1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32#ifndef __CPU_O3_LSQ_UNIT_HH__
33#define __CPU_O3_LSQ_UNIT_HH__
34
35#include <algorithm>
36#include <cstring>
37#include <map>
38#include <queue>
39
40#include "arch/faults.hh"
41#include "arch/locked_mem.hh"
42#include "config/full_system.hh"
43#include "base/fast_alloc.hh"
44#include "base/hashmap.hh"
45#include "cpu/inst_seq.hh"
46#include "mem/packet.hh"
47#include "mem/port.hh"
48
49/**
50 * Class that implements the actual LQ and SQ for each specific
51 * thread. Both are circular queues; load entries are freed upon
52 * committing, while store entries are freed once they writeback. The
53 * LSQUnit tracks if there are memory ordering violations, and also
54 * detects partial load to store forwarding cases (a store only has
55 * part of a load's data) that requires the load to wait until the
56 * store writes back. In the former case it holds onto the instruction
57 * until the dependence unit looks at it, and in the latter it stalls
58 * the LSQ until the store writes back. At that point the load is
59 * replayed.
60 */
61template <class Impl>
62class LSQUnit {
63 protected:
64 typedef TheISA::IntReg IntReg;
65 public:
66 typedef typename Impl::Params Params;
67 typedef typename Impl::O3CPU O3CPU;
68 typedef typename Impl::DynInstPtr DynInstPtr;
69 typedef typename Impl::CPUPol::IEW IEW;
70 typedef typename Impl::CPUPol::LSQ LSQ;
71 typedef typename Impl::CPUPol::IssueStruct IssueStruct;
72
73 public:
74 /** Constructs an LSQ unit. init() must be called prior to use. */
75 LSQUnit();
76
77 /** Initializes the LSQ unit with the specified number of entries. */
78 void init(O3CPU *cpu_ptr, IEW *iew_ptr, Params *params, LSQ *lsq_ptr,
79 unsigned maxLQEntries, unsigned maxSQEntries, unsigned id);
80
81 /** Returns the name of the LSQ unit. */
82 std::string name() const;
83
84 /** Registers statistics. */
85 void regStats();
86
87 /** Sets the pointer to the dcache port. */
88 void setDcachePort(Port *dcache_port);
89
90 /** Switches out LSQ unit. */
91 void switchOut();
92
93 /** Takes over from another CPU's thread. */
94 void takeOverFrom();
95
96 /** Returns if the LSQ is switched out. */
97 bool isSwitchedOut() { return switchedOut; }
98
99 /** Ticks the LSQ unit, which in this case only resets the number of
100 * used cache ports.
101 * @todo: Move the number of used ports up to the LSQ level so it can
102 * be shared by all LSQ units.
103 */
104 void tick() { usedPorts = 0; }
105
106 /** Inserts an instruction. */
107 void insert(DynInstPtr &inst);
108 /** Inserts a load instruction. */
109 void insertLoad(DynInstPtr &load_inst);
110 /** Inserts a store instruction. */
111 void insertStore(DynInstPtr &store_inst);
112
113 /** Executes a load instruction. */
114 Fault executeLoad(DynInstPtr &inst);
115
116 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
117 /** Executes a store instruction. */
118 Fault executeStore(DynInstPtr &inst);
119
120 /** Commits the head load. */
121 void commitLoad();
122 /** Commits loads older than a specific sequence number. */
123 void commitLoads(InstSeqNum &youngest_inst);
124
125 /** Commits stores older than a specific sequence number. */
126 void commitStores(InstSeqNum &youngest_inst);
127
128 /** Writes back stores. */
129 void writebackStores();
130
131 /** Completes the data access that has been returned from the
132 * memory system. */
133 void completeDataAccess(PacketPtr pkt);
134
135 /** Clears all the entries in the LQ. */
136 void clearLQ();
137
138 /** Clears all the entries in the SQ. */
139 void clearSQ();
140
141 /** Resizes the LQ to a given size. */
142 void resizeLQ(unsigned size);
143
144 /** Resizes the SQ to a given size. */
145 void resizeSQ(unsigned size);
146
147 /** Squashes all instructions younger than a specific sequence number. */
148 void squash(const InstSeqNum &squashed_num);
149
150 /** Returns if there is a memory ordering violation. Value is reset upon
151 * call to getMemDepViolator().
