Deleted Added
sdiff udiff text old ( 8229:78bf55f23338 ) new ( 8230:845c8eb5ac49 )
full compact
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32#ifndef __CPU_O3_LSQ_UNIT_HH__
33#define __CPU_O3_LSQ_UNIT_HH__
34
35#include <algorithm>
36#include <cstring>
37#include <map>
38#include <queue>
39
40#include "arch/faults.hh"
41#include "arch/locked_mem.hh"
42#include "base/fast_alloc.hh"
43#include "base/hashmap.hh"
44#include "config/full_system.hh"
45#include "config/the_isa.hh"
46#include "cpu/inst_seq.hh"
47#include "cpu/timebuf.hh"
48#include "mem/packet.hh"
49#include "mem/port.hh"
50
51class DerivO3CPUParams;
52
53/**
54 * Class that implements the actual LQ and SQ for each specific
55 * thread. Both are circular queues; load entries are freed upon
56 * committing, while store entries are freed once they writeback. The
57 * LSQUnit tracks if there are memory ordering violations, and also
58 * detects partial load to store forwarding cases (a store only has
59 * part of a load's data) that requires the load to wait until the
60 * store writes back. In the former case it holds onto the instruction
61 * until the dependence unit looks at it, and in the latter it stalls
62 * the LSQ until the store writes back. At that point the load is
63 * replayed.
64 */
65template <class Impl>
66class LSQUnit {
67 public:
68 typedef typename Impl::O3CPU O3CPU;
69 typedef typename Impl::DynInstPtr DynInstPtr;
70 typedef typename Impl::CPUPol::IEW IEW;
71 typedef typename Impl::CPUPol::LSQ LSQ;
72 typedef typename Impl::CPUPol::IssueStruct IssueStruct;
73
74 public:
75 /** Constructs an LSQ unit. init() must be called prior to use. */
76 LSQUnit();
77
78 /** Initializes the LSQ unit with the specified number of entries. */
79 void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
80 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
81 unsigned id);
82
83 /** Returns the name of the LSQ unit. */
84 std::string name() const;
85
86 /** Registers statistics. */
87 void regStats();
88
89 /** Sets the pointer to the dcache port. */
90 void setDcachePort(Port *dcache_port);
91
92 /** Switches out LSQ unit. */
93 void switchOut();
94
95 /** Takes over from another CPU's thread. */
96 void takeOverFrom();
97
98 /** Returns if the LSQ is switched out. */
99 bool isSwitchedOut() { return switchedOut; }
100
101 /** Ticks the LSQ unit, which in this case only resets the number of
102 * used cache ports.
103 * @todo: Move the number of used ports up to the LSQ level so it can
104 * be shared by all LSQ units.
105 */
106 void tick() { usedPorts = 0; }
107
108 /** Inserts an instruction. */
109 void insert(DynInstPtr &inst);
110 /** Inserts a load instruction. */
111 void insertLoad(DynInstPtr &load_inst);
112 /** Inserts a store instruction. */
113 void insertStore(DynInstPtr &store_inst);
114
115 /** Check for ordering violations in the LSQ
116 * @param load_idx index to start checking at
117 * @param inst the instruction to check
118 */
119 Fault checkViolations(int load_idx, DynInstPtr &inst);
120
121 /** Executes a load instruction. */
122 Fault executeLoad(DynInstPtr &inst);
123
124 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
125 /** Executes a store instruction. */
126 Fault executeStore(DynInstPtr &inst);
127
128 /** Commits the head load. */
129 void commitLoad();
130 /** Commits loads older than a specific sequence number. */
131 void commitLoads(InstSeqNum &youngest_inst);
132
133 /** Commits stores older than a specific sequence number. */
134 void commitStores(InstSeqNum &youngest_inst);
135
136 /** Writes back stores. */
137 void writebackStores();
138
139 /** Completes the data access that has been returned from the
140 * memory system. */
141 void completeDataAccess(PacketPtr pkt);
142
143 /** Clears all the entries in the LQ. */
144 void clearLQ();
145
146 /** Clears all the entries in the SQ. */
147 void clearSQ();
148
149 /** Resizes the LQ to a given size. */
150 void resizeLQ(unsigned size);
151
152 /** Resizes the SQ to a given size. */
153 void resizeSQ(unsigned size);
154
155 /** Squashes all instructions younger than a specific sequence number. */
156 void squash(const InstSeqNum &squashed_num);
157
158 /** Returns if there is a memory ordering violation. Value is reset upon
159 * call to getMemDepViolator().
