lsq_unit.hh (3876:127c71cfe21a) lsq_unit.hh (3970:d54945bab95d)
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32#ifndef __CPU_O3_LSQ_UNIT_HH__
33#define __CPU_O3_LSQ_UNIT_HH__
34
35#include <algorithm>
36#include <map>
37#include <queue>
38
39#include "arch/faults.hh"
40#include "arch/locked_mem.hh"
41#include "config/full_system.hh"
42#include "base/hashmap.hh"
43#include "cpu/inst_seq.hh"
44#include "mem/packet.hh"
45#include "mem/port.hh"
46
47/**
48 * Class that implements the actual LQ and SQ for each specific
49 * thread. Both are circular queues; load entries are freed upon
50 * committing, while store entries are freed once they writeback. The
51 * LSQUnit tracks if there are memory ordering violations, and also
52 * detects partial load to store forwarding cases (a store only has
53 * part of a load's data) that requires the load to wait until the
54 * store writes back. In the former case it holds onto the instruction
55 * until the dependence unit looks at it, and in the latter it stalls
56 * the LSQ until the store writes back. At that point the load is
57 * replayed.
58 */
59template <class Impl>
60class LSQUnit {
61 protected:
62 typedef TheISA::IntReg IntReg;
63 public:
64 typedef typename Impl::Params Params;
65 typedef typename Impl::O3CPU O3CPU;
66 typedef typename Impl::DynInstPtr DynInstPtr;
67 typedef typename Impl::CPUPol::IEW IEW;
68 typedef typename Impl::CPUPol::LSQ LSQ;
69 typedef typename Impl::CPUPol::IssueStruct IssueStruct;
70
71 public:
72 /** Constructs an LSQ unit. init() must be called prior to use. */
73 LSQUnit();
74
75 /** Initializes the LSQ unit with the specified number of entries. */
76 void init(Params *params, LSQ *lsq_ptr, unsigned maxLQEntries,
77 unsigned maxSQEntries, unsigned id);
78
79 /** Returns the name of the LSQ unit. */
80 std::string name() const;
81
82 /** Registers statistics. */
83 void regStats();
84
85 /** Sets the CPU pointer. */
86 void setCPU(O3CPU *cpu_ptr);
87
88 /** Sets the IEW stage pointer. */
89 void setIEW(IEW *iew_ptr)
90 { iewStage = iew_ptr; }
91
92 /** Sets the pointer to the dcache port. */
93 void setDcachePort(Port *dcache_port)
94 { dcachePort = dcache_port; }
95
96 /** Switches out LSQ unit. */
97 void switchOut();
98
99 /** Takes over from another CPU's thread. */
100 void takeOverFrom();
101
102 /** Returns if the LSQ is switched out. */
103 bool isSwitchedOut() { return switchedOut; }
104
105 /** Ticks the LSQ unit, which in this case only resets the number of
106 * used cache ports.
107 * @todo: Move the number of used ports up to the LSQ level so it can
108 * be shared by all LSQ units.
109 */
110 void tick() { usedPorts = 0; }
111
112 /** Inserts an instruction. */
113 void insert(DynInstPtr &inst);
114 /** Inserts a load instruction. */
115 void insertLoad(DynInstPtr &load_inst);
116 /** Inserts a store instruction. */
117 void insertStore(DynInstPtr &store_inst);
118
119 /** Executes a load instruction. */
120 Fault executeLoad(DynInstPtr &inst);
121
122 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
123 /** Executes a store instruction. */
124 Fault executeStore(DynInstPtr &inst);
125
126 /** Commits the head load. */
127 void commitLoad();
128 /** Commits loads older than a specific sequence number. */
129 void commitLoads(InstSeqNum &youngest_inst);
130
131 /** Commits stores older than a specific sequence number. */
132 void commitStores(InstSeqNum &youngest_inst);
133
134 /** Writes back stores. */
135 void writebackStores();
136
137 /** Completes the data access that has been returned from the
138 * memory system. */
139 void completeDataAccess(PacketPtr pkt);
140
141 /** Clears all the entries in the LQ. */
142 void clearLQ();
143
144 /** Clears all the entries in the SQ. */
145 void clearSQ();
146
147 /** Resizes the LQ to a given size. */
148 void resizeLQ(unsigned size);
149
150 /** Resizes the SQ to a given size. */
151 void resizeSQ(unsigned size);
152
153 /** Squashes all instructions younger than a specific sequence number. */
154 void squash(const InstSeqNum &squashed_num);
155
156 /** Returns if there is a memory ordering violation. Value is reset upon
157 * call to getMemDepViolator().
