lsq_unit.hh (2871:7ed5c9ef3eb6) lsq_unit.hh (2907:7b0ababb4166)
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32#ifndef __CPU_O3_LSQ_UNIT_HH__
33#define __CPU_O3_LSQ_UNIT_HH__
34
35#include <algorithm>
36#include <map>
37#include <queue>
38
39#include "arch/faults.hh"
40#include "config/full_system.hh"
41#include "base/hashmap.hh"
42#include "cpu/inst_seq.hh"
43#include "mem/packet_impl.hh"
44#include "mem/port.hh"
45
46/**
47 * Class that implements the actual LQ and SQ for each specific
48 * thread. Both are circular queues; load entries are freed upon
49 * committing, while store entries are freed once they writeback. The
50 * LSQUnit tracks if there are memory ordering violations, and also
51 * detects partial load to store forwarding cases (a store only has
52 * part of a load's data) that requires the load to wait until the
53 * store writes back. In the former case it holds onto the instruction
54 * until the dependence unit looks at it, and in the latter it stalls
55 * the LSQ until the store writes back. At that point the load is
56 * replayed.
57 */
58template <class Impl>
59class LSQUnit {
60 protected:
61 typedef TheISA::IntReg IntReg;
62 public:
63 typedef typename Impl::Params Params;
64 typedef typename Impl::O3CPU O3CPU;
65 typedef typename Impl::DynInstPtr DynInstPtr;
66 typedef typename Impl::CPUPol::IEW IEW;
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32#ifndef __CPU_O3_LSQ_UNIT_HH__
33#define __CPU_O3_LSQ_UNIT_HH__
34
35#include <algorithm>
36#include <map>
37#include <queue>
38
39#include "arch/faults.hh"
40#include "config/full_system.hh"
41#include "base/hashmap.hh"
42#include "cpu/inst_seq.hh"
43#include "mem/packet_impl.hh"
44#include "mem/port.hh"
45
46/**
47 * Class that implements the actual LQ and SQ for each specific
48 * thread. Both are circular queues; load entries are freed upon
49 * committing, while store entries are freed once they writeback. The
50 * LSQUnit tracks if there are memory ordering violations, and also
51 * detects partial load to store forwarding cases (a store only has
52 * part of a load's data) that requires the load to wait until the
53 * store writes back. In the former case it holds onto the instruction
54 * until the dependence unit looks at it, and in the latter it stalls
55 * the LSQ until the store writes back. At that point the load is
56 * replayed.
57 */
58template <class Impl>
59class LSQUnit {
60 protected:
61 typedef TheISA::IntReg IntReg;
62 public:
63 typedef typename Impl::Params Params;
64 typedef typename Impl::O3CPU O3CPU;
65 typedef typename Impl::DynInstPtr DynInstPtr;
66 typedef typename Impl::CPUPol::IEW IEW;
67 typedef typename Impl::CPUPol::LSQ LSQ;
67 typedef typename Impl::CPUPol::IssueStruct IssueStruct;
68
69 public:
70 /** Constructs an LSQ unit. init() must be called prior to use. */
71 LSQUnit();
72
73 /** Initializes the LSQ unit with the specified number of entries. */
68 typedef typename Impl::CPUPol::IssueStruct IssueStruct;
69
70 public:
71 /** Constructs an LSQ unit. init() must be called prior to use. */
72 LSQUnit();
73
74 /** Initializes the LSQ unit with the specified number of entries. */
74 void init(Params *params, unsigned maxLQEntries,
75 void init(Params *params, LSQ *lsq_ptr, unsigned maxLQEntries,
75 unsigned maxSQEntries, unsigned id);
76
77 /** Returns the name of the LSQ unit. */
78 std::string name() const;
79
76 unsigned maxSQEntries, unsigned id);
77
78 /** Returns the name of the LSQ unit. */
79 std::string name() const;
80
80 /** Returns the dcache port.
81 * @todo: Remove this once the port moves up to the LSQ level.
82 */
83 Port *getDcachePort() { return dcachePort; }
84
85 /** Registers statistics. */
86 void regStats();
87
88 /** Sets the CPU pointer. */
89 void setCPU(O3CPU *cpu_ptr);
90
91 /** Sets the IEW stage pointer. */
92 void setIEW(IEW *iew_ptr)
93 { iewStage = iew_ptr; }
94
81 /** Registers statistics. */
82 void regStats();
83
84 /** Sets the CPU pointer. */
85 void setCPU(O3CPU *cpu_ptr);
86
87 /** Sets the IEW stage pointer. */
88 void setIEW(IEW *iew_ptr)
89 { iewStage = iew_ptr; }
90
91 /** Sets the pointer to the dcache port. */
92 void setDcachePort(Port *dcache_port)
93 { dcachePort = dcache_port; }
94
95 /** Switches out LSQ unit. */
96 void switchOut();
97
98 /** Takes over from another CPU's thread. */
99 void takeOverFrom();
100
101 /** Returns if the LSQ is switched out. */
102 bool isSwitchedOut() { return switchedOut; }
103
104 /** Ticks the LSQ unit, which in this case only resets the number of
105 * used cache ports.
106 * @todo: Move the number of used ports up to the LSQ level so it can
107 * be shared by all LSQ units.