160 */
161 bool violation() { return memDepViolator; }
162
163 /** Returns the memory ordering violator. */
164 DynInstPtr getMemDepViolator();
165
166 /** Returns if a load became blocked due to the memory system. */
167 bool loadBlocked()
168 { return isLoadBlocked; }
169
170 /** Clears the signal that a load became blocked. */
171 void clearLoadBlocked()
172 { isLoadBlocked = false; }
173
174 /** Returns if the blocked load was handled. */
175 bool isLoadBlockedHandled()
176 { return loadBlockedHandled; }
177
178 /** Records the blocked load as being handled. */
179 void setLoadBlockedHandled()
180 { loadBlockedHandled = true; }
181
182 /** Returns the number of free entries (min of free LQ and SQ entries). */
183 unsigned numFreeEntries();
184
185 /** Returns the number of loads ready to execute. */
186 int numLoadsReady();
187
188 /** Returns the number of loads in the LQ. */
189 int numLoads() { return loads; }
190
191 /** Returns the number of stores in the SQ. */
192 int numStores() { return stores; }
193
194 /** Returns if either the LQ or SQ is full. */
195 bool isFull() { return lqFull() || sqFull(); }
196
197 /** Returns if the LQ is full. */
198 bool lqFull() { return loads >= (LQEntries - 1); }
199
200 /** Returns if the SQ is full. */
201 bool sqFull() { return stores >= (SQEntries - 1); }
202
203 /** Returns the number of instructions in the LSQ. */
204 unsigned getCount() { return loads + stores; }
205
206 /** Returns if there are any stores to writeback. */
207 bool hasStoresToWB() { return storesToWB; }
208
209 /** Returns the number of stores to writeback. */
210 int numStoresToWB() { return storesToWB; }
211
212 /** Returns if the LSQ unit will writeback on this cycle. */
213 bool willWB() { return storeQueue[storeWBIdx].canWB &&
214 !storeQueue[storeWBIdx].completed &&
215 !isStoreBlocked; }
216
217 /** Handles doing the retry. */
218 void recvRetry();
219
220 private:
221 /** Writes back the instruction, sending it to IEW. */
222 void writeback(DynInstPtr &inst, PacketPtr pkt);
223
224 /** Writes back a store that couldn't be completed the previous cycle. */
225 void writebackPendingStore();
226
227 /** Handles completing the send of a store to memory. */
228 void storePostSend(PacketPtr pkt);
229
230 /** Completes the store at the specified index. */
231 void completeStore(int store_idx);
232
233 /** Attempts to send a store to the cache. */
234 bool sendStore(PacketPtr data_pkt);
235
236 /** Increments the given store index (circular queue). */
237 inline void incrStIdx(int &store_idx);
238 /** Decrements the given store index (circular queue). */
239 inline void decrStIdx(int &store_idx);
240 /** Increments the given load index (circular queue). */
241 inline void incrLdIdx(int &load_idx);
242 /** Decrements the given load index (circular queue). */
243 inline void decrLdIdx(int &load_idx);
244
245 public:
246 /** Debugging function to dump instructions in the LSQ. */
247 void dumpInsts();
248
249 private:
250 /** Pointer to the CPU. */
251 O3CPU *cpu;
252
253 /** Pointer to the IEW stage. */
254 IEW *iewStage;
255
256 /** Pointer to the LSQ. */
257 LSQ *lsq;
258
259 /** Pointer to the dcache port. Used only for sending. */
260 Port *dcachePort;
261
262 /** Derived class to hold any sender state the LSQ needs. */
263 class LSQSenderState : public Packet::SenderState, public FastAlloc