158 */
159 bool violation() { return memDepViolator; }
160
161 /** Returns the memory ordering violator. */
162 DynInstPtr getMemDepViolator();
163
164 /** Returns if a load became blocked due to the memory system. */
165 bool loadBlocked()
166 { return isLoadBlocked; }
167
168 /** Clears the signal that a load became blocked. */
169 void clearLoadBlocked()
170 { isLoadBlocked = false; }
171
172 /** Returns if the blocked load was handled. */
173 bool isLoadBlockedHandled()
174 { return loadBlockedHandled; }
175
176 /** Records the blocked load as being handled. */
177 void setLoadBlockedHandled()
178 { loadBlockedHandled = true; }
179
180 /** Returns the number of free entries (min of free LQ and SQ entries). */
181 unsigned numFreeEntries();
182
183 /** Returns the number of loads ready to execute. */
184 int numLoadsReady();
185
186 /** Returns the number of loads in the LQ. */
187 int numLoads() { return loads; }
188
189 /** Returns the number of stores in the SQ. */
190 int numStores() { return stores; }
191
192 /** Returns if either the LQ or SQ is full. */
193 bool isFull() { return lqFull() || sqFull(); }
194
195 /** Returns if the LQ is full. */
196 bool lqFull() { return loads >= (LQEntries - 1); }
197
198 /** Returns if the SQ is full. */
199 bool sqFull() { return stores >= (SQEntries - 1); }
200
201 /** Returns the number of instructions in the LSQ. */
202 unsigned getCount() { return loads + stores; }
203
204 /** Returns if there are any stores to writeback. */
205 bool hasStoresToWB() { return storesToWB; }
206
207 /** Returns the number of stores to writeback. */
208 int numStoresToWB() { return storesToWB; }
209
210 /** Returns if the LSQ unit will writeback on this cycle. */
211 bool willWB() { return storeQueue[storeWBIdx].canWB &&
212 !storeQueue[storeWBIdx].completed &&
213 !isStoreBlocked; }
214
215 /** Handles doing the retry. */
216 void recvRetry();
217
218 private:
219 /** Writes back the instruction, sending it to IEW. */
220 void writeback(DynInstPtr &inst, PacketPtr pkt);
221
222 /** Handles completing the send of a store to memory. */
223 void storePostSend(PacketPtr pkt);
224
225 /** Completes the store at the specified index. */
226 void completeStore(int store_idx);
227
228 /** Increments the given store index (circular queue). */
229 inline void incrStIdx(int &store_idx);
230 /** Decrements the given store index (circular queue). */
231 inline void decrStIdx(int &store_idx);
232 /** Increments the given load index (circular queue). */
233 inline void incrLdIdx(int &load_idx);
234 /** Decrements the given load index (circular queue). */
235 inline void decrLdIdx(int &load_idx);
236
237 public:
238 /** Debugging function to dump instructions in the LSQ. */
239 void dumpInsts();
240
241 private:
242 /** Pointer to the CPU. */
243 O3CPU *cpu;
244
245 /** Pointer to the IEW stage. */
246 IEW *iewStage;
247
248 /** Pointer to the LSQ. */
249 LSQ *lsq;
250
251 /** Pointer to the dcache port. Used only for sending. */
252 Port *dcachePort;
253
254 /** Derived class to hold any sender state the LSQ needs. */
255 class LSQSenderState : public Packet::SenderState
256 {
257 public:
258 /** Default constructor. */
259 LSQSenderState()
260 : noWB(false)
261 { }
262
263 /** Instruction who initiated the access to memory. */
264 DynInstPtr inst;
265 /** Whether or not it is a load. */
266 bool isLoad;
267 /** The LQ/SQ index of the instruction. */
268 int idx;
269 /** Whether or not the instruction will need to writeback. */
270 bool noWB;
271 };
272
273 /** Writeback event, specifically for when stores forward data to loads. */
274 class WritebackEvent : public Event {
275 public:
276 /** Constructs a writeback event. */
277 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
278
279 /** Processes the writeback event. */
280 void process();
281
282 /** Returns the description of this event. */
283 const char *description();
284
285 private:
286 /** Instruction whose results are being written back. */
287 DynInstPtr inst;
288
289 /** The packet that would have been sent to memory. */
290 PacketPtr pkt;
291
292 /** The pointer to the LSQ unit that issued the store. */
293 LSQUnit<Impl> *lsqPtr;
294 };
295
296 public:
297 struct SQEntry {
298 /** Constructs an empty store queue entry. */
299 SQEntry()
300 : inst(NULL), req(NULL), size(0), data(0),
301 canWB(0), committed(0), completed(0)
302 { }
303
304 /** Constructs a store queue entry for a given instruction. */
305 SQEntry(DynInstPtr &_inst)
306 : inst(_inst), req(NULL), size(0), data(0),
307 canWB(0), committed(0), completed(0)
308 { }
309
310 /** The store instruction. */
311 DynInstPtr inst;
312 /** The request for the store. */
313 RequestPtr req;
314 /** The size of the store. */
315 int size;
316 /** The store data. */
317 IntReg data;
318 /** Whether or not the store can writeback. */
319 bool canWB;
320 /** Whether or not the store is committed. */
321 bool committed;
322 /** Whether or not the store is completed. */
323 bool completed;
324 };
325
326 private:
327 /** The LSQUnit thread id. */
328 unsigned lsqID;
329
330 /** The store queue. */
331 std::vector<SQEntry> storeQueue;
332
333 /** The load queue. */
334 std::vector<DynInstPtr> loadQueue;
335
336 /** The number of LQ entries, plus a sentinel entry (circular queue).
337 * @todo: Consider having var that records the true number of LQ entries.
338 */
339 unsigned LQEntries;
340 /** The number of SQ entries, plus a sentinel entry (circular queue).
341 * @todo: Consider having var that records the true number of SQ entries.
342 */
343 unsigned SQEntries;
344
345 /** The number of load instructions in the LQ. */
346 int loads;
347 /** The number of store instructions in the SQ. */
348 int stores;
349 /** The number of store instructions in the SQ waiting to writeback. */
350 int storesToWB;
351
352 /** The index of the head instruction in the LQ. */
353 int loadHead;
354 /** The index of the tail instruction in the LQ. */
355 int loadTail;
356
357 /** The index of the head instruction in the SQ. */
358 int storeHead;
359 /** The index of the first instruction that may be ready to be
360 * written back, and has not yet been written back.