108 */
109 void tick() { usedPorts = 0; }
110
111 /** Inserts an instruction. */
112 void insert(DynInstPtr &inst);
113 /** Inserts a load instruction. */
114 void insertLoad(DynInstPtr &load_inst);
115 /** Inserts a store instruction. */
116 void insertStore(DynInstPtr &store_inst);
117
118 /** Executes a load instruction. */
119 Fault executeLoad(DynInstPtr &inst);
120
121 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
122 /** Executes a store instruction. */
123 Fault executeStore(DynInstPtr &inst);
124
125 /** Commits the head load. */
126 void commitLoad();
127 /** Commits loads older than a specific sequence number. */
128 void commitLoads(InstSeqNum &youngest_inst);
129
130 /** Commits stores older than a specific sequence number. */
131 void commitStores(InstSeqNum &youngest_inst);
132
133 /** Writes back stores. */
134 void writebackStores();
135
136 /** Completes the data access that has been returned from the
137 * memory system. */
138 void completeDataAccess(PacketPtr pkt);
139
140 /** Clears all the entries in the LQ. */
141 void clearLQ();
142
143 /** Clears all the entries in the SQ. */
144 void clearSQ();
145
146 /** Resizes the LQ to a given size. */
147 void resizeLQ(unsigned size);
148
149 /** Resizes the SQ to a given size. */
150 void resizeSQ(unsigned size);
151
152 /** Squashes all instructions younger than a specific sequence number. */
153 void squash(const InstSeqNum &squashed_num);
154
155 /** Returns if there is a memory ordering violation. Value is reset upon
156 * call to getMemDepViolator().
157 */
158 bool violation() { return memDepViolator; }
159
160 /** Returns the memory ordering violator. */
161 DynInstPtr getMemDepViolator();
162
163 /** Returns if a load became blocked due to the memory system. */
164 bool loadBlocked()
165 { return isLoadBlocked; }
166
167 /** Clears the signal that a load became blocked. */
168 void clearLoadBlocked()
169 { isLoadBlocked = false; }
170
171 /** Returns if the blocked load was handled. */
172 bool isLoadBlockedHandled()
173 { return loadBlockedHandled; }
174
175 /** Records the blocked load as being handled. */
176 void setLoadBlockedHandled()
177 { loadBlockedHandled = true; }
178
179 /** Returns the number of free entries (min of free LQ and SQ entries). */
180 unsigned numFreeEntries();
181
182 /** Returns the number of loads ready to execute. */
183 int numLoadsReady();
184
185 /** Returns the number of loads in the LQ. */
186 int numLoads() { return loads; }
187
188 /** Returns the number of stores in the SQ. */
189 int numStores() { return stores; }
190
191 /** Returns if either the LQ or SQ is full. */
192 bool isFull() { return lqFull() || sqFull(); }
193
194 /** Returns if the LQ is full. */
195 bool lqFull() { return loads >= (LQEntries - 1); }
196
197 /** Returns if the SQ is full. */
198 bool sqFull() { return stores >= (SQEntries - 1); }
199
200 /** Returns the number of instructions in the LSQ. */
201 unsigned getCount() { return loads + stores; }
202
203 /** Returns if there are any stores to writeback. */
204 bool hasStoresToWB() { return storesToWB; }
205
206 /** Returns the number of stores to writeback. */
207 int numStoresToWB() { return storesToWB; }
208
209 /** Returns if the LSQ unit will writeback on this cycle. */
210 bool willWB() { return storeQueue[storeWBIdx].canWB &&
211 !storeQueue[storeWBIdx].completed &&
212 !isStoreBlocked; }
213
95 /** Switches out LSQ unit. */
96 void switchOut();
97
98 /** Takes over from another CPU's thread. */
99 void takeOverFrom();
100
101 /** Returns if the LSQ is switched out. */
102 bool isSwitchedOut() { return switchedOut; }
103
104 /** Ticks the LSQ unit, which in this case only resets the number of
105 * used cache ports.
106 * @todo: Move the number of used ports up to the LSQ level so it can
107 * be shared by all LSQ units.
108 */
109 void tick() { usedPorts = 0; }
110
111 /** Inserts an instruction. */
112 void insert(DynInstPtr &inst);
113 /** Inserts a load instruction. */
114 void insertLoad(DynInstPtr &load_inst);
115 /** Inserts a store instruction. */
116 void insertStore(DynInstPtr &store_inst);
117
118 /** Executes a load instruction. */
119 Fault executeLoad(DynInstPtr &inst);
120
121 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
122 /** Executes a store instruction. */
123 Fault executeStore(DynInstPtr &inst);
124
125 /** Commits the head load. */
126 void commitLoad();
127 /** Commits loads older than a specific sequence number. */
128 void commitLoads(InstSeqNum &youngest_inst);
129
130 /** Commits stores older than a specific sequence number. */
131 void commitStores(InstSeqNum &youngest_inst);
132
133 /** Writes back stores. */
134 void writebackStores();
135
136 /** Completes the data access that has been returned from the
137 * memory system. */
138 void completeDataAccess(PacketPtr pkt);
139
140 /** Clears all the entries in the LQ. */
141 void clearLQ();
142
143 /** Clears all the entries in the SQ. */
144 void clearSQ();
145
146 /** Resizes the LQ to a given size. */
147 void resizeLQ(unsigned size);
148
149 /** Resizes the SQ to a given size. */
150 void resizeSQ(unsigned size);
151
152 /** Squashes all instructions younger than a specific sequence number. */
153 void squash(const InstSeqNum &squashed_num);
154
155 /** Returns if there is a memory ordering violation. Value is reset upon
156 * call to getMemDepViolator().