264 {
265 public:
266 /** Default constructor. */
267 LSQSenderState()
268 : noWB(false), isSplit(false), pktToSend(false), outstanding(1),
269 mainPkt(NULL), pendingPacket(NULL)
270 { }
271
272 /** Instruction who initiated the access to memory. */
273 DynInstPtr inst;
274 /** Whether or not it is a load. */
275 bool isLoad;
276 /** The LQ/SQ index of the instruction. */
277 int idx;
278 /** Whether or not the instruction will need to writeback. */
279 bool noWB;
280 /** Whether or not this access is split in two. */
281 bool isSplit;
282 /** Whether or not there is a packet that needs sending. */
283 bool pktToSend;
284 /** Number of outstanding packets to complete. */
285 int outstanding;
286 /** The main packet from a split load, used during writeback. */
287 PacketPtr mainPkt;
288 /** A second packet from a split store that needs sending. */
289 PacketPtr pendingPacket;
290
291 /** Completes a packet and returns whether the access is finished. */
292 inline bool complete() { return --outstanding == 0; }
293 };
294
295 /** Writeback event, specifically for when stores forward data to loads. */
296 class WritebackEvent : public Event {
297 public:
298 /** Constructs a writeback event. */
299 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
300
301 /** Processes the writeback event. */
302 void process();
303
304 /** Returns the description of this event. */
305 const char *description() const;
306
307 private:
308 /** Instruction whose results are being written back. */
309 DynInstPtr inst;
310
311 /** The packet that would have been sent to memory. */
312 PacketPtr pkt;
313
314 /** The pointer to the LSQ unit that issued the store. */
315 LSQUnit<Impl> *lsqPtr;
316 };
317
318 public:
319 struct SQEntry {
320 /** Constructs an empty store queue entry. */
321 SQEntry()
322 : inst(NULL), req(NULL), size(0),
323 canWB(0), committed(0), completed(0)
324 {
325 std::memset(data, 0, sizeof(data));
326 }
327
328 /** Constructs a store queue entry for a given instruction. */
329 SQEntry(DynInstPtr &_inst)
330 : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0),
331 isSplit(0), canWB(0), committed(0), completed(0)
332 {
333 std::memset(data, 0, sizeof(data));
334 }
335
336 /** The store instruction. */
337 DynInstPtr inst;
338 /** The request for the store. */
339 RequestPtr req;
340 /** The split requests for the store. */
341 RequestPtr sreqLow;
342 RequestPtr sreqHigh;
343 /** The size of the store. */
344 int size;
345 /** The store data. */
346 char data[16];
347 /** Whether or not the store is split into two requests. */
348 bool isSplit;
349 /** Whether or not the store can writeback. */
350 bool canWB;
351 /** Whether or not the store is committed. */
352 bool committed;
353 /** Whether or not the store is completed. */
354 bool completed;
355 };
356
357 private:
358 /** The LSQUnit thread id. */
359 ThreadID lsqID;
360
361 /** The store queue. */
362 std::vector<SQEntry> storeQueue;
363
364 /** The load queue. */
365 std::vector<DynInstPtr> loadQueue;
366
367 /** The number of LQ entries, plus a sentinel entry (circular queue).
368 * @todo: Consider having var that records the true number of LQ entries.
369 */
370 unsigned LQEntries;
371 /** The number of SQ entries, plus a sentinel entry (circular queue).
372 * @todo: Consider having var that records the true number of SQ entries.
