inst_queue_impl.hh (8275:8c88a94c2f4f) inst_queue_impl.hh (8471:18e560ba1539)
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#include <limits>
45#include <vector>
46
47#include "cpu/o3/fu_pool.hh"
48#include "cpu/o3/inst_queue.hh"
49#include "debug/IQ.hh"
50#include "enums/OpClass.hh"
51#include "params/DerivO3CPU.hh"
52#include "sim/core.hh"
53
54using namespace std;
55
56template <class Impl>
57InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst,
58 int fu_idx, InstructionQueue<Impl> *iq_ptr)
59 : Event(Stat_Event_Pri), inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr),
60 freeFU(false)
61{
62 this->setFlags(Event::AutoDelete);
63}
64
65template <class Impl>
66void
67InstructionQueue<Impl>::FUCompletion::process()
68{
69 iqPtr->processFUCompletion(inst, freeFU ? fuIdx : -1);
70 inst = NULL;
71}
72
73
74template <class Impl>
75const char *
76InstructionQueue<Impl>::FUCompletion::description() const
77{
78 return "Functional unit completion";
79}
80
81template <class Impl>
82InstructionQueue<Impl>::InstructionQueue(O3CPU *cpu_ptr, IEW *iew_ptr,
83 DerivO3CPUParams *params)
84 : cpu(cpu_ptr),
85 iewStage(iew_ptr),
86 fuPool(params->fuPool),
87 numEntries(params->numIQEntries),
88 totalWidth(params->issueWidth),
89 numPhysIntRegs(params->numPhysIntRegs),
90 numPhysFloatRegs(params->numPhysFloatRegs),
91 commitToIEWDelay(params->commitToIEWDelay)
92{
93 assert(fuPool);
94
95 switchedOut = false;
96
97 numThreads = params->numThreads;
98
99 // Set the number of physical registers as the number of int + float
100 numPhysRegs = numPhysIntRegs + numPhysFloatRegs;
101
102 //Create an entry for each physical register within the
103 //dependency graph.
104 dependGraph.resize(numPhysRegs);
105
106 // Resize the register scoreboard.
107 regScoreboard.resize(numPhysRegs);
108
109 //Initialize Mem Dependence Units
110 for (ThreadID tid = 0; tid < numThreads; tid++) {
111 memDepUnit[tid].init(params, tid);
112 memDepUnit[tid].setIQ(this);
113 }
114
115 resetState();
116
117 std::string policy = params->smtIQPolicy;
118
119 //Convert string to lowercase
120 std::transform(policy.begin(), policy.end(), policy.begin(),
121 (int(*)(int)) tolower);
122
123 //Figure out resource sharing policy
124 if (policy == "dynamic") {
125 iqPolicy = Dynamic;
126
127 //Set Max Entries to Total ROB Capacity
128 for (ThreadID tid = 0; tid < numThreads; tid++) {
129 maxEntries[tid] = numEntries;
130 }
131
132 } else if (policy == "partitioned") {
133 iqPolicy = Partitioned;
134
135 //@todo:make work if part_amt doesnt divide evenly.