361 */
362 int storeWBIdx;
363 /** The index of the tail instruction in the SQ. */
364 int storeTail;
365
366 /// @todo Consider moving to a more advanced model with write vs read ports
367 /** The number of cache ports available each cycle. */
368 int cachePorts;
369
370 /** The number of used cache ports in this cycle. */
371 int usedPorts;
372
373 /** Is the LSQ switched out. */
374 bool switchedOut;
375
376 //list<InstSeqNum> mshrSeqNums;
377
378 /** Wire to read information from the issue stage time queue. */
379 typename TimeBuffer<IssueStruct>::wire fromIssue;
380
381 /** Whether or not the LSQ is stalled. */
382 bool stalled;
383 /** The store that causes the stall due to partial store to load
384 * forwarding.
385 */
386 InstSeqNum stallingStoreIsn;
387 /** The index of the above store. */
388 int stallingLoadIdx;
389
390 /** The packet that needs to be retried. */
391 PacketPtr retryPkt;
392
393 /** Whehter or not a store is blocked due to the memory system. */
394 bool isStoreBlocked;
395
396 /** Whether or not a load is blocked due to the memory system. */
397 bool isLoadBlocked;
398
399 /** Has the blocked load been handled. */
400 bool loadBlockedHandled;
401
402 /** The sequence number of the blocked load. */
403 InstSeqNum blockedLoadSeqNum;
404
405 /** The oldest load that caused a memory ordering violation. */
406 DynInstPtr memDepViolator;
407
408 // Will also need how many read/write ports the Dcache has. Or keep track
409 // of that in stage that is one level up, and only call executeLoad/Store
410 // the appropriate number of times.
411 /** Total number of loads forwaded from LSQ stores. */
412 Stats::Scalar<> lsqForwLoads;
413
414 /** Total number of loads ignored due to invalid addresses. */
415 Stats::Scalar<> invAddrLoads;
416
417 /** Total number of squashed loads. */
418 Stats::Scalar<> lsqSquashedLoads;
419
420 /** Total number of responses from the memory system that are
421 * ignored due to the instruction already being squashed. */
422 Stats::Scalar<> lsqIgnoredResponses;
423
424 /** Tota number of memory ordering violations. */
425 Stats::Scalar<> lsqMemOrderViolation;
426
427 /** Total number of squashed stores. */
428 Stats::Scalar<> lsqSquashedStores;
429
430 /** Total number of software prefetches ignored due to invalid addresses. */
431 Stats::Scalar<> invAddrSwpfs;
432
433 /** Ready loads blocked due to partial store-forwarding. */
434 Stats::Scalar<> lsqBlockedLoads;
435
436 /** Number of loads that were rescheduled. */
437 Stats::Scalar<> lsqRescheduledLoads;
438
439 /** Number of times the LSQ is blocked due to the cache. */
440 Stats::Scalar<> lsqCacheBlocked;
441
442 public:
443 /** Executes the load at the given index. */
444 template <class T>
445 Fault read(Request *req, T &data, int load_idx);
446
447 /** Executes the store at the given index. */
448 template <class T>
449 Fault write(Request *req, T &data, int store_idx);
450
451 /** Returns the index of the head load instruction. */
452 int getLoadHead() { return loadHead; }
453 /** Returns the sequence number of the head load instruction. */
454 InstSeqNum getLoadHeadSeqNum()
455 {
456 if (loadQueue[loadHead]) {
457 return loadQueue[loadHead]->seqNum;
458 } else {
459 return 0;
460 }
461
462 }
463
464 /** Returns the index of the head store instruction. */
465 int getStoreHead() { return storeHead; }
466 /** Returns the sequence number of the head store instruction. */
467 InstSeqNum getStoreHeadSeqNum()
468 {
469 if (storeQueue[storeHead].inst) {
470 return storeQueue[storeHead].inst->seqNum;
471 } else {
472 return 0;
473 }
474
475 }
476
477 /** Returns whether or not the LSQ unit is stalled. */
478 bool isStalled() { return stalled; }
479};
480
481template <class Impl>
482template <class T>
483Fault
484LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
485{
486 DynInstPtr load_inst = loadQueue[load_idx];
487
488 assert(load_inst);
489
490 assert(!load_inst->isExecuted());
491
492 // Make sure this isn't an uncacheable access
493 // A bit of a hackish way to get uncached accesses to work only if they're
494 // at the head of the LSQ and are ready to commit (at the head of the ROB
495 // too).
496 if (req->isUncacheable() &&
497 (load_idx != loadHead || !load_inst->isAtCommit())) {
498 iewStage->rescheduleMemInst(load_inst);
499 ++lsqRescheduledLoads;
500 return TheISA::genMachineCheckFault();
501 }
502
503 // Check the SQ for any previous stores that might lead to forwarding
504 int store_idx = load_inst->sqIdx;
505
506 int store_size = 0;
507
508 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
509 "storeHead: %i addr: %#x\n",
510 load_idx, store_idx, storeHead, req->getPaddr());
511
512 if (req->isLocked()) {
513 // Disable recording the result temporarily. Writing to misc
514 // regs normally updates the result, but this is not the
515 // desired behavior when handling store conditionals.
516 load_inst->recordResult = false;
517 TheISA::handleLockedRead(load_inst.get(), req);
518 load_inst->recordResult = true;
519 }
520
521 while (store_idx != -1) {
522 // End once we've reached the top of the LSQ
523 if (store_idx == storeWBIdx) {
524 break;
525 }
526
527 // Move the index to one younger
528 if (--store_idx < 0)
529 store_idx += SQEntries;
530
531 assert(storeQueue[store_idx].inst);
532
533 store_size = storeQueue[store_idx].size;
534
535 if (store_size == 0)
536 continue;
537
538 // Check if the store data is within the lower and upper bounds of
539 // addresses that the request needs.