152 */
153 bool violation() { return memDepViolator; }
154
155 /** Returns the memory ordering violator. */
156 DynInstPtr getMemDepViolator();
157
158 /** Returns if a load became blocked due to the memory system. */
159 bool loadBlocked()
160 { return isLoadBlocked; }
161
162 /** Clears the signal that a load became blocked. */
163 void clearLoadBlocked()
164 { isLoadBlocked = false; }
165
166 /** Returns if the blocked load was handled. */
167 bool isLoadBlockedHandled()
168 { return loadBlockedHandled; }
169
170 /** Records the blocked load as being handled. */
171 void setLoadBlockedHandled()
172 { loadBlockedHandled = true; }
173
174 /** Returns the number of free entries (min of free LQ and SQ entries). */
175 unsigned numFreeEntries();
176
177 /** Returns the number of loads ready to execute. */
178 int numLoadsReady();
179
180 /** Returns the number of loads in the LQ. */
181 int numLoads() { return loads; }
182
183 /** Returns the number of stores in the SQ. */
184 int numStores() { return stores; }
185
186 /** Returns if either the LQ or SQ is full. */
187 bool isFull() { return lqFull() || sqFull(); }
188
189 /** Returns if the LQ is full. */
190 bool lqFull() { return loads >= (LQEntries - 1); }
191
192 /** Returns if the SQ is full. */
193 bool sqFull() { return stores >= (SQEntries - 1); }
194
195 /** Returns the number of instructions in the LSQ. */
196 unsigned getCount() { return loads + stores; }
197
198 /** Returns if there are any stores to writeback. */
199 bool hasStoresToWB() { return storesToWB; }
200
201 /** Returns the number of stores to writeback. */
202 int numStoresToWB() { return storesToWB; }
203
204 /** Returns if the LSQ unit will writeback on this cycle. */
205 bool willWB() { return storeQueue[storeWBIdx].canWB &&
206 !storeQueue[storeWBIdx].completed &&
207 !isStoreBlocked; }
208
209 /** Handles doing the retry. */
210 void recvRetry();
211
212 private:
213 /** Writes back the instruction, sending it to IEW. */
214 void writeback(DynInstPtr &inst, PacketPtr pkt);
215
216 /** Handles completing the send of a store to memory. */
217 void storePostSend(PacketPtr pkt);
218
219 /** Completes the store at the specified index. */
220 void completeStore(int store_idx);
221
222 /** Increments the given store index (circular queue). */
223 inline void incrStIdx(int &store_idx);
224 /** Decrements the given store index (circular queue). */
225 inline void decrStIdx(int &store_idx);
226 /** Increments the given load index (circular queue). */
227 inline void incrLdIdx(int &load_idx);
228 /** Decrements the given load index (circular queue). */
229 inline void decrLdIdx(int &load_idx);
230
231 public:
232 /** Debugging function to dump instructions in the LSQ. */
233 void dumpInsts();
234
235 private:
236 /** Pointer to the CPU. */
237 O3CPU *cpu;
238
239 /** Pointer to the IEW stage. */
240 IEW *iewStage;
241
242 /** Pointer to the LSQ. */
243 LSQ *lsq;
244
245 /** Pointer to the dcache port. Used only for sending. */
246 Port *dcachePort;
247
248 /** Derived class to hold any sender state the LSQ needs. */
248 class LSQSenderState : public Packet::SenderState
249 class LSQSenderState : public Packet::SenderState, public FastAlloc
250 {
251 public:
252 /** Default constructor. */
253 LSQSenderState()
254 : noWB(false)
255 { }
256
257 /** Instruction who initiated the access to memory. */
258 DynInstPtr inst;
259 /** Whether or not it is a load. */
260 bool isLoad;
261 /** The LQ/SQ index of the instruction. */
262 int idx;
263 /** Whether or not the instruction will need to writeback. */
264 bool noWB;
265 };
266
267 /** Writeback event, specifically for when stores forward data to loads. */
268 class WritebackEvent : public Event {
269 public:
270 /** Constructs a writeback event. */
271 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
272
273 /** Processes the writeback event. */
274 void process();
275
276 /** Returns the description of this event. */
277 const char *description() const;
278
279 private:
280 /** Instruction whose results are being written back. */
281 DynInstPtr inst;
282
283 /** The packet that would have been sent to memory. */
284 PacketPtr pkt;
285
286 /** The pointer to the LSQ unit that issued the store. */
287 LSQUnit<Impl> *lsqPtr;
288 };
289
290 public:
291 struct SQEntry {
292 /** Constructs an empty store queue entry. */
293 SQEntry()
294 : inst(NULL), req(NULL), size(0),
295 canWB(0), committed(0), completed(0)
296 {
297 std::memset(data, 0, sizeof(data));
298 }
299
300 /** Constructs a store queue entry for a given instruction. */
301 SQEntry(DynInstPtr &_inst)
302 : inst(_inst), req(NULL), size(0),
303 canWB(0), committed(0), completed(0)
304 {
305 std::memset(data, 0, sizeof(data));
306 }
307
308 /** The store instruction. */
309 DynInstPtr inst;
310 /** The request for the store. */
311 RequestPtr req;
312 /** The size of the store. */
313 int size;
314 /** The store data. */
315 char data[sizeof(IntReg)];
316 /** Whether or not the store can writeback. */
317 bool canWB;
318 /** Whether or not the store is committed. */
319 bool committed;
320 /** Whether or not the store is completed. */
321 bool completed;
322 };
323
324 private:
325 /** The LSQUnit thread id. */
326 unsigned lsqID;
327
328 /** The store queue. */
329 std::vector<SQEntry> storeQueue;
330
331 /** The load queue. */
332 std::vector<DynInstPtr> loadQueue;
333
334 /** The number of LQ entries, plus a sentinel entry (circular queue).