157 */
158 bool violation() { return memDepViolator; }
159
160 /** Returns the memory ordering violator. */
161 DynInstPtr getMemDepViolator();
162
163 /** Returns if a load became blocked due to the memory system. */
164 bool loadBlocked()
165 { return isLoadBlocked; }
166
167 /** Clears the signal that a load became blocked. */
168 void clearLoadBlocked()
169 { isLoadBlocked = false; }
170
171 /** Returns if the blocked load was handled. */
172 bool isLoadBlockedHandled()
173 { return loadBlockedHandled; }
174
175 /** Records the blocked load as being handled. */
176 void setLoadBlockedHandled()
177 { loadBlockedHandled = true; }
178
179 /** Returns the number of free entries (min of free LQ and SQ entries). */
180 unsigned numFreeEntries();
181
182 /** Returns the number of loads ready to execute. */
183 int numLoadsReady();
184
185 /** Returns the number of loads in the LQ. */
186 int numLoads() { return loads; }
187
188 /** Returns the number of stores in the SQ. */
189 int numStores() { return stores; }
190
191 /** Returns if either the LQ or SQ is full. */
192 bool isFull() { return lqFull() || sqFull(); }
193
194 /** Returns if the LQ is full. */
195 bool lqFull() { return loads >= (LQEntries - 1); }
196
197 /** Returns if the SQ is full. */
198 bool sqFull() { return stores >= (SQEntries - 1); }
199
200 /** Returns the number of instructions in the LSQ. */
201 unsigned getCount() { return loads + stores; }
202
203 /** Returns if there are any stores to writeback. */
204 bool hasStoresToWB() { return storesToWB; }
205
206 /** Returns the number of stores to writeback. */
207 int numStoresToWB() { return storesToWB; }
208
209 /** Returns if the LSQ unit will writeback on this cycle. */
210 bool willWB() { return storeQueue[storeWBIdx].canWB &&
211 !storeQueue[storeWBIdx].completed &&
212 !isStoreBlocked; }
213
214 /** Handles doing the retry. */
215 void recvRetry();
216
214 private:
215 /** Writes back the instruction, sending it to IEW. */
216 void writeback(DynInstPtr &inst, PacketPtr pkt);
217
218 /** Handles completing the send of a store to memory. */
219 void storePostSend(Packet *pkt);
220
221 /** Completes the store at the specified index. */
222 void completeStore(int store_idx);
223
217 private:
218 /** Writes back the instruction, sending it to IEW. */
219 void writeback(DynInstPtr &inst, PacketPtr pkt);
220
221 /** Handles completing the send of a store to memory. */
222 void storePostSend(Packet *pkt);
223
224 /** Completes the store at the specified index. */
225 void completeStore(int store_idx);
226
224 /** Handles doing the retry. */
225 void recvRetry();
226
227 /** Increments the given store index (circular queue). */
228 inline void incrStIdx(int &store_idx);
229 /** Decrements the given store index (circular queue). */
230 inline void decrStIdx(int &store_idx);
231 /** Increments the given load index (circular queue). */
232 inline void incrLdIdx(int &load_idx);
233 /** Decrements the given load index (circular queue). */
234 inline void decrLdIdx(int &load_idx);
235
236 public:
237 /** Debugging function to dump instructions in the LSQ. */
238 void dumpInsts();
239
240 private:
241 /** Pointer to the CPU. */
242 O3CPU *cpu;
243
244 /** Pointer to the IEW stage. */
245 IEW *iewStage;
246
227 /** Increments the given store index (circular queue). */
228 inline void incrStIdx(int &store_idx);
229 /** Decrements the given store index (circular queue). */
230 inline void decrStIdx(int &store_idx);
231 /** Increments the given load index (circular queue). */
232 inline void incrLdIdx(int &load_idx);
233 /** Decrements the given load index (circular queue). */
234 inline void decrLdIdx(int &load_idx);
235
236 public:
237 /** Debugging function to dump instructions in the LSQ. */
238 void dumpInsts();
239
240 private:
241 /** Pointer to the CPU. */
242 O3CPU *cpu;
243
244 /** Pointer to the IEW stage. */
245 IEW *iewStage;
246
247 /** Pointer to memory object. */
248 MemObject *mem;
247 /** Pointer to the LSQ. */
248 LSQ *lsq;
249
249
250 /** DcachePort class for this LSQ Unit. Handles doing the
251 * communication with the cache/memory.
252 * @todo: Needs to be moved to the LSQ level and have some sort
253 * of arbitration.