540 bool store_has_lower_limit =
541 req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
542 bool store_has_upper_limit =
543 (req->getVaddr() + req->getSize()) <=
544 (storeQueue[store_idx].inst->effAddr + store_size);
545 bool lower_load_has_store_part =
546 req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
547 store_size);
548 bool upper_load_has_store_part =
549 (req->getVaddr() + req->getSize()) >
550 storeQueue[store_idx].inst->effAddr;
551
552 // If the store's data has all of the data needed, we can forward.
553 if (store_has_lower_limit && store_has_upper_limit) {
554 // Get shift amount for offset into the store's data.
555 int shift_amt = req->getVaddr() & (store_size - 1);
556 // @todo: Magic number, assumes byte addressing
557 shift_amt = shift_amt << 3;
558
559 // Cast this to type T?
560 data = storeQueue[store_idx].data >> shift_amt;
561
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32#ifndef __CPU_O3_LSQ_UNIT_HH__
33#define __CPU_O3_LSQ_UNIT_HH__
34
35#include <algorithm>
36#include <map>
37#include <queue>
38
39#include "arch/faults.hh"
40#include "arch/locked_mem.hh"
41#include "config/full_system.hh"
42#include "base/hashmap.hh"
43#include "cpu/inst_seq.hh"
44#include "mem/packet.hh"
45#include "mem/port.hh"
46
47/**
48 * Class that implements the actual LQ and SQ for each specific
49 * thread. Both are circular queues; load entries are freed upon
50 * committing, while store entries are freed once they writeback. The
51 * LSQUnit tracks if there are memory ordering violations, and also
52 * detects partial load to store forwarding cases (a store only has
53 * part of a load's data) that requires the load to wait until the
54 * store writes back. In the former case it holds onto the instruction
55 * until the dependence unit looks at it, and in the latter it stalls
56 * the LSQ until the store writes back. At that point the load is
57 * replayed.
58 */
59template <class Impl>
60class LSQUnit {
61 protected:
62 typedef TheISA::IntReg IntReg;
63 public:
64 typedef typename Impl::Params Params;
65 typedef typename Impl::O3CPU O3CPU;
66 typedef typename Impl::DynInstPtr DynInstPtr;
67 typedef typename Impl::CPUPol::IEW IEW;
68 typedef typename Impl::CPUPol::LSQ LSQ;
69 typedef typename Impl::CPUPol::IssueStruct IssueStruct;
70
71 public:
72 /** Constructs an LSQ unit. init() must be called prior to use. */
73 LSQUnit();
74
75 /** Initializes the LSQ unit with the specified number of entries. */
76 void init(Params *params, LSQ *lsq_ptr, unsigned maxLQEntries,
77 unsigned maxSQEntries, unsigned id);
78
79 /** Returns the name of the LSQ unit. */
80 std::string name() const;
81
82 /** Registers statistics. */
83 void regStats();
84
85 /** Sets the CPU pointer. */
86 void setCPU(O3CPU *cpu_ptr);
87
88 /** Sets the IEW stage pointer. */
89 void setIEW(IEW *iew_ptr)
90 { iewStage = iew_ptr; }
91
92 /** Sets the pointer to the dcache port. */
93 void setDcachePort(Port *dcache_port)
94 { dcachePort = dcache_port; }
95
96 /** Switches out LSQ unit. */
97 void switchOut();
98
99 /** Takes over from another CPU's thread. */
100 void takeOverFrom();
101
102 /** Returns if the LSQ is switched out. */
103 bool isSwitchedOut() { return switchedOut; }
104
105 /** Ticks the LSQ unit, which in this case only resets the number of
106 * used cache ports.
107 * @todo: Move the number of used ports up to the LSQ level so it can
108 * be shared by all LSQ units.
109 */
110 void tick() { usedPorts = 0; }
111
112 /** Inserts an instruction. */
113 void insert(DynInstPtr &inst);
114 /** Inserts a load instruction. */
115 void insertLoad(DynInstPtr &load_inst);
116 /** Inserts a store instruction. */
117 void insertStore(DynInstPtr &store_inst);
118
119 /** Executes a load instruction. */
120 Fault executeLoad(DynInstPtr &inst);
121
122 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
123 /** Executes a store instruction. */
124 Fault executeStore(DynInstPtr &inst);
125
126 /** Commits the head load. */
127 void commitLoad();
128 /** Commits loads older than a specific sequence number. */
129 void commitLoads(InstSeqNum &youngest_inst);
130
131 /** Commits stores older than a specific sequence number. */
132 void commitStores(InstSeqNum &youngest_inst);
133
134 /** Writes back stores. */
135 void writebackStores();
136
137 /** Completes the data access that has been returned from the
138 * memory system. */
139 void completeDataAccess(PacketPtr pkt);
140
141 /** Clears all the entries in the LQ. */
142 void clearLQ();
143
144 /** Clears all the entries in the SQ. */
145 void clearSQ();
146
147 /** Resizes the LQ to a given size. */
148 void resizeLQ(unsigned size);
149
150 /** Resizes the SQ to a given size. */
151 void resizeSQ(unsigned size);
152
153 /** Squashes all instructions younger than a specific sequence number. */
154 void squash(const InstSeqNum &squashed_num);
155
156 /** Returns if there is a memory ordering violation. Value is reset upon
157 * call to getMemDepViolator().