335 * @todo: Consider having var that records the true number of LQ entries.
336 */
337 unsigned LQEntries;
338 /** The number of SQ entries, plus a sentinel entry (circular queue).
339 * @todo: Consider having var that records the true number of SQ entries.
340 */
341 unsigned SQEntries;
342
343 /** The number of load instructions in the LQ. */
344 int loads;
345 /** The number of store instructions in the SQ. */
346 int stores;
347 /** The number of store instructions in the SQ waiting to writeback. */
348 int storesToWB;
349
350 /** The index of the head instruction in the LQ. */
351 int loadHead;
352 /** The index of the tail instruction in the LQ. */
353 int loadTail;
354
355 /** The index of the head instruction in the SQ. */
356 int storeHead;
357 /** The index of the first instruction that may be ready to be
358 * written back, and has not yet been written back.
359 */
360 int storeWBIdx;
361 /** The index of the tail instruction in the SQ. */
362 int storeTail;
363
364 /// @todo Consider moving to a more advanced model with write vs read ports
365 /** The number of cache ports available each cycle. */
366 int cachePorts;
367
368 /** The number of used cache ports in this cycle. */
369 int usedPorts;
370
371 /** Is the LSQ switched out. */
372 bool switchedOut;
373
374 //list<InstSeqNum> mshrSeqNums;
375
376 /** Wire to read information from the issue stage time queue. */
377 typename TimeBuffer<IssueStruct>::wire fromIssue;
378
379 /** Whether or not the LSQ is stalled. */
380 bool stalled;
381 /** The store that causes the stall due to partial store to load
382 * forwarding.
383 */
384 InstSeqNum stallingStoreIsn;
385 /** The index of the above store. */
386 int stallingLoadIdx;
387
388 /** The packet that needs to be retried. */
389 PacketPtr retryPkt;
390
391 /** Whehter or not a store is blocked due to the memory system. */
392 bool isStoreBlocked;
393
394 /** Whether or not a load is blocked due to the memory system. */
395 bool isLoadBlocked;
396
397 /** Has the blocked load been handled. */
398 bool loadBlockedHandled;
399
400 /** The sequence number of the blocked load. */
401 InstSeqNum blockedLoadSeqNum;
402
403 /** The oldest load that caused a memory ordering violation. */
404 DynInstPtr memDepViolator;
405
406 // Will also need how many read/write ports the Dcache has. Or keep track
407 // of that in stage that is one level up, and only call executeLoad/Store
408 // the appropriate number of times.