254 */
255 class DcachePort : public Port
256 {
257 protected:
258 /** Pointer to CPU. */
259 O3CPU *cpu;
260 /** Pointer to LSQ. */
261 LSQUnit *lsq;
250 /** Pointer to the dcache port. Used only for sending. */
251 Port *dcachePort;
262
252
263 public:
264 /** Default constructor. */
265 DcachePort(O3CPU *_cpu, LSQUnit *_lsq)
266 : Port(_lsq->name() + "-dport"), cpu(_cpu), lsq(_lsq)
267 { }
268
269 protected:
270 /** Atomic version of receive. Panics. */
271 virtual Tick recvAtomic(PacketPtr pkt);
272
273 /** Functional version of receive. Panics. */
274 virtual void recvFunctional(PacketPtr pkt);
275
276 /** Receives status change. Other than range changing, panics. */
277 virtual void recvStatusChange(Status status);
278
279 /** Returns the address ranges of this device. */
280 virtual void getDeviceAddressRanges(AddrRangeList &resp,
281 AddrRangeList &snoop)
282 { resp.clear(); snoop.clear(); }
283
284 /** Timing version of receive. Handles writing back and
285 * completing the load or store that has returned from
286 * memory. */
287 virtual bool recvTiming(PacketPtr pkt);
288
289 /** Handles doing a retry of the previous send. */
290 virtual void recvRetry();
291 };
292
293 /** Pointer to the D-cache. */
294 DcachePort *dcachePort;
295
296 /** Derived class to hold any sender state the LSQ needs. */
297 class LSQSenderState : public Packet::SenderState
298 {
299 public:
300 /** Default constructor. */
301 LSQSenderState()
302 : noWB(false)
303 { }
304
305 /** Instruction who initiated the access to memory. */
306 DynInstPtr inst;
307 /** Whether or not it is a load. */
308 bool isLoad;
309 /** The LQ/SQ index of the instruction. */
310 int idx;
311 /** Whether or not the instruction will need to writeback. */
312 bool noWB;
313 };
314
315 /** Writeback event, specifically for when stores forward data to loads. */
316 class WritebackEvent : public Event {
317 public:
318 /** Constructs a writeback event. */
319 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
320
321 /** Processes the writeback event. */
322 void process();
323
324 /** Returns the description of this event. */
325 const char *description();
326
327 private:
328 /** Instruction whose results are being written back. */
329 DynInstPtr inst;
330
331 /** The packet that would have been sent to memory. */
332 PacketPtr pkt;
333
334 /** The pointer to the LSQ unit that issued the store. */
335 LSQUnit<Impl> *lsqPtr;
336 };
337
338 public:
339 struct SQEntry {
340 /** Constructs an empty store queue entry. */
341 SQEntry()
342 : inst(NULL), req(NULL), size(0), data(0),
343 canWB(0), committed(0), completed(0)
344 { }
345
346 /** Constructs a store queue entry for a given instruction. */
347 SQEntry(DynInstPtr &_inst)
348 : inst(_inst), req(NULL), size(0), data(0),
349 canWB(0), committed(0), completed(0)
350 { }
351
352 /** The store instruction. */
353 DynInstPtr inst;
354 /** The request for the store. */
355 RequestPtr req;
356 /** The size of the store. */
357 int size;
358 /** The store data. */
359 IntReg data;
360 /** Whether or not the store can writeback. */
361 bool canWB;
362 /** Whether or not the store is committed. */
363 bool committed;
364 /** Whether or not the store is completed. */
365 bool completed;
366 };
367
368 private:
369 /** The LSQUnit thread id. */
370 unsigned lsqID;
371
372 /** The store queue. */
373 std::vector<SQEntry> storeQueue;
374
375 /** The load queue. */
376 std::vector<DynInstPtr> loadQueue;
377
378 /** The number of LQ entries, plus a sentinel entry (circular queue).
379 * @todo: Consider having var that records the true number of LQ entries.
380 */
381 unsigned LQEntries;
382 /** The number of SQ entries, plus a sentinel entry (circular queue).
383 * @todo: Consider having var that records the true number of SQ entries.
384 */
385 unsigned SQEntries;
386
387 /** The number of load instructions in the LQ. */
388 int loads;
389 /** The number of store instructions in the SQ. */
390 int stores;
391 /** The number of store instructions in the SQ waiting to writeback. */
392 int storesToWB;
393
394 /** The index of the head instruction in the LQ. */
395 int loadHead;
396 /** The index of the tail instruction in the LQ. */
397 int loadTail;
398
399 /** The index of the head instruction in the SQ. */
400 int storeHead;
401 /** The index of the first instruction that may be ready to be
402 * written back, and has not yet been written back.
403 */
404 int storeWBIdx;
405 /** The index of the tail instruction in the SQ. */
406 int storeTail;
407
408 /// @todo Consider moving to a more advanced model with write vs read ports
409 /** The number of cache ports available each cycle. */
410 int cachePorts;
411
412 /** The number of used cache ports in this cycle. */
413 int usedPorts;
414
415 /** Is the LSQ switched out. */
416 bool switchedOut;
417
418 //list<InstSeqNum> mshrSeqNums;
419
420 /** Wire to read information from the issue stage time queue. */
421 typename TimeBuffer<IssueStruct>::wire fromIssue;
422
423 /** Whether or not the LSQ is stalled. */
424 bool stalled;
425 /** The store that causes the stall due to partial store to load
426 * forwarding.
427 */
428 InstSeqNum stallingStoreIsn;
429 /** The index of the above store. */
430 int stallingLoadIdx;
431
432 /** The packet that needs to be retried. */
433 PacketPtr retryPkt;
434
435 /** Whehter or not a store is blocked due to the memory system. */
436 bool isStoreBlocked;
437
438 /** Whether or not a load is blocked due to the memory system. */
439 bool isLoadBlocked;
440
441 /** Has the blocked load been handled. */
442 bool loadBlockedHandled;
443
444 /** The sequence number of the blocked load. */
445 InstSeqNum blockedLoadSeqNum;
446
447 /** The oldest load that caused a memory ordering violation. */
448 DynInstPtr memDepViolator;
449
450 // Will also need how many read/write ports the Dcache has. Or keep track
451 // of that in stage that is one level up, and only call executeLoad/Store
452 // the appropriate number of times.