158 */
159 bool violation() { return memDepViolator; }
160
161 /** Returns the memory ordering violator. */
162 DynInstPtr getMemDepViolator();
163
164 /** Returns if a load became blocked due to the memory system. */
165 bool loadBlocked()
166 { return isLoadBlocked; }
167
168 /** Clears the signal that a load became blocked. */
169 void clearLoadBlocked()
170 { isLoadBlocked = false; }
171
172 /** Returns if the blocked load was handled. */
173 bool isLoadBlockedHandled()
174 { return loadBlockedHandled; }
175
176 /** Records the blocked load as being handled. */
177 void setLoadBlockedHandled()
178 { loadBlockedHandled = true; }
179
180 /** Returns the number of free entries (min of free LQ and SQ entries). */
181 unsigned numFreeEntries();
182
183 /** Returns the number of loads ready to execute. */
184 int numLoadsReady();
185
186 /** Returns the number of loads in the LQ. */
187 int numLoads() { return loads; }
188
189 /** Returns the number of stores in the SQ. */
190 int numStores() { return stores; }
191
192 /** Returns if either the LQ or SQ is full. */
193 bool isFull() { return lqFull() || sqFull(); }
194
195 /** Returns if the LQ is full. */
196 bool lqFull() { return loads >= (LQEntries - 1); }
197
198 /** Returns if the SQ is full. */
199 bool sqFull() { return stores >= (SQEntries - 1); }
200
201 /** Returns the number of instructions in the LSQ. */
202 unsigned getCount() { return loads + stores; }
203
204 /** Returns if there are any stores to writeback. */
205 bool hasStoresToWB() { return storesToWB; }
206
207 /** Returns the number of stores to writeback. */
208 int numStoresToWB() { return storesToWB; }
209
210 /** Returns if the LSQ unit will writeback on this cycle. */
211 bool willWB() { return storeQueue[storeWBIdx].canWB &&
212 !storeQueue[storeWBIdx].completed &&
213 !isStoreBlocked; }
214
215 /** Handles doing the retry. */
216 void recvRetry();
217
218 private:
219 /** Writes back the instruction, sending it to IEW. */
220 void writeback(DynInstPtr &inst, PacketPtr pkt);
221
222 /** Handles completing the send of a store to memory. */
223 void storePostSend(PacketPtr pkt);
224
225 /** Completes the store at the specified index. */
226 void completeStore(int store_idx);
227
228 /** Increments the given store index (circular queue). */
229 inline void incrStIdx(int &store_idx);
230 /** Decrements the given store index (circular queue). */
231 inline void decrStIdx(int &store_idx);
232 /** Increments the given load index (circular queue). */
233 inline void incrLdIdx(int &load_idx);
234 /** Decrements the given load index (circular queue). */
235 inline void decrLdIdx(int &load_idx);
236
237 public:
238 /** Debugging function to dump instructions in the LSQ. */
239 void dumpInsts();
240
241 private:
242 /** Pointer to the CPU. */
243 O3CPU *cpu;
244
245 /** Pointer to the IEW stage. */
246 IEW *iewStage;
247
248 /** Pointer to the LSQ. */
249 LSQ *lsq;
250
251 /** Pointer to the dcache port. Used only for sending. */
252 Port *dcachePort;
253
254 /** Derived class to hold any sender state the LSQ needs. */
255 class LSQSenderState : public Packet::SenderState
256 {
257 public:
258 /** Default constructor. */
259 LSQSenderState()
260 : noWB(false)
261 { }
262
263 /** Instruction who initiated the access to memory. */
264 DynInstPtr inst;
265 /** Whether or not it is a load. */
266 bool isLoad;
267 /** The LQ/SQ index of the instruction. */
268 int idx;
269 /** Whether or not the instruction will need to writeback. */
270 bool noWB;
271 };
272
273 /** Writeback event, specifically for when stores forward data to loads. */
274 class WritebackEvent : public Event {
275 public:
276 /** Constructs a writeback event. */
277 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
278
279 /** Processes the writeback event. */
280 void process();
281
282 /** Returns the description of this event. */
283 const char *description();
284
285 private:
286 /** Instruction whose results are being written back. */
287 DynInstPtr inst;
288
289 /** The packet that would have been sent to memory. */
290 PacketPtr pkt;
291
292 /** The pointer to the LSQ unit that issued the store. */
293 LSQUnit<Impl> *lsqPtr;
294 };
295
296 public:
297 struct SQEntry {
298 /** Constructs an empty store queue entry. */
299 SQEntry()
300 : inst(NULL), req(NULL), size(0), data(0),
301 canWB(0), committed(0), completed(0)
302 { }
303
304 /** Constructs a store queue entry for a given instruction. */
305 SQEntry(DynInstPtr &_inst)
306 : inst(_inst), req(NULL), size(0), data(0),
307 canWB(0), committed(0), completed(0)
308 { }
309
310 /** The store instruction. */
311 DynInstPtr inst;
312 /** The request for the store. */
313 RequestPtr req;
314 /** The size of the store. */
315 int size;
316 /** The store data. */
317 IntReg data;
318 /** Whether or not the store can writeback. */
319 bool canWB;
320 /** Whether or not the store is committed. */
321 bool committed;
322 /** Whether or not the store is completed. */
323 bool completed;
324 };
325
326 private:
327 /** The LSQUnit thread id. */
328 unsigned lsqID;
329
330 /** The store queue. */
331 std::vector<SQEntry> storeQueue;
332
333 /** The load queue. */
334 std::vector<DynInstPtr> loadQueue;
335
336 /** The number of LQ entries, plus a sentinel entry (circular queue).
337 * @todo: Consider having var that records the true number of LQ entries.
338 */
339 unsigned LQEntries;
340 /** The number of SQ entries, plus a sentinel entry (circular queue).