409 /** Total number of loads forwaded from LSQ stores. */
410 Stats::Scalar<> lsqForwLoads;
411
412 /** Total number of loads ignored due to invalid addresses. */
413 Stats::Scalar<> invAddrLoads;
414
415 /** Total number of squashed loads. */
416 Stats::Scalar<> lsqSquashedLoads;
417
418 /** Total number of responses from the memory system that are
419 * ignored due to the instruction already being squashed. */
420 Stats::Scalar<> lsqIgnoredResponses;
421
422 /** Tota number of memory ordering violations. */
423 Stats::Scalar<> lsqMemOrderViolation;
424
425 /** Total number of squashed stores. */
426 Stats::Scalar<> lsqSquashedStores;
427
428 /** Total number of software prefetches ignored due to invalid addresses. */
429 Stats::Scalar<> invAddrSwpfs;
430
431 /** Ready loads blocked due to partial store-forwarding. */
432 Stats::Scalar<> lsqBlockedLoads;
433
434 /** Number of loads that were rescheduled. */
435 Stats::Scalar<> lsqRescheduledLoads;
436
437 /** Number of times the LSQ is blocked due to the cache. */
438 Stats::Scalar<> lsqCacheBlocked;
439
440 public:
441 /** Executes the load at the given index. */
442 template <class T>
443 Fault read(Request *req, T &data, int load_idx);
444
445 /** Executes the store at the given index. */
446 template <class T>
447 Fault write(Request *req, T &data, int store_idx);
448
449 /** Returns the index of the head load instruction. */
450 int getLoadHead() { return loadHead; }
451 /** Returns the sequence number of the head load instruction. */
452 InstSeqNum getLoadHeadSeqNum()
453 {
454 if (loadQueue[loadHead]) {
455 return loadQueue[loadHead]->seqNum;
456 } else {
457 return 0;
458 }
459
460 }
461
462 /** Returns the index of the head store instruction. */
463 int getStoreHead() { return storeHead; }
464 /** Returns the sequence number of the head store instruction. */
465 InstSeqNum getStoreHeadSeqNum()
466 {
467 if (storeQueue[storeHead].inst) {
468 return storeQueue[storeHead].inst->seqNum;
469 } else {
470 return 0;
471 }
472
473 }
474
475 /** Returns whether or not the LSQ unit is stalled. */
476 bool isStalled() { return stalled; }
477};
478
479template <class Impl>
480template <class T>
481Fault
482LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
483{
484 DynInstPtr load_inst = loadQueue[load_idx];
485
486 assert(load_inst);
487
488 assert(!load_inst->isExecuted());
489
490 // Make sure this isn't an uncacheable access
491 // A bit of a hackish way to get uncached accesses to work only if they're
492 // at the head of the LSQ and are ready to commit (at the head of the ROB
493 // too).
494 if (req->isUncacheable() &&
495 (load_idx != loadHead || !load_inst->isAtCommit())) {
496 iewStage->rescheduleMemInst(load_inst);
497 ++lsqRescheduledLoads;
498
499 // Must delete request now that it wasn't handed off to
500 // memory. This is quite ugly. @todo: Figure out the proper
501 // place to really handle request deletes.
502 delete req;
503 return TheISA::genMachineCheckFault();
504 }
505
506 // Check the SQ for any previous stores that might lead to forwarding
507 int store_idx = load_inst->sqIdx;
508
509 int store_size = 0;
510
511 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
512 "storeHead: %i addr: %#x\n",
513 load_idx, store_idx, storeHead, req->getPaddr());
514
515 if (req->isLocked()) {
516 // Disable recording the result temporarily. Writing to misc
517 // regs normally updates the result, but this is not the
518 // desired behavior when handling store conditionals.
519 load_inst->recordResult = false;
520 TheISA::handleLockedRead(load_inst.get(), req);
521 load_inst->recordResult = true;
522 }
523
524 while (store_idx != -1) {
525 // End once we've reached the top of the LSQ
526 if (store_idx == storeWBIdx) {
527 break;
528 }
529
530 // Move the index to one younger
531 if (--store_idx < 0)
532 store_idx += SQEntries;
533
534 assert(storeQueue[store_idx].inst);
535
536 store_size = storeQueue[store_idx].size;
537
538 if (store_size == 0)
539 continue;
540 else if (storeQueue[store_idx].inst->uncacheable())
541 continue;
542
543 assert(storeQueue[store_idx].inst->effAddrValid);
544
545 // Check if the store data is within the lower and upper bounds of
546 // addresses that the request needs.
547 bool store_has_lower_limit =
548 req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
549 bool store_has_upper_limit =
550 (req->getVaddr() + req->getSize()) <=
551 (storeQueue[store_idx].inst->effAddr + store_size);
552 bool lower_load_has_store_part =
553 req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
554 store_size);
555 bool upper_load_has_store_part =
556 (req->getVaddr() + req->getSize()) >
557 storeQueue[store_idx].inst->effAddr;
558
559 // If the store's data has all of the data needed, we can forward.
560 if ((store_has_lower_limit && store_has_upper_limit)) {
561 // Get shift amount for offset into the store's data.
562 int shift_amt = req->getVaddr() & (store_size - 1);
563
564 memcpy(&data, storeQueue[store_idx].data + shift_amt, sizeof(T));
565
566 assert(!load_inst->memData);
567 load_inst->memData = new uint8_t[64];
568
569 memcpy(load_inst->memData,
570 storeQueue[store_idx].data + shift_amt, req->getSize());
571
572 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
573 "addr %#x, data %#x\n",
574 store_idx, req->getVaddr(), data);
575
576 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq,
577 Packet::Broadcast);
578 data_pkt->dataStatic(load_inst->memData);
579
580 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
581
582 // We'll say this has a 1 cycle load-store forwarding latency
583 // for now.