373 */
374 unsigned SQEntries;
375
376 /** The number of places to shift addresses in the LSQ before checking
377 * for dependency violations
378 */
379 unsigned depCheckShift;
380
381 /** Should loads be checked for dependency issues */
382 bool checkLoads;
383
384 /** The number of load instructions in the LQ. */
385 int loads;
386 /** The number of store instructions in the SQ. */
387 int stores;
388 /** The number of store instructions in the SQ waiting to writeback. */
389 int storesToWB;
390
391 /** The index of the head instruction in the LQ. */
392 int loadHead;
393 /** The index of the tail instruction in the LQ. */
394 int loadTail;
395
396 /** The index of the head instruction in the SQ. */
397 int storeHead;
398 /** The index of the first instruction that may be ready to be
399 * written back, and has not yet been written back.
400 */
401 int storeWBIdx;
402 /** The index of the tail instruction in the SQ. */
403 int storeTail;
404
405 /// @todo Consider moving to a more advanced model with write vs read ports
406 /** The number of cache ports available each cycle. */
407 int cachePorts;
408
409 /** The number of used cache ports in this cycle. */
410 int usedPorts;
411
412 /** Is the LSQ switched out. */
413 bool switchedOut;
414
415 //list<InstSeqNum> mshrSeqNums;
416
417 /** Wire to read information from the issue stage time queue. */
418 typename TimeBuffer<IssueStruct>::wire fromIssue;
419
420 /** Whether or not the LSQ is stalled. */
421 bool stalled;
422 /** The store that causes the stall due to partial store to load
423 * forwarding.
424 */
425 InstSeqNum stallingStoreIsn;
426 /** The index of the above store. */
427 int stallingLoadIdx;
428
429 /** The packet that needs to be retried. */
430 PacketPtr retryPkt;
431
432 /** Whehter or not a store is blocked due to the memory system. */
433 bool isStoreBlocked;
434
435 /** Whether or not a load is blocked due to the memory system. */
436 bool isLoadBlocked;
437
438 /** Has the blocked load been handled. */
439 bool loadBlockedHandled;
440
441 /** The sequence number of the blocked load. */
442 InstSeqNum blockedLoadSeqNum;
443
444 /** The oldest load that caused a memory ordering violation. */
445 DynInstPtr memDepViolator;
446
447 /** Whether or not there is a packet that couldn't be sent because of
448 * a lack of cache ports. */
449 bool hasPendingPkt;
450
451 /** The packet that is pending free cache ports. */
452 PacketPtr pendingPkt;
453
454 // Will also need how many read/write ports the Dcache has. Or keep track
455 // of that in stage that is one level up, and only call executeLoad/Store
456 // the appropriate number of times.
457 /** Total number of loads forwaded from LSQ stores. */
458 Stats::Scalar lsqForwLoads;
459
460 /** Total number of loads ignored due to invalid addresses. */
461 Stats::Scalar invAddrLoads;
462
463 /** Total number of squashed loads. */
464 Stats::Scalar lsqSquashedLoads;
465
466 /** Total number of responses from the memory system that are
467 * ignored due to the instruction already being squashed. */
468 Stats::Scalar lsqIgnoredResponses;
469
470 /** Tota number of memory ordering violations. */
471 Stats::Scalar lsqMemOrderViolation;
472
473 /** Total number of squashed stores. */
474 Stats::Scalar lsqSquashedStores;
475
476 /** Total number of software prefetches ignored due to invalid addresses. */
477 Stats::Scalar invAddrSwpfs;
478
479 /** Ready loads blocked due to partial store-forwarding. */
480 Stats::Scalar lsqBlockedLoads;
481
482 /** Number of loads that were rescheduled. */
483 Stats::Scalar lsqRescheduledLoads;
484
485 /** Number of times the LSQ is blocked due to the cache. */
486 Stats::Scalar lsqCacheBlocked;
487
488 public:
489 /** Executes the load at the given index. */
490 Fault read(Request *req, Request *sreqLow, Request *sreqHigh,
491 uint8_t *data, int load_idx);