341 * @todo: Consider having var that records the true number of SQ entries.
342 */
343 unsigned SQEntries;
344
345 /** The number of load instructions in the LQ. */
346 int loads;
347 /** The number of store instructions in the SQ. */
348 int stores;
349 /** The number of store instructions in the SQ waiting to writeback. */
350 int storesToWB;
351
352 /** The index of the head instruction in the LQ. */
353 int loadHead;
354 /** The index of the tail instruction in the LQ. */
355 int loadTail;
356
357 /** The index of the head instruction in the SQ. */
358 int storeHead;
359 /** The index of the first instruction that may be ready to be
360 * written back, and has not yet been written back.
361 */
362 int storeWBIdx;
363 /** The index of the tail instruction in the SQ. */
364 int storeTail;
365
366 /// @todo Consider moving to a more advanced model with write vs read ports
367 /** The number of cache ports available each cycle. */
368 int cachePorts;
369
370 /** The number of used cache ports in this cycle. */
371 int usedPorts;
372
373 /** Is the LSQ switched out. */
374 bool switchedOut;
375
376 //list<InstSeqNum> mshrSeqNums;
377
378 /** Wire to read information from the issue stage time queue. */
379 typename TimeBuffer<IssueStruct>::wire fromIssue;
380
381 /** Whether or not the LSQ is stalled. */
382 bool stalled;
383 /** The store that causes the stall due to partial store to load
384 * forwarding.
385 */
386 InstSeqNum stallingStoreIsn;
387 /** The index of the above store. */
388 int stallingLoadIdx;
389
390 /** The packet that needs to be retried. */
391 PacketPtr retryPkt;
392
393 /** Whehter or not a store is blocked due to the memory system. */
394 bool isStoreBlocked;
395
396 /** Whether or not a load is blocked due to the memory system. */
397 bool isLoadBlocked;
398
399 /** Has the blocked load been handled. */
400 bool loadBlockedHandled;
401
402 /** The sequence number of the blocked load. */
403 InstSeqNum blockedLoadSeqNum;
404
405 /** The oldest load that caused a memory ordering violation. */
406 DynInstPtr memDepViolator;
407
408 // Will also need how many read/write ports the Dcache has. Or keep track
409 // of that in stage that is one level up, and only call executeLoad/Store
410 // the appropriate number of times.
411 /** Total number of loads forwaded from LSQ stores. */
412 Stats::Scalar<> lsqForwLoads;
413
414 /** Total number of loads ignored due to invalid addresses. */
415 Stats::Scalar<> invAddrLoads;
416
417 /** Total number of squashed loads. */
418 Stats::Scalar<> lsqSquashedLoads;
419
420 /** Total number of responses from the memory system that are
421 * ignored due to the instruction already being squashed. */
422 Stats::Scalar<> lsqIgnoredResponses;
423
424 /** Tota number of memory ordering violations. */
425 Stats::Scalar<> lsqMemOrderViolation;
426
427 /** Total number of squashed stores. */
428 Stats::Scalar<> lsqSquashedStores;
429
430 /** Total number of software prefetches ignored due to invalid addresses. */
431 Stats::Scalar<> invAddrSwpfs;
432
433 /** Ready loads blocked due to partial store-forwarding. */
434 Stats::Scalar<> lsqBlockedLoads;
435
436 /** Number of loads that were rescheduled. */
437 Stats::Scalar<> lsqRescheduledLoads;
438
439 /** Number of times the LSQ is blocked due to the cache. */
440 Stats::Scalar<> lsqCacheBlocked;
441
442 public:
443 /** Executes the load at the given index. */
444 template <class T>
445 Fault read(Request *req, T &data, int load_idx);
446
447 /** Executes the store at the given index. */
448 template <class T>
449 Fault write(Request *req, T &data, int store_idx);
450
451 /** Returns the index of the head load instruction. */
452 int getLoadHead() { return loadHead; }
453 /** Returns the sequence number of the head load instruction. */
454 InstSeqNum getLoadHeadSeqNum()
455 {
456 if (loadQueue[loadHead]) {
457 return loadQueue[loadHead]->seqNum;
458 } else {
459 return 0;
460 }
461
462 }
463
464 /** Returns the index of the head store instruction. */
465 int getStoreHead() { return storeHead; }
466 /** Returns the sequence number of the head store instruction. */
467 InstSeqNum getStoreHeadSeqNum()
468 {
469 if (storeQueue[storeHead].inst) {
470 return storeQueue[storeHead].inst->seqNum;
471 } else {
472 return 0;
473 }
474
475 }
476
477 /** Returns whether or not the LSQ unit is stalled. */
478 bool isStalled() { return stalled; }
479};
480
481template <class Impl>
482template <class T>
483Fault
484LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
485{
486 DynInstPtr load_inst = loadQueue[load_idx];
487
488 assert(load_inst);
489
490 assert(!load_inst->isExecuted());
491
492 // Make sure this isn't an uncacheable access
493 // A bit of a hackish way to get uncached accesses to work only if they're
494 // at the head of the LSQ and are ready to commit (at the head of the ROB
495 // too).
496 if (req->isUncacheable() &&
497 (load_idx != loadHead || !load_inst->isAtCommit())) {
498 iewStage->rescheduleMemInst(load_inst);
499 ++lsqRescheduledLoads;
500 return TheISA::genMachineCheckFault();
501 }
502
503 // Check the SQ for any previous stores that might lead to forwarding
504 int store_idx = load_inst->sqIdx;
505
506 int store_size = 0;
507
508 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
509 "storeHead: %i addr: %#x\n",
510 load_idx, store_idx, storeHead, req->getPaddr());
511
512 if (req->isLocked()) {
513 // Disable recording the result temporarily. Writing to misc
514 // regs normally updates the result, but this is not the
515 // desired behavior when handling store conditionals.
