn't handed off to
1032 // memory. This is quite ugly. @todo: Figure out the proper
1033 // place to really handle request deletes.
1034 delete storeQueue[store_idx].req;
1035 if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
1036 delete storeQueue[store_idx].sreqLow;
1037 delete storeQueue[store_idx].sreqHigh;
1038
1039 storeQueue[store_idx].sreqLow = NULL;
1040 storeQueue[store_idx].sreqHigh = NULL;
1041 }
1042
1043 storeQueue[store_idx].req = NULL;
1044 --stores;
1045
1046 // Inefficient!
1047 storeTail = store_idx;
1048
1049 decrStIdx(store_idx);
1050 ++lsqSquashedStores;
1051 }
1052}
1053
1054template <class Impl>
1055void
1056LSQUnit<Impl>::storePostSend(PacketPtr pkt)
1057{
1058 if (isStalled() &&
1059 storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
1060 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1061 "load idx:%i\n",
1062 stallingStoreIsn, stallingLoadIdx);
1063 stalled = false;
1064 stallingStoreIsn = 0;
1065 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1066 }
1067
1068 if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
1069 // The store is basically completed at this time. This
1070 // only works so long as the checker doesn't try to
1071 // verify the value in memory for stores.
1072 storeQueue[storeWBIdx].inst->setCompleted();
1073
1074 if (cpu->checker) {
1075 cpu->checker->verify(storeQueue[storeWBIdx].inst);
1076 }
1077 }
1078
1079 if (needsTSO) {
1080 storeInFlight = true;
1081 }
1082
1083 incrStIdx(storeWBIdx);
1084}
1085
1086template <class Impl>
1087void
1088LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
1089{
1090 iewStage->wakeCPU();
1091
1092 // Squashed instructions do not need to complete their access.
1093 if (inst->isSquashed()) {
1094 iewStage->decrWb(inst->seqNum);
1095 assert(!inst->isStore());
1096 ++lsqIgnoredResponses;
1097 return;
1098 }
1099
1100 if (!inst->isExecuted()) {
1101 inst->setExecuted();
1102
1103 // Complete access to copy data to proper place.
1104 inst->completeAcc(pkt);
1105 }
1106
1107 // Need to insert instruction into queue to commit
1108 iewStage->instToCommit(inst);
1109
1110 iewStage->activityThisCycle();
1111
1112 // see if this load changed the PC
1113 iewStage->checkMisprediction(inst);
1114}
1115
1116template <class Impl>
1117void
1118LSQUnit<Impl>::completeStore(int store_idx)
1119{
1120 assert(storeQueue[store_idx].inst);
1121 storeQueue[store_idx].completed = true;
1122 --storesToWB;
1123 // A bit conservative because a store completion may not free up entries,
1124 // but hopefully avoids two store completions in one cycle from making
1125 // the CPU tick twice.
1126 cpu->wakeCPU();
1127 cpu->activityThisCycle();
1128
1129 if (store_idx == storeHead) {
1130 do {
1131 incrStIdx(storeHead);
1132
1133 --stores;
1134 } while (storeQueue[storeHead].completed &&
1135 storeHead != storeTail);
1136
1137 iewStage->updateLSQNextCycle = true;
1138 }
1139
1140 DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1141 "idx:%i\n",
1142 storeQueue[store_idx].inst->seqNum, store_idx, storeHead);
1143
1144#if TRACING_ON
1145 if (DTRACE(O3PipeView)) {
1146 storeQueue[store_idx].inst->storeTick =
1147 curTick() - storeQueue[store_idx].inst->fetchTick;
1148 }
1149#endif
1150
1151 if (isStalled() &&
1152 storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
1153 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1154 "load idx:%i\n",
1155 stallingStoreIsn, stallingLoadIdx);
1156 stalled = false;
1157 stallingStoreIsn = 0;
1158 iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
1159 }
1160
1161 storeQueue[store_idx].inst->setCompleted();
1162
1163 if (needsTSO) {
1164 storeInFlight = false;
1165 }
1166
1167 // Tell the checker we've completed this instruction. Some stores
1168 // may get reported twice to the checker, but the checker can
1169 // handle that case.