453
454 /** Total number of loads forwaded from LSQ stores. */
455 Stats::Scalar<> lsqForwLoads;
456
457 /** Total number of loads ignored due to invalid addresses. */
458 Stats::Scalar<> invAddrLoads;
459
460 /** Total number of squashed loads. */
461 Stats::Scalar<> lsqSquashedLoads;
462
463 /** Total number of responses from the memory system that are
464 * ignored due to the instruction already being squashed. */
465 Stats::Scalar<> lsqIgnoredResponses;
466
467 /** Total number of squashed stores. */
468 Stats::Scalar<> lsqSquashedStores;
469
470 /** Total number of software prefetches ignored due to invalid addresses. */
471 Stats::Scalar<> invAddrSwpfs;
472
473 /** Ready loads blocked due to partial store-forwarding. */
474 Stats::Scalar<> lsqBlockedLoads;
475
476 /** Number of loads that were rescheduled. */
477 Stats::Scalar<> lsqRescheduledLoads;
478
479 /** Number of times the LSQ is blocked due to the cache. */
480 Stats::Scalar<> lsqCacheBlocked;
481
482 public:
483 /** Executes the load at the given index. */
484 template <class T>
485 Fault read(Request *req, T &data, int load_idx);
486
487 /** Executes the store at the given index. */
488 template <class T>
489 Fault write(Request *req, T &data, int store_idx);
490
491 /** Returns the index of the head load instruction. */
492 int getLoadHead() { return loadHead; }
493 /** Returns the sequence number of the head load instruction. */
494 InstSeqNum getLoadHeadSeqNum()
495 {
496 if (loadQueue[loadHead]) {
497 return loadQueue[loadHead]->seqNum;
498 } else {
499 return 0;
500 }
501
502 }
503
504 /** Returns the index of the head store instruction. */
505 int getStoreHead() { return storeHead; }
506 /** Returns the sequence number of the head store instruction. */
507 InstSeqNum getStoreHeadSeqNum()
508 {
509 if (storeQueue[storeHead].inst) {
510 return storeQueue[storeHead].inst->seqNum;
511 } else {
512 return 0;
513 }
514
515 }
516
517 /** Returns whether or not the LSQ unit is stalled. */
518 bool isStalled() { return stalled; }
519};
520
521template <class Impl>
522template <class T>
523Fault
524LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
525{
526 DynInstPtr load_inst = loadQueue[load_idx];
527
528 assert(load_inst);
529
530 assert(!load_inst->isExecuted());
531
532 // Make sure this isn't an uncacheable access
533 // A bit of a hackish way to get uncached accesses to work only if they're
534 // at the head of the LSQ and are ready to commit (at the head of the ROB
535 // too).
536 if (req->getFlags() & UNCACHEABLE &&
537 (load_idx != loadHead || !load_inst->isAtCommit())) {
538 iewStage->rescheduleMemInst(load_inst);
539 ++lsqRescheduledLoads;
540 return TheISA::genMachineCheckFault();
541 }
542
543 // Check the SQ for any previous stores that might lead to forwarding
544 int store_idx = load_inst->sqIdx;
545
546 int store_size = 0;
547
548 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
549 "storeHead: %i addr: %#x\n",
550 load_idx, store_idx, storeHead, req->getPaddr());
551
552#if FULL_SYSTEM
553 if (req->getFlags() & LOCKED) {
554 cpu->lockAddr = req->getPaddr();
555 cpu->lockFlag = true;
556 }
557#endif
558
559 while (store_idx != -1) {
560 // End once we've reached the top of the LSQ
561 if (store_idx == storeWBIdx) {
562 break;
563 }
564
565 // Move the index to one younger
566 if (--store_idx < 0)
567 store_idx += SQEntries;
568
569 assert(storeQueue[store_idx].inst);
570
571 store_size = storeQueue[store_idx].size;
572
573 if (store_size == 0)
574 continue;
575
576 // Check if the store data is within the lower and upper bounds of
577 // addresses that the request needs.
578 bool store_has_lower_limit =
579 req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
580 bool store_has_upper_limit =
581 (req->getVaddr() + req->getSize()) <=
582 (storeQueue[store_idx].inst->effAddr + store_size);
583 bool lower_load_has_store_part =
584 req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
585 store_size);
586 bool upper_load_has_store_part =
587 (req->getVaddr() + req->getSize()) >
588 storeQueue[store_idx].inst->effAddr;
589
590 // If the store's data has all of the data needed, we can forward.
591 if (store_has_lower_limit && store_has_upper_limit) {
592 // Get shift amount for offset into the store's data.
593 int shift_amt = req->getVaddr() & (store_size - 1);
594 // @todo: Magic number, assumes byte addressing
595 shift_amt = shift_amt << 3;
596
597 // Cast this to type T?
598 data = storeQueue[store_idx].data >> shift_amt;
599
600 assert(!load_inst->memData);
601 load_inst->memData = new uint8_t[64];
602
603 memcpy(load_inst->memData, &data, req->getSize());
604
605 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
606 "addr %#x, data %#x\n",
607 store_idx, req->getVaddr(), data);
608
609 PacketPtr data_pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast);
610 data_pkt->dataStatic(load_inst->memData);
611
612 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
613
614 // We'll say this has a 1 cycle load-store forwarding latency
615 // for now.
616 // @todo: Need to make this a parameter.
617 wb->schedule(curTick);
618
619 ++lsqForwLoads;
620 return NoFault;
621 } else if ((store_has_lower_limit && lower_load_has_store_part) ||
622 (store_has_upper_limit && upper_load_has_store_part) ||
623 (lower_load_has_store_part && upper_load_has_store_part)) {
624 // This is the partial store-load forwarding case where a store
625 // has only part of the load's data.
626
627 // If it's already been written back, then don't worry about
628 // stalling on it.
629 if (storeQueue[store_idx].completed) {
630 continue;
631 }
632
633 // Must stall load and force it to retry, so long as it's the oldest
634 // load that needs to do so.
635 if (!stalled ||
636 (stalled &&
637 load_inst->seqNum <
638 loadQueue[stallingLoadIdx]->seqNum)) {
639 stalled = true;
640 stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
641 stallingLoadIdx = load_idx;
642 }
643
644 // Tell IQ/mem dep unit that this instruction will need to be
645 // rescheduled eventually
646 iewStage->rescheduleMemInst(load_inst);
647 ++lsqRescheduledLoads;
648
649 // Do not generate a writeback event as this instruction is not
650 // complete.