516 load_inst->recordResult = false;
517 TheISA::handleLockedRead(load_inst.get(), req);
518 load_inst->recordResult = true;
519 }
520
521 while (store_idx != -1) {
522 // End once we've reached the top of the LSQ
523 if (store_idx == storeWBIdx) {
524 break;
525 }
526
527 // Move the index to one younger
528 if (--store_idx < 0)
529 store_idx += SQEntries;
530
531 assert(storeQueue[store_idx].inst);
532
533 store_size = storeQueue[store_idx].size;
534
535 if (store_size == 0)
536 continue;
537
538 // Check if the store data is within the lower and upper bounds of
539 // addresses that the request needs.
540 bool store_has_lower_limit =
541 req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
542 bool store_has_upper_limit =
543 (req->getVaddr() + req->getSize()) <=
544 (storeQueue[store_idx].inst->effAddr + store_size);
545 bool lower_load_has_store_part =
546 req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
547 store_size);
548 bool upper_load_has_store_part =
549 (req->getVaddr() + req->getSize()) >
550 storeQueue[store_idx].inst->effAddr;
551
552 // If the store's data has all of the data needed, we can forward.
553 if (store_has_lower_limit && store_has_upper_limit) {
554 // Get shift amount for offset into the store's data.
555 int shift_amt = req->getVaddr() & (store_size - 1);
556 // @todo: Magic number, assumes byte addressing
557 shift_amt = shift_amt << 3;
558
559 // Cast this to type T?
560 data = storeQueue[store_idx].data >> shift_amt;
561
562 // When the data comes from the store queue entry, it's in host
563 // order. When it gets sent to the load, it needs to be in guest
564 // order so when the load converts it again, it ends up back
565 // in host order like the inst expects.
566 data = TheISA::htog(data);
567
562 assert(!load_inst->memData);
563 load_inst->memData = new uint8_t[64];
564
565 memcpy(load_inst->memData, &data, req->getSize());
566
567 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
568 "addr %#x, data %#x\n",
569 store_idx, req->getVaddr(), data);
570
571 PacketPtr data_pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast);
572 data_pkt->dataStatic(load_inst->memData);
573
574 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
575
576 // We'll say this has a 1 cycle load-store forwarding latency
577 // for now.
578 // @todo: Need to make this a parameter.
579 wb->schedule(curTick);
580
581 ++lsqForwLoads;
582 return NoFault;
583 } else if ((store_has_lower_limit && lower_load_has_store_part) ||
584 (store_has_upper_limit && upper_load_has_store_part) ||
585 (lower_load_has_store_part && upper_load_has_store_part)) {
586 // This is the partial store-load forwarding case where a store
587 // has only part of the load's data.
588
589 // If it's already been written back, then don't worry about
590 // stalling on it.
591 if (storeQueue[store_idx].completed) {
592 continue;
593 }
594
595 // Must stall load and force it to retry, so long as it's the oldest
596 // load that needs to do so.
597 if (!stalled ||
598 (stalled &&
599 load_inst->seqNum <
600 loadQueue[stallingLoadIdx]->seqNum)) {
601 stalled = true;
602 stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
603 stallingLoadIdx = load_idx;
604 }
605
606 // Tell IQ/mem dep unit that this instruction will need to be
607 // rescheduled eventually
608 iewStage->rescheduleMemInst(load_inst);
609 iewStage->decrWb(load_inst->seqNum);
610 ++lsqRescheduledLoads;
611
612 // Do not generate a writeback event as this instruction is not
613 // complete.
614 DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
615 "Store idx %i to load addr %#x\n",
616 store_idx, req->getVaddr());
617
618 ++lsqBlockedLoads;
619 return NoFault;
620 }
621 }
622
623 // If there's no forwarding case, then go access memory
624 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %#x\n",
625 load_inst->seqNum, load_inst->readPC());
626
627 assert(!load_inst->memData);
628 load_inst->memData = new uint8_t[64];
629
630 ++usedPorts;
631
632 // if we the cache is not blocked, do cache access
633 if (!lsq->cacheBlocked()) {
634 PacketPtr data_pkt =
635 new Packet(req, Packet::ReadReq, Packet::Broadcast);
636 data_pkt->dataStatic(load_inst->memData);
637
638 LSQSenderState *state = new LSQSenderState;
639 state->isLoad = true;
640 state->idx = load_idx;
641 state->inst = load_inst;
642 data_pkt->senderState = state;
643
644 if (!dcachePort->sendTiming(data_pkt)) {
645 Packet::Result result = data_pkt->result;
646
647 // Delete state and data packet because a load retry
648 // initiates a pipeline restart; it does not retry.
649 delete state;
650 delete data_pkt;
651
652 if (result == Packet::BadAddress) {
653 return TheISA::genMachineCheckFault();
654 }
655
656 // If the access didn't succeed, tell the LSQ by setting
657 // the retry thread id.
658 lsq->setRetryTid(lsqID);
659 }
660 }
661
662 // If the cache was blocked, or has become blocked due to the access,
663 // handle it.
664 if (lsq->cacheBlocked()) {
665 ++lsqCacheBlocked;
666
667 iewStage->decrWb(load_inst->seqNum);
668 // There's an older load that's already going to squash.
669 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
670 return NoFault;
671
672 // Record that the load was blocked due to memory. This
673 // load will squash all instructions after it, be
674 // refetched, and re-executed.