492
493 /** Executes the store at the given index. */
494 Fault write(Request *req, Request *sreqLow, Request *sreqHigh,
495 uint8_t *data, int store_idx);
496
497 /** Returns the index of the head load instruction. */
498 int getLoadHead() { return loadHead; }
499 /** Returns the sequence number of the head load instruction. */
500 InstSeqNum getLoadHeadSeqNum()
501 {
502 if (loadQueue[loadHead]) {
503 return loadQueue[loadHead]->seqNum;
504 } else {
505 return 0;
506 }
507
508 }
509
510 /** Returns the index of the head store instruction. */
511 int getStoreHead() { return storeHead; }
512 /** Returns the sequence number of the head store instruction. */
513 InstSeqNum getStoreHeadSeqNum()
514 {
515 if (storeQueue[storeHead].inst) {
516 return storeQueue[storeHead].inst->seqNum;
517 } else {
518 return 0;
519 }
520
521 }
522
523 /** Returns whether or not the LSQ unit is stalled. */
524 bool isStalled() { return stalled; }
525};
526
527template <class Impl>
528Fault
529LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh,
530 uint8_t *data, int load_idx)
531{
532 DynInstPtr load_inst = loadQueue[load_idx];
533
534 assert(load_inst);
535
536 assert(!load_inst->isExecuted());
537
538 // Make sure this isn't an uncacheable access
539 // A bit of a hackish way to get uncached accesses to work only if they're
540 // at the head of the LSQ and are ready to commit (at the head of the ROB
541 // too).
542 if (req->isUncacheable() &&
543 (load_idx != loadHead || !load_inst->isAtCommit())) {
544 iewStage->rescheduleMemInst(load_inst);
545 ++lsqRescheduledLoads;
546 DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n",
547 load_inst->seqNum, load_inst->pcState());
548
549 // Must delete request now that it wasn't handed off to
550 // memory. This is quite ugly. @todo: Figure out the proper
551 // place to really handle request deletes.
552 delete req;
553 if (TheISA::HasUnalignedMemAcc && sreqLow) {
554 delete sreqLow;
555 delete sreqHigh;
556 }
557 return TheISA::genMachineCheckFault();
558 }
559
560 // Check the SQ for any previous stores that might lead to forwarding
561 int store_idx = load_inst->sqIdx;
562
563 int store_size = 0;
564
565 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
566 "storeHead: %i addr: %#x%s\n",
567 load_idx, store_idx, storeHead, req->getPaddr(),
568 sreqLow ? " split" : "");
569
570 if (req->isLLSC()) {
571 assert(!sreqLow);
572 // Disable recording the result temporarily. Writing to misc
573 // regs normally updates the result, but this is not the
574 // desired behavior when handling store conditionals.
575 load_inst->recordResult = false;
576 TheISA::handleLockedRead(load_inst.get(), req);
577 load_inst->recordResult = true;
578 }
579
580 while (store_idx != -1) {
581 // End once we've reached the top of the LSQ
582 if (store_idx == storeWBIdx) {
583 break;
584 }
585
586 // Move the index to one younger
587 if (--store_idx < 0)
588 store_idx += SQEntries;
589
590 assert(storeQueue[store_idx].inst);
591
592 store_size = storeQueue[store_idx].size;
593
594 if (store_size == 0)
595 continue;
596 else if (storeQueue[store_idx].inst->uncacheable())
597 continue;
598
599 assert(storeQueue[store_idx].inst->effAddrValid);
600
601 // Check if the store data is within the lower and upper bounds of
602 // addresses that the request needs.
603 bool store_has_lower_limit =
604 req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
605 bool store_has_upper_limit =
606 (req->getVaddr() + req->getSize()) <=
607 (storeQueue[store_idx].inst->effAddr + store_size);
608 bool lower_load_has_store_part =
609 req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
610 store_size);
611 bool upper_load_has_store_part =
612 (req->getVaddr() + req->getSize()) >
613 storeQueue[store_idx].inst->effAddr;
614
615 // If the store's data has all of the data needed, we can forward.