136 int part_amt = numEntries / numThreads;
137
138 //Divide ROB up evenly
139 for (ThreadID tid = 0; tid < numThreads; tid++) {
140 maxEntries[tid] = part_amt;
141 }
142
143 DPRINTF(IQ, "IQ sharing policy set to Partitioned:"
144 "%i entries per thread.\n",part_amt);
145 } else if (policy == "threshold") {
146 iqPolicy = Threshold;
147
148 double threshold = (double)params->smtIQThreshold / 100;
149
150 int thresholdIQ = (int)((double)threshold * numEntries);
151
152 //Divide up by threshold amount
153 for (ThreadID tid = 0; tid < numThreads; tid++) {
154 maxEntries[tid] = thresholdIQ;
155 }
156
157 DPRINTF(IQ, "IQ sharing policy set to Threshold:"
158 "%i entries per thread.\n",thresholdIQ);
159 } else {
160 assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic,"
161 "Partitioned, Threshold}");
162 }
163}
164
165template <class Impl>
166InstructionQueue<Impl>::~InstructionQueue()
167{
168 dependGraph.reset();
169#ifdef DEBUG
170 cprintf("Nodes traversed: %i, removed: %i\n",
171 dependGraph.nodesTraversed, dependGraph.nodesRemoved);
172#endif
173}
174
175template <class Impl>
176std::string
177InstructionQueue<Impl>::name() const
178{
179 return cpu->name() + ".iq";
180}
181
182template <class Impl>
183void
184InstructionQueue<Impl>::regStats()
185{
186 using namespace Stats;
187 iqInstsAdded
188 .name(name() + ".iqInstsAdded")
189 .desc("Number of instructions added to the IQ (excludes non-spec)")
190 .prereq(iqInstsAdded);
191
192 iqNonSpecInstsAdded
193 .name(name() + ".iqNonSpecInstsAdded")
194 .desc("Number of non-speculative instructions added to the IQ")
195 .prereq(iqNonSpecInstsAdded);
196
197 iqInstsIssued
198 .name(name() + ".iqInstsIssued")
199 .desc("Number of instructions issued")
200 .prereq(iqInstsIssued);
201
202 iqIntInstsIssued
203 .name(name() + ".iqIntInstsIssued")
204 .desc("Number of integer instructions issued")
205 .prereq(iqIntInstsIssued);
206
207 iqFloatInstsIssued
208 .name(name() + ".iqFloatInstsIssued")
209 .desc("Number of float instructions issued")
210 .prereq(iqFloatInstsIssued);
211
212 iqBranchInstsIssued
213 .name(name() + ".iqBranchInstsIssued")
214 .desc("Number of branch instructions issued")
215 .prereq(iqBranchInstsIssued);
216
217 iqMemInstsIssued
218 .name(name() + ".iqMemInstsIssued")
219 .desc("Number of memory instructions issued")
220 .prereq(iqMemInstsIssued);
221
222 iqMiscInstsIssued
223 .name(name() + ".iqMiscInstsIssued")
224 .desc("Number of miscellaneous instructions issued")
225 .prereq(iqMiscInstsIssued);
226
227 iqSquashedInstsIssued
228 .name(name() + ".iqSquashedInstsIssued")
229 .desc("Number of squashed instructions issued")
230 .prereq(iqSquashedInstsIssued);
231
232 iqSquashedInstsExamined
233 .name(name() + ".iqSquashedInstsExamined")
234 .desc("Number of squashed instructions iterated over during squash;"
235 " mainly for profiling")
236 .prereq(iqSquashedInstsExamined);
237
238 iqSquashedOperandsExamined
239 .name(name() + ".iqSquashedOperandsExamined")
240 .desc("Number of squashed operands that are examined and possibly "
241 "removed from graph")
242 .prereq(iqSquashedOperandsExamined);
243
244 iqSquashedNonSpecRemoved
245 .name(name() + ".iqSquashedNonSpecRemoved")
246 .desc("Number of squashed non-spec instructions that were removed")
247 .prereq(iqSquashedNonSpecRemoved);
248/*
249 queueResDist
250 .init(Num_OpClasses, 0, 99, 2)
251 .name(name() + ".IQ:residence:")
252 .desc("cycles from dispatch to issue")
253 .flags(total | pdf | cdf )
254 ;
255 for (int i = 0; i < Num_OpClasses; ++i) {
256 queueResDist.subname(i, opClassStrings[i]);
257 }
258*/
259 numIssuedDist
260 .init(0,totalWidth,1)
261 .name(name() + ".issued_per_cycle")
262 .desc("Number of insts issued each cycle")
263 .flags(pdf)
264 ;
265/*
266 dist_unissued
267 .init(Num_OpClasses+2)
268 .name(name() + ".unissued_cause")
269 .desc("Reason ready instruction not issued")
270 .flags(pdf | dist)
271 ;
272 for (int i=0; i < (Num_OpClasses + 2); ++i) {
273 dist_unissued.subname(i, unissued_names[i]);
274 }
275*/
276 statIssuedInstType
277 .init(numThreads,Enums::Num_OpClass)
278 .name(name() + ".FU_type")
279 .desc("Type of FU issued")
280 .flags(total | pdf | dist)
281 ;
282 statIssuedInstType.ysubnames(Enums::OpClassStrings);
283
284 //
285 // How long did instructions for a particular FU type wait prior to issue
286 //
287/*
288 issueDelayDist
289 .init(Num_OpClasses,0,99,2)
290 .name(name() + ".")