584 // @todo: Need to make this a parameter.
585 wb->schedule(curTick);
586
587 ++lsqForwLoads;
588 return NoFault;
589 } else if ((store_has_lower_limit && lower_load_has_store_part) ||
590 (store_has_upper_limit && upper_load_has_store_part) ||
591 (lower_load_has_store_part && upper_load_has_store_part)) {
592 // This is the partial store-load forwarding case where a store
593 // has only part of the load's data.
594
595 // If it's already been written back, then don't worry about
596 // stalling on it.
597 if (storeQueue[store_idx].completed) {
598 panic("Should not check one of these");
599 continue;
600 }
601
602 // Must stall load and force it to retry, so long as it's the oldest
603 // load that needs to do so.
604 if (!stalled ||
605 (stalled &&
606 load_inst->seqNum <
607 loadQueue[stallingLoadIdx]->seqNum)) {
608 stalled = true;
609 stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
610 stallingLoadIdx = load_idx;
611 }
612
613 // Tell IQ/mem dep unit that this instruction will need to be
614 // rescheduled eventually
615 iewStage->rescheduleMemInst(load_inst);
616 iewStage->decrWb(load_inst->seqNum);
617 load_inst->clearIssued();
618 ++lsqRescheduledLoads;
619
620 // Do not generate a writeback event as this instruction is not
621 // complete.
622 DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
623 "Store idx %i to load addr %#x\n",
624 store_idx, req->getVaddr());
625
626 // Must delete request now that it wasn't handed off to
627 // memory. This is quite ugly. @todo: Figure out the
628 // proper place to really handle request deletes.
629 delete req;
630
631 return NoFault;
632 }
633 }
634
635 // If there's no forwarding case, then go access memory
636 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %#x\n",
637 load_inst->seqNum, load_inst->readPC());
638
639 assert(!load_inst->memData);
640 load_inst->memData = new uint8_t[64];
641
642 ++usedPorts;
643
644 // if we the cache is not blocked, do cache access
645 if (!lsq->cacheBlocked()) {
646 PacketPtr data_pkt =
647 new Packet(req,
648 (req->isLocked() ?
649 MemCmd::LoadLockedReq : MemCmd::ReadReq),
650 Packet::Broadcast);
651 data_pkt->dataStatic(load_inst->memData);
652
653 LSQSenderState *state = new LSQSenderState;
654 state->isLoad = true;
655 state->idx = load_idx;
656 state->inst = load_inst;
657 data_pkt->senderState = state;
658
659 if (!dcachePort->sendTiming(data_pkt)) {
660 // Delete state and data packet because a load retry
661 // initiates a pipeline restart; it does not retry.
662 delete state;
663 delete data_pkt->req;
664 delete data_pkt;
665
666 req = NULL;
667
668 // If the access didn't succeed, tell the LSQ by setting
669 // the retry thread id.
670 lsq->setRetryTid(lsqID);
671 }
672 }
673
674 // If the cache was blocked, or has become blocked due to the access,
675 // handle it.
676 if (lsq->cacheBlocked()) {
677 if (req)
678 delete req;
679
680 ++lsqCacheBlocked;
681
682 iewStage->decrWb(load_inst->seqNum);
683 // There's an older load that's already going to squash.
684 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
685 return NoFault;
686
687 // Record that the load was blocked due to memory. This
688 // load will squash all instructions after it, be
689 // refetched, and re-executed.
690 isLoadBlocked = true;
691 loadBlockedHandled = false;
692 blockedLoadSeqNum = load_inst->seqNum;
693 // No fault occurred, even though the interface is blocked.
694 return NoFault;
695 }
696
697 return NoFault;
698}
699
700template <class Impl>
701template <class T>
702Fault
703LSQUnit<Impl>::write(Request *req, T &data, int store_idx)
704{
705 assert(storeQueue[store_idx].inst);
706
707 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
708 " | storeHead:%i [sn:%i]\n",
709 store_idx, req->getPaddr(), data, storeHead,
710 storeQueue[store_idx].inst->seqNum);
711
712 storeQueue[store_idx].req = req;
713 storeQueue[store_idx].size = sizeof(T);
714 assert(sizeof(T) <= sizeof(storeQueue[store_idx].data));
715
716 T gData = htog(data);
717 memcpy(storeQueue[store_idx].data, &gData, sizeof(T));
718
719 // This function only writes the data to the store queue, so no fault
720 // can happen here.
721 return NoFault;
722}
723
724#endif // __CPU_O3_LSQ_UNIT_HH__