675 isLoadBlocked = true;
676 loadBlockedHandled = false;
677 blockedLoadSeqNum = load_inst->seqNum;
678 // No fault occurred, even though the interface is blocked.
679 return NoFault;
680 }
681
682 return NoFault;
683}
684
685template <class Impl>
686template <class T>
687Fault
688LSQUnit<Impl>::write(Request *req, T &data, int store_idx)
689{
690 assert(storeQueue[store_idx].inst);
691
692 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
693 " | storeHead:%i [sn:%i]\n",
694 store_idx, req->getPaddr(), data, storeHead,
695 storeQueue[store_idx].inst->seqNum);
696
697 storeQueue[store_idx].req = req;
698 storeQueue[store_idx].size = sizeof(T);
699 storeQueue[store_idx].data = data;
700
701 // This function only writes the data to the store queue, so no fault
702 // can happen here.
703 return NoFault;
704}
705
706#endif // __CPU_O3_LSQ_UNIT_HH__
568 assert(!load_inst->memData);
569 load_inst->memData = new uint8_t[64];
570
571 memcpy(load_inst->memData, &data, req->getSize());
572
573 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
574 "addr %#x, data %#x\n",
575 store_idx, req->getVaddr(), data);
576
577 PacketPtr data_pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast);
578 data_pkt->dataStatic(load_inst->memData);
579
580 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
581
582 // We'll say this has a 1 cycle load-store forwarding latency
583 // for now.
584 // @todo: Need to make this a parameter.
585 wb->schedule(curTick);
586
587 ++lsqForwLoads;
588 return NoFault;
589 } else if ((store_has_lower_limit && lower_load_has_store_part) ||
590 (store_has_upper_limit && upper_load_has_store_part) ||
591 (lower_load_has_store_part && upper_load_has_store_part)) {
592 // This is the partial store-load forwarding case where a store
593 // has only part of the load's data.
594
595 // If it's already been written back, then don't worry about
596 // stalling on it.
597 if (storeQueue[store_idx].completed) {
598 continue;
599 }
600
601 // Must stall load and force it to retry, so long as it's the oldest
602 // load that needs to do so.
603 if (!stalled ||
604 (stalled &&
605 load_inst->seqNum <
606 loadQueue[stallingLoadIdx]->seqNum)) {
607 stalled = true;
608 stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
609 stallingLoadIdx = load_idx;
610 }
611
612 // Tell IQ/mem dep unit that this instruction will need to be
613 // rescheduled eventually
614 iewStage->rescheduleMemInst(load_inst);
615 iewStage->decrWb(load_inst->seqNum);
616 ++lsqRescheduledLoads;
617
618 // Do not generate a writeback event as this instruction is not
619 // complete.
620 DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
621 "Store idx %i to load addr %#x\n",
622 store_idx, req->getVaddr());
623
624 ++lsqBlockedLoads;
625 return NoFault;
626 }
627 }
628
629 // If there's no forwarding case, then go access memory
630 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %#x\n",
631 load_inst->seqNum, load_inst->readPC());
632
633 assert(!load_inst->memData);
634 load_inst->memData = new uint8_t[64];
635
636 ++usedPorts;
637
638 // if we the cache is not blocked, do cache access
639 if (!lsq->cacheBlocked()) {
640 PacketPtr data_pkt =
641 new Packet(req, Packet::ReadReq, Packet::Broadcast);
642 data_pkt->dataStatic(load_inst->memData);
643
644 LSQSenderState *state = new LSQSenderState;
645 state->isLoad = true;
646 state->idx = load_idx;
647 state->inst = load_inst;
648 data_pkt->senderState = state;
649
650 if (!dcachePort->sendTiming(data_pkt)) {
651 Packet::Result result = data_pkt->result;
652
653 // Delete state and data packet because a load retry
654 // initiates a pipeline restart; it does not retry.
655 delete state;
656 delete data_pkt;
657
658 if (result == Packet::BadAddress) {
659 return TheISA::genMachineCheckFault();
660 }
661
662 // If the access didn't succeed, tell the LSQ by setting
663 // the retry thread id.
664 lsq->setRetryTid(lsqID);
665 }
666 }
667
668 // If the cache was blocked, or has become blocked due to the access,
669 // handle it.
670 if (lsq->cacheBlocked()) {
671 ++lsqCacheBlocked;
672
673 iewStage->decrWb(load_inst->seqNum);
674 // There's an older load that's already going to squash.
675 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
676 return NoFault;
677
678 // Record that the load was blocked due to memory. This
679 // load will squash all instructions after it, be
680 // refetched, and re-executed.
681 isLoadBlocked = true;
682 loadBlockedHandled = false;
683 blockedLoadSeqNum = load_inst->seqNum;
684 // No fault occurred, even though the interface is blocked.
685 return NoFault;
686 }
687
688 return NoFault;
689}
690
691template <class Impl>
692template <class T>
693Fault
694LSQUnit<Impl>::write(Request *req, T &data, int store_idx)
695{
696 assert(storeQueue[store_idx].inst);
697
698 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
699 " | storeHead:%i [sn:%i]\n",
700 store_idx, req->getPaddr(), data, storeHead,
701 storeQueue[store_idx].inst->seqNum);
702
703 storeQueue[store_idx].req = req;
704 storeQueue[store_idx].size = sizeof(T);
705 storeQueue[store_idx].data = data;
706
707 // This function only writes the data to the store queue, so no fault
708 // can happen here.
709 return NoFault;
710}
711
712#endif // __CPU_O3_LSQ_UNIT_HH__