291 .desc("cycles from operands ready to issue")
292 .flags(pdf | cdf)
293 ;
294
295 for (int i=0; i<Num_OpClasses; ++i) {
296 std::stringstream subname;
297 subname << opClassStrings[i] << "_delay";
298 issueDelayDist.subname(i, subname.str());
299 }
300*/
301 issueRate
302 .name(name() + ".rate")
303 .desc("Inst issue rate")
304 .flags(total)
305 ;
306 issueRate = iqInstsIssued / cpu->numCycles;
307
308 statFuBusy
309 .init(Num_OpClasses)
310 .name(name() + ".fu_full")
311 .desc("attempts to use FU when none available")
312 .flags(pdf | dist)
313 ;
314 for (int i=0; i < Num_OpClasses; ++i) {
315 statFuBusy.subname(i, Enums::OpClassStrings[i]);
316 }
317
318 fuBusy
319 .init(numThreads)
320 .name(name() + ".fu_busy_cnt")
321 .desc("FU busy when requested")
322 .flags(total)
323 ;
324
325 fuBusyRate
326 .name(name() + ".fu_busy_rate")
327 .desc("FU busy rate (busy events/executed inst)")
328 .flags(total)
329 ;
330 fuBusyRate = fuBusy / iqInstsIssued;
331
332 for (ThreadID tid = 0; tid < numThreads; tid++) {
333 // Tell mem dependence unit to reg stats as well.
334 memDepUnit[tid].regStats();
335 }
336
337 intInstQueueReads
338 .name(name() + ".int_inst_queue_reads")
339 .desc("Number of integer instruction queue reads")
340 .flags(total);
341
342 intInstQueueWrites
343 .name(name() + ".int_inst_queue_writes")
344 .desc("Number of integer instruction queue writes")
345 .flags(total);
346
347 intInstQueueWakeupAccesses
348 .name(name() + ".int_inst_queue_wakeup_accesses")
349 .desc("Number of integer instruction queue wakeup accesses")
350 .flags(total);
351
352 fpInstQueueReads
353 .name(name() + ".fp_inst_queue_reads")
354 .desc("Number of floating instruction queue reads")
355 .flags(total);
356
357 fpInstQueueWrites
358 .name(name() + ".fp_inst_queue_writes")
359 .desc("Number of floating instruction queue writes")
360 .flags(total);
361
362 fpInstQueueWakeupQccesses
363 .name(name() + ".fp_inst_queue_wakeup_accesses")
364 .desc("Number of floating instruction queue wakeup accesses")
365 .flags(total);
366
367 intAluAccesses
368 .name(name() + ".int_alu_accesses")
369 .desc("Number of integer alu accesses")
370 .flags(total);
371
372 fpAluAccesses
373 .name(name() + ".fp_alu_accesses")
374 .desc("Number of floating point alu accesses")
375 .flags(total);
376
377}
378
379template <class Impl>
380void
381InstructionQueue<Impl>::resetState()
382{
383 //Initialize thread IQ counts
384 for (ThreadID tid = 0; tid <numThreads; tid++) {
385 count[tid] = 0;
386 instList[tid].clear();
387 }
388
389 // Initialize the number of free IQ entries.