651 DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
652 "Store idx %i to load addr %#x\n",
653 store_idx, req->getVaddr());
654
655 ++lsqBlockedLoads;
656 return NoFault;
657 }
658 }
659
660 // If there's no forwarding case, then go access memory
253 /** Derived class to hold any sender state the LSQ needs. */
254 class LSQSenderState : public Packet::SenderState
255 {
256 public:
257 /** Default constructor. */
258 LSQSenderState()
259 : noWB(false)
260 { }
261
262 /** Instruction who initiated the access to memory. */
263 DynInstPtr inst;
264 /** Whether or not it is a load. */
265 bool isLoad;
266 /** The LQ/SQ index of the instruction. */
267 int idx;
268 /** Whether or not the instruction will need to writeback. */
269 bool noWB;
270 };
271
272 /** Writeback event, specifically for when stores forward data to loads. */
273 class WritebackEvent : public Event {
274 public:
275 /** Constructs a writeback event. */
276 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
277
278 /** Processes the writeback event. */
279 void process();
280
281 /** Returns the description of this event. */
282 const char *description();
283
284 private:
285 /** Instruction whose results are being written back. */
286 DynInstPtr inst;
287
288 /** The packet that would have been sent to memory. */
289 PacketPtr pkt;
290
291 /** The pointer to the LSQ unit that issued the store. */
292 LSQUnit<Impl> *lsqPtr;
293 };
294
295 public:
296 struct SQEntry {
297 /** Constructs an empty store queue entry. */
298 SQEntry()
299 : inst(NULL), req(NULL), size(0), data(0),
300 canWB(0), committed(0), completed(0)
301 { }
302
303 /** Constructs a store queue entry for a given instruction. */
304 SQEntry(DynInstPtr &_inst)
305 : inst(_inst), req(NULL), size(0), data(0),
306 canWB(0), committed(0), completed(0)
307 { }
308
309 /** The store instruction. */
310 DynInstPtr inst;
311 /** The request for the store. */
312 RequestPtr req;
313 /** The size of the store. */
314 int size;
315 /** The store data. */
316 IntReg data;
317 /** Whether or not the store can writeback. */
318 bool canWB;
319 /** Whether or not the store is committed. */
320 bool committed;
321 /** Whether or not the store is completed. */
322 bool completed;
323 };
324
325 private:
326 /** The LSQUnit thread id. */
327 unsigned lsqID;
328
329 /** The store queue. */
330 std::vector<SQEntry> storeQueue;
331
332 /** The load queue. */
333 std::vector<DynInstPtr> loadQueue;
334
335 /** The number of LQ entries, plus a sentinel entry (circular queue).
336 * @todo: Consider having var that records the true number of LQ entries.
337 */
338 unsigned LQEntries;
339 /** The number of SQ entries, plus a sentinel entry (circular queue).
340 * @todo: Consider having var that records the true number of SQ entries.
341 */
342 unsigned SQEntries;
343
344 /** The number of load instructions in the LQ. */
345 int loads;
346 /** The number of store instructions in the SQ. */
347 int stores;
348 /** The number of store instructions in the SQ waiting to writeback. */
349 int storesToWB;
350
351 /** The index of the head instruction in the LQ. */
352 int loadHead;
353 /** The index of the tail instruction in the LQ. */
354 int loadTail;
355
356 /** The index of the head instruction in the SQ. */
357 int storeHead;
358 /** The index of the first instruction that may be ready to be
359 * written back, and has not yet been written back.
360 */
361 int storeWBIdx;
362 /** The index of the tail instruction in the SQ. */
363 int storeTail;
364
365 /// @todo Consider moving to a more advanced model with write vs read ports
366 /** The number of cache ports available each cycle. */
367 int cachePorts;
368
369 /** The number of used cache ports in this cycle. */
370 int usedPorts;
371
372 /** Is the LSQ switched out. */
373 bool switchedOut;
374
375 //list<InstSeqNum> mshrSeqNums;
376
377 /** Wire to read information from the issue stage time queue. */
378 typename TimeBuffer<IssueStruct>::wire fromIssue;
379
380 /** Whether or not the LSQ is stalled. */
381 bool stalled;
382 /** The store that causes the stall due to partial store to load
383 * forwarding.
384 */
385 InstSeqNum stallingStoreIsn;
386 /** The index of the above store. */
387 int stallingLoadIdx;
388
389 /** The packet that needs to be retried. */
390 PacketPtr retryPkt;
391
392 /** Whehter or not a store is blocked due to the memory system. */
393 bool isStoreBlocked;
394
395 /** Whether or not a load is blocked due to the memory system. */
396 bool isLoadBlocked;
397
398 /** Has the blocked load been handled. */
399 bool loadBlockedHandled;
400
401 /** The sequence number of the blocked load. */
402 InstSeqNum blockedLoadSeqNum;
403
404 /** The oldest load that caused a memory ordering violation. */
405 DynInstPtr memDepViolator;
406
407 // Will also need how many read/write ports the Dcache has. Or keep track
408 // of that in stage that is one level up, and only call executeLoad/Store
409 // the appropriate number of times.