1170 if (cpu->checker) {
1171 cpu->checker->verify(storeQueue[store_idx].inst);
1172 }
1173}
1174
1175template <class Impl>
1176bool
1177LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
1178{
1179 if (!dcachePort->sendTimingReq(data_pkt)) {
1180 // Need to handle becoming blocked on a store.
1181 isStoreBlocked = true;
1182 ++lsqCacheBlocked;
1183 assert(retryPkt == NULL);
1184 retryPkt = data_pkt;
1185 lsq->setRetryTid(lsqID);
1186 return false;
1187 }
1188 return true;
1189}
1190
1191template <class Impl>
1192void
1193LSQUnit<Impl>::recvRetry()
1194{
1195 if (isStoreBlocked) {
1196 DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
1197 assert(retryPkt != NULL);
1198
1199 LSQSenderState *state =
1200 dynamic_cast<LSQSenderState *>(retryPkt->senderState);
1201
1202 if (dcachePort->sendTimingReq(retryPkt)) {
1203 // Don't finish the store unless this is the last packet.
1204 if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
1205 state->pendingPacket == retryPkt) {
1206 state->pktToSend = false;
1207 storePostSend(retryPkt);
1208 }
1209 retryPkt = NULL;
1210 isStoreBlocked = false;
1211 lsq->setRetryTid(InvalidThreadID);
1212
1213 // Send any outstanding packet.
1214 if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
1215 assert(state->pendingPacket);
1216 if (sendStore(state->pendingPacket)) {
1217 storePostSend(state->pendingPacket);
1218 }
1219 }
1220 } else {
1221 // Still blocked!
1222 ++lsqCacheBlocked;
1223 lsq->setRetryTid(lsqID);
1224 }
1225 } else if (isLoadBlocked) {
1226 DPRINTF(LSQUnit, "Loads squash themselves and all younger insts, "
1227 "no need to resend packet.\n");
1228 } else {
1229 DPRINTF(LSQUnit, "Retry received but LSQ is no longer blocked.\n");
1230 }
1231}
1232
1233template <class Impl>
1234inline void
1235LSQUnit<Impl>::incrStIdx(int &store_idx) const
1236{
1237 if (++store_idx >= SQEntries)
1238 store_idx = 0;
1239}
1240
1241template <class Impl>
1242inline void
1243LSQUnit<Impl>::decrStIdx(int &store_idx) const
1244{
1245 if (--store_idx < 0)
1246 store_idx += SQEntries;
1247}
1248
1249template <class Impl>
1250inline void
1251LSQUnit<Impl>::incrLdIdx(int &load_idx) const
1252{
1253 if (++load_idx >= LQEntries)
1254 load_idx = 0;
1255}
1256
1257template <class Impl>
1258inline void
1259LSQUnit<Impl>::decrLdIdx(int &load_idx) const
1260{
1261 if (--load_idx < 0)
1262 load_idx += LQEntries;
1263}
1264
1265template <class Impl>
1266void
1267LSQUnit<Impl>::dumpInsts() const
1268{
1269 cprintf("Load store queue: Dumping instructions.\n");
1270 cprintf("Load queue size: %i\n", loads);
1271 cprintf("Load queue: ");
1272
1273 int load_idx = loadHead;
1274
1275 while (load_idx != loadTail && loadQueue[load_idx]) {
1276 const DynInstPtr &inst(loadQueue[load_idx]);
1277 cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1278
1279 incrLdIdx(load_idx);
1280 }
1281 cprintf("\n");
1282
1283 cprintf("Store queue size: %i\n", stores);
1284 cprintf("Store queue: ");
1285
1286 int store_idx = storeHead;
1287
1288 while (store_idx != storeTail && storeQueue[store_idx].inst) {
1289 const DynInstPtr &inst(storeQueue[store_idx].inst);
1290 cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);
1291
1292 incrStIdx(store_idx);
1293 }
1294
1295 cprintf("\n");
1296}
1297
1298#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__