616 if ((store_has_lower_limit && store_has_upper_limit)) {
617 // Get shift amount for offset into the store's data.
618 int shift_amt = req->getVaddr() & (store_size - 1);
619
620 memcpy(data, storeQueue[store_idx].data + shift_amt,
621 req->getSize());
622
623 assert(!load_inst->memData);
624 load_inst->memData = new uint8_t[64];
625
626 memcpy(load_inst->memData,
627 storeQueue[store_idx].data + shift_amt, req->getSize());
628
629 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
630 "addr %#x, data %#x\n",
631 store_idx, req->getVaddr(), data);
632
633 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq,
634 Packet::Broadcast);
635 data_pkt->dataStatic(load_inst->memData);
636
637 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
638
639 // We'll say this has a 1 cycle load-store forwarding latency
640 // for now.
641 // @todo: Need to make this a parameter.
642 cpu->schedule(wb, curTick());
643
644 // Don't need to do anything special for split loads.
645 if (TheISA::HasUnalignedMemAcc && sreqLow) {
646 delete sreqLow;
647 delete sreqHigh;
648 }
649
650 ++lsqForwLoads;
651 return NoFault;
652 } else if ((store_has_lower_limit && lower_load_has_store_part) ||
653 (store_has_upper_limit && upper_load_has_store_part) ||
654 (lower_load_has_store_part && upper_load_has_store_part)) {
655 // This is the partial store-load forwarding case where a store
656 // has only part of the load's data.
657
658 // If it's already been written back, then don't worry about
659 // stalling on it.
660 if (storeQueue[store_idx].completed) {
661 panic("Should not check one of these");
662 continue;
663 }
664
665 // Must stall load and force it to retry, so long as it's the oldest
666 // load that needs to do so.
667 if (!stalled ||
668 (stalled &&
669 load_inst->seqNum <
670 loadQueue[stallingLoadIdx]->seqNum)) {
671 stalled = true;
672 stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
673 stallingLoadIdx = load_idx;
674 }
675
676 // Tell IQ/mem dep unit that this instruction will need to be
677 // rescheduled eventually
678 iewStage->rescheduleMemInst(load_inst);
679 iewStage->decrWb(load_inst->seqNum);
680 load_inst->clearIssued();
681 ++lsqRescheduledLoads;
682
683 // Do not generate a writeback event as this instruction is not
684 // complete.
685 DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
686 "Store idx %i to load addr %#x\n",
687 store_idx, req->getVaddr());
688
689 // Must delete request now that it wasn't handed off to
690 // memory. This is quite ugly. @todo: Figure out the
691 // proper place to really handle request deletes.
692 delete req;
693 if (TheISA::HasUnalignedMemAcc && sreqLow) {
694 delete sreqLow;
695 delete sreqHigh;
696 }
697
698 return NoFault;
699 }
700 }
701
702 // If there's no forwarding case, then go access memory
703 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n",
704 load_inst->seqNum, load_inst->pcState());
705
706 assert(!load_inst->memData);
707 load_inst->memData = new uint8_t[64];
708
709 ++usedPorts;
710
711 // if we the cache is not blocked, do cache access
712 bool completedFirst = false;
713 if (!lsq->cacheBlocked()) {
714 MemCmd command =
715 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq;
716 PacketPtr data_pkt = new Packet(req, command, Packet::Broadcast);
717 PacketPtr fst_data_pkt = NULL;
718 PacketPtr snd_data_pkt = NULL;
719
720 data_pkt->dataStatic(load_inst->memData);
721
722 LSQSenderState *state = new LSQSenderState;
723 state->isLoad = true;
724 state->idx = load_idx;
725 state->inst = load_inst;
726 data_pkt->senderState = state;
727
728 if (!TheISA::HasUnalignedMemAcc || !sreqLow) {
729
730 // Point the first packet at the main data packet.
731 fst_data_pkt = data_pkt;
732 } else {
733
734 // Create the split packets.