410
411 /** Total number of loads forwaded from LSQ stores. */
412 Stats::Scalar<> lsqForwLoads;
413
414 /** Total number of loads ignored due to invalid addresses. */
415 Stats::Scalar<> invAddrLoads;
416
417 /** Total number of squashed loads. */
418 Stats::Scalar<> lsqSquashedLoads;
419
420 /** Total number of responses from the memory system that are
421 * ignored due to the instruction already being squashed. */
422 Stats::Scalar<> lsqIgnoredResponses;
423
424 /** Total number of squashed stores. */
425 Stats::Scalar<> lsqSquashedStores;
426
427 /** Total number of software prefetches ignored due to invalid addresses. */
428 Stats::Scalar<> invAddrSwpfs;
429
430 /** Ready loads blocked due to partial store-forwarding. */
431 Stats::Scalar<> lsqBlockedLoads;
432
433 /** Number of loads that were rescheduled. */
434 Stats::Scalar<> lsqRescheduledLoads;
435
436 /** Number of times the LSQ is blocked due to the cache. */
437 Stats::Scalar<> lsqCacheBlocked;
438
439 public:
440 /** Executes the load at the given index. */
441 template <class T>
442 Fault read(Request *req, T &data, int load_idx);
443
444 /** Executes the store at the given index. */
445 template <class T>
446 Fault write(Request *req, T &data, int store_idx);
447
448 /** Returns the index of the head load instruction. */
449 int getLoadHead() { return loadHead; }
450 /** Returns the sequence number of the head load instruction. */
451 InstSeqNum getLoadHeadSeqNum()
452 {
453 if (loadQueue[loadHead]) {
454 return loadQueue[loadHead]->seqNum;
455 } else {
456 return 0;
457 }
458
459 }
460
461 /** Returns the index of the head store instruction. */
462 int getStoreHead() { return storeHead; }
463 /** Returns the sequence number of the head store instruction. */
464 InstSeqNum getStoreHeadSeqNum()
465 {
466 if (storeQueue[storeHead].inst) {
467 return storeQueue[storeHead].inst->seqNum;
468 } else {
469 return 0;
470 }
471
472 }
473
474 /** Returns whether or not the LSQ unit is stalled. */
475 bool isStalled() { return stalled; }
476};
477
478template <class Impl>
479template <class T>
480Fault
481LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
482{
483 DynInstPtr load_inst = loadQueue[load_idx];
484
485 assert(load_inst);
486
487 assert(!load_inst->isExecuted());
488
489 // Make sure this isn't an uncacheable access
490 // A bit of a hackish way to get uncached accesses to work only if they're
491 // at the head of the LSQ and are ready to commit (at the head of the ROB
492 // too).
493 if (req->getFlags() & UNCACHEABLE &&
494 (load_idx != loadHead || !load_inst->isAtCommit())) {
495 iewStage->rescheduleMemInst(load_inst);
496 ++lsqRescheduledLoads;
497 return TheISA::genMachineCheckFault();
498 }
499
500 // Check the SQ for any previous stores that might lead to forwarding
501 int store_idx = load_inst->sqIdx;
502
503 int store_size = 0;
504
505 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
506 "storeHead: %i addr: %#x\n",
507 load_idx, store_idx, storeHead, req->getPaddr());
508
509#if FULL_SYSTEM
510 if (req->getFlags() & LOCKED) {
511 cpu->lockAddr = req->getPaddr();
512 cpu->lockFlag = true;
513 }
514#endif
515
516 while (store_idx != -1) {
517 // End once we've reached the top of the LSQ
518 if (store_idx == storeWBIdx) {
519 break;
520 }
521
522 // Move the index to one younger
523 if (--store_idx < 0)
524 store_idx += SQEntries;
525
526 assert(storeQueue[store_idx].inst);
527
528 store_size = storeQueue[store_idx].size;
529
530 if (store_size == 0)
531 continue;
532
533 // Check if the store data is within the lower and upper bounds of
534 // addresses that the request needs.
535 bool store_has_lower_limit =
536 req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
537 bool store_has_upper_limit =
538 (req->getVaddr() + req->getSize()) <=
539 (storeQueue[store_idx].inst->effAddr + store_size);
540 bool lower_load_has_store_part =
541 req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
542 store_size);
543 bool upper_load_has_store_part =
544 (req->getVaddr() + req->getSize()) >
545 storeQueue[store_idx].inst->effAddr;
546
547 // If the store's data has all of the data needed, we can forward.
548 if (store_has_lower_limit && store_has_upper_limit) {
549 // Get shift amount for offset into the store's data.
550 int shift_amt = req->getVaddr() & (store_size - 1);
551 // @todo: Magic number, assumes byte addressing
552 shift_amt = shift_amt << 3;
553
554 // Cast this to type T?
555 data = storeQueue[store_idx].data >> shift_amt;
556
557 assert(!load_inst->memData);
558 load_inst->memData = new uint8_t[64];
559
560 memcpy(load_inst->memData, &data, req->getSize());
561
562 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
563 "addr %#x, data %#x\n",
564 store_idx, req->getVaddr(), data);
565
566 PacketPtr data_pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast);
567 data_pkt->dataStatic(load_inst->memData);
568
569 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
570
571 // We'll say this has a 1 cycle load-store forwarding latency
572 // for now.
573 // @todo: Need to make this a parameter.
574 wb->schedule(curTick);
575
576 ++lsqForwLoads;
577 return NoFault;
578 } else if ((store_has_lower_limit && lower_load_has_store_part) ||
579 (store_has_upper_limit && upper_load_has_store_part) ||
580 (lower_load_has_store_part && upper_load_has_store_part)) {
581 // This is the partial store-load forwarding case where a store
582 // has only part of the load's data.
583
584 // If it's already been written back, then don't worry about
585 // stalling on it.
586 if (storeQueue[store_idx].completed) {
587 continue;
588 }
589
590 // Must stall load and force it to retry, so long as it's the oldest
591 // load that needs to do so.
592 if (!stalled ||
593 (stalled &&
594 load_inst->seqNum <
595 loadQueue[stallingLoadIdx]->seqNum)) {
596 stalled = true;
597 stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
598 stallingLoadIdx = load_idx;
599 }
600
601 // Tell IQ/mem dep unit that this instruction will need to be
602 // rescheduled eventually
603 iewStage->rescheduleMemInst(load_inst);
604 ++lsqRescheduledLoads;
605
606 // Do not generate a writeback event as this instruction is not
607 // complete.