735 fst_data_pkt = new Packet(sreqLow, command, Packet::Broadcast);
736 snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast);
737
738 fst_data_pkt->dataStatic(load_inst->memData);
739 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());
740
741 fst_data_pkt->senderState = state;
742 snd_data_pkt->senderState = state;
743
744 state->isSplit = true;
745 state->outstanding = 2;
746 state->mainPkt = data_pkt;
747 }
748
749 if (!dcachePort->sendTiming(fst_data_pkt)) {
750 // Delete state and data packet because a load retry
751 // initiates a pipeline restart; it does not retry.
752 delete state;
753 delete data_pkt->req;
754 delete data_pkt;
755 if (TheISA::HasUnalignedMemAcc && sreqLow) {
756 delete fst_data_pkt->req;
757 delete fst_data_pkt;
758 delete snd_data_pkt->req;
759 delete snd_data_pkt;
760 sreqLow = NULL;
761 sreqHigh = NULL;
762 }
763
764 req = NULL;
765
766 // If the access didn't succeed, tell the LSQ by setting
767 // the retry thread id.
768 lsq->setRetryTid(lsqID);
769 } else if (TheISA::HasUnalignedMemAcc && sreqLow) {
770 completedFirst = true;
771
772 // The first packet was sent without problems, so send this one
773 // too. If there is a problem with this packet then the whole
774 // load will be squashed, so indicate this to the state object.
775 // The first packet will return in completeDataAccess and be
776 // handled there.
777 ++usedPorts;
778 if (!dcachePort->sendTiming(snd_data_pkt)) {
779
780 // The main packet will be deleted in completeDataAccess.
781 delete snd_data_pkt->req;
782 delete snd_data_pkt;
783
784 state->complete();
785
786 req = NULL;
787 sreqHigh = NULL;
788
789 lsq->setRetryTid(lsqID);
790 }
791 }
792 }
793
794 // If the cache was blocked, or has become blocked due to the access,
795 // handle it.
796 if (lsq->cacheBlocked()) {
797 if (req)
798 delete req;
799 if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) {
800 delete sreqLow;
801 delete sreqHigh;
802 }
803
804 ++lsqCacheBlocked;
805
806 iewStage->decrWb(load_inst->seqNum);
807 // There's an older load that's already going to squash.
808 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
809 return NoFault;
810
811 // Record that the load was blocked due to memory. This
812 // load will squash all instructions after it, be
813 // refetched, and re-executed.
814 isLoadBlocked = true;
815 loadBlockedHandled = false;
816 blockedLoadSeqNum = load_inst->seqNum;
817 // No fault occurred, even though the interface is blocked.
818 return NoFault;
819 }
820
821 return NoFault;
822}
823
824template <class Impl>
825Fault
826LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh,
827 uint8_t *data, int store_idx)
828{
829 assert(storeQueue[store_idx].inst);
830
831 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
832 " | storeHead:%i [sn:%i]\n",
833 store_idx, req->getPaddr(), data, storeHead,
834 storeQueue[store_idx].inst->seqNum);
835
836 storeQueue[store_idx].req = req;
837 storeQueue[store_idx].sreqLow = sreqLow;
838 storeQueue[store_idx].sreqHigh = sreqHigh;
839 unsigned size = req->getSize();
840 storeQueue[store_idx].size = size;
841 assert(size <= sizeof(storeQueue[store_idx].data));
842
843 // Split stores can only occur in ISAs with unaligned memory accesses. If
844 // a store request has been split, sreqLow and sreqHigh will be non-null.
845 if (TheISA::HasUnalignedMemAcc && sreqLow) {
846 storeQueue[store_idx].isSplit = true;
847 }
848
849 memcpy(storeQueue[store_idx].data, data, size);
850
851 // This function only writes the data to the store queue, so no fault
852 // can happen here.
853 return NoFault;
854}
855
856#endif // __CPU_O3_LSQ_UNIT_HH__