608 DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
609 "Store idx %i to load addr %#x\n",
610 store_idx, req->getVaddr());
611
612 ++lsqBlockedLoads;
613 return NoFault;
614 }
615 }
616
617 // If there's no forwarding case, then go access memory
661 DPRINTF(LSQUnit, "Doing functional access for inst [sn:%lli] PC %#x\n",
618 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %#x\n",
662 load_inst->seqNum, load_inst->readPC());
663
664 assert(!load_inst->memData);
665 load_inst->memData = new uint8_t[64];
666
667 ++usedPorts;
668
619 load_inst->seqNum, load_inst->readPC());
620
621 assert(!load_inst->memData);
622 load_inst->memData = new uint8_t[64];
623
624 ++usedPorts;
625
669 DPRINTF(LSQUnit, "Doing timing access for inst PC %#x\n",
670 load_inst->readPC());
671
672 PacketPtr data_pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast);
673 data_pkt->dataStatic(load_inst->memData);
674
675 LSQSenderState *state = new LSQSenderState;
676 state->isLoad = true;
677 state->idx = load_idx;
678 state->inst = load_inst;
679 data_pkt->senderState = state;
680
626 PacketPtr data_pkt = new Packet(req, Packet::ReadReq, Packet::Broadcast);
627 data_pkt->dataStatic(load_inst->memData);
628
629 LSQSenderState *state = new LSQSenderState;
630 state->isLoad = true;
631 state->idx = load_idx;
632 state->inst = load_inst;
633 data_pkt->senderState = state;
634
681 // if we have a cache, do cache access too
682 if (!dcachePort->sendTiming(data_pkt)) {
635 // if we the cache is not blocked, do cache access
636 if (!lsq->cacheBlocked()) {
637 if (!dcachePort->sendTiming(data_pkt)) {
638 // If the access didn't succeed, tell the LSQ by setting
639 // the retry thread id.
640 lsq->setRetryTid(lsqID);
641 }
642 }
643
644 // If the cache was blocked, or has become blocked due to the access,
645 // handle it.
646 if (lsq->cacheBlocked()) {
683 ++lsqCacheBlocked;
684 // There's an older load that's already going to squash.
685 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
686 return NoFault;
687
688 // Record that the load was blocked due to memory. This
689 // load will squash all instructions after it, be
690 // refetched, and re-executed.
691 isLoadBlocked = true;
692 loadBlockedHandled = false;
693 blockedLoadSeqNum = load_inst->seqNum;
694 // No fault occurred, even though the interface is blocked.
695 return NoFault;
696 }
697
698 if (data_pkt->result != Packet::Success) {
699 DPRINTF(LSQUnit, "LSQUnit: D-cache miss!\n");
700 DPRINTF(Activity, "Activity: ld accessing mem miss [sn:%lli]\n",
701 load_inst->seqNum);
702 } else {
703 DPRINTF(LSQUnit, "LSQUnit: D-cache hit!\n");
704 DPRINTF(Activity, "Activity: ld accessing mem hit [sn:%lli]\n",
705 load_inst->seqNum);
706 }
707
708 return NoFault;
709}
710
711template <class Impl>
712template <class T>
713Fault
714LSQUnit<Impl>::write(Request *req, T &data, int store_idx)
715{
716 assert(storeQueue[store_idx].inst);
717
718 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
719 " | storeHead:%i [sn:%i]\n",
720 store_idx, req->getPaddr(), data, storeHead,
721 storeQueue[store_idx].inst->seqNum);
722
723 storeQueue[store_idx].req = req;
724 storeQueue[store_idx].size = sizeof(T);
725 storeQueue[store_idx].data = data;
726
727 // This function only writes the data to the store queue, so no fault
728 // can happen here.
729 return NoFault;
730}
731
732#endif // __CPU_O3_LSQ_UNIT_HH__
647 ++lsqCacheBlocked;
648 // There's an older load that's already going to squash.
649 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
650 return NoFault;
651
652 // Record that the load was blocked due to memory. This
653 // load will squash all instructions after it, be
654 // refetched, and re-executed.
655 isLoadBlocked = true;
656 loadBlockedHandled = false;
657 blockedLoadSeqNum = load_inst->seqNum;
658 // No fault occurred, even though the interface is blocked.
659 return NoFault;
660 }
661
662 if (data_pkt->result != Packet::Success) {
663 DPRINTF(LSQUnit, "LSQUnit: D-cache miss!\n");
664 DPRINTF(Activity, "Activity: ld accessing mem miss [sn:%lli]\n",
665 load_inst->seqNum);
666 } else {
667 DPRINTF(LSQUnit, "LSQUnit: D-cache hit!\n");
668 DPRINTF(Activity, "Activity: ld accessing mem hit [sn:%lli]\n",
669 load_inst->seqNum);
670 }
671
672 return NoFault;
673}
674
675template <class Impl>
676template <class T>
677Fault
678LSQUnit<Impl>::write(Request *req, T &data, int store_idx)
679{
680 assert(storeQueue[store_idx].inst);
681
682 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
683 " | storeHead:%i [sn:%i]\n",
684 store_idx, req->getPaddr(), data, storeHead,
685 storeQueue[store_idx].inst->seqNum);
686
687 storeQueue[store_idx].req = req;
688 storeQueue[store_idx].size = sizeof(T);
689 storeQueue[store_idx].data = data;
690
691 // This function only writes the data to the store queue, so no fault
692 // can happen here.
693 return NoFault;
694}
695
696#endif // __CPU_O3_LSQ_UNIT_HH__