390 freeEntries = numEntries;
391
392 // Note that in actuality, the registers corresponding to the logical
393 // registers start off as ready. However this doesn't matter for the
394 // IQ as the instruction should have been correctly told if those
395 // registers are ready in rename. Thus it can all be initialized as
396 // unready.
397 for (int i = 0; i < numPhysRegs; ++i) {
398 regScoreboard[i] = false;
399 }
400
401 for (ThreadID tid = 0; tid < numThreads; ++tid) {
402 squashedSeqNum[tid] = 0;
403 }
404
405 for (int i = 0; i < Num_OpClasses; ++i) {
406 while (!readyInsts[i].empty())
407 readyInsts[i].pop();
408 queueOnList[i] = false;
409 readyIt[i] = listOrder.end();
410 }
411 nonSpecInsts.clear();
412 listOrder.clear();
413 deferredMemInsts.clear();
414}
415
416template <class Impl>
417void
418InstructionQueue<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
419{
420 activeThreads = at_ptr;
421}
422
423template <class Impl>
424void
425InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr)
426{
427 issueToExecuteQueue = i2e_ptr;
428}
429
430template <class Impl>
431void
432InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
433{
434 timeBuffer = tb_ptr;
435
436 fromCommit = timeBuffer->getWire(-commitToIEWDelay);
437}
438
439template <class Impl>
440void
441InstructionQueue<Impl>::switchOut()
442{
443/*
444 if (!instList[0].empty() || (numEntries != freeEntries) ||
445 !readyInsts[0].empty() || !nonSpecInsts.empty() || !listOrder.empty()) {
446 dumpInsts();
447// assert(0);
448 }
449*/
450 resetState();
451 dependGraph.reset();
452 instsToExecute.clear();
453 switchedOut = true;
454 for (ThreadID tid = 0; tid < numThreads; ++tid) {
455 memDepUnit[tid].switchOut();
456 }
457}
458
459template <class Impl>
460void
461InstructionQueue<Impl>::takeOverFrom()
462{
463 switchedOut = false;
464}
465
466template <class Impl>
467int
468InstructionQueue<Impl>::entryAmount(ThreadID num_threads)
469{
470 if (iqPolicy == Partitioned) {
471 return numEntries / num_threads;
472 } else {
473 return 0;
474 }
475}
476
477
478template <class Impl>
479void
480InstructionQueue<Impl>::resetEntries()
481{
482 if (iqPolicy != Dynamic || numThreads > 1) {
483 int active_threads = activeThreads->size();
484
485 list<ThreadID>::iterator threads = activeThreads->begin();
486 list<ThreadID>::iterator end = activeThreads->end();
487
488 while (threads != end) {
489 ThreadID tid = *threads++;
490
491 if (iqPolicy == Partitioned) {
492 maxEntries[tid] = numEntries / active_threads;
493 } else if(iqPolicy == Threshold && active_threads == 1) {
494 maxEntries[tid] = numEntries;
495 }
496 }
497 }
498}
499
500template <class Impl>
501unsigned
502InstructionQueue<Impl>::numFreeEntries()
503{
504 return freeEntries;
505}
506
507template <class Impl>
508unsigned
509InstructionQueue<Impl>::numFreeEntries(ThreadID tid)
510{
511 return maxEntries[tid] - count[tid];
512}
513
514// Might want to do something more complex if it knows how many instructions
515// will be issued this cycle.
516template <class Impl>
517bool
518InstructionQueue<Impl>::isFull()
519{
520 if (freeEntries == 0) {
521 return(true);
522 } else {
523 return(false);
524 }
525}
526
527template <class Impl>
528bool
529InstructionQueue<Impl>::isFull(ThreadID tid)
530{
531 if (numFreeEntries(tid) == 0) {
532 return(true);
533 } else {
534 return(false);
535 }
536}
537
538template <class Impl>
539bool
540InstructionQueue<Impl>::hasReadyInsts()
541{
542 if (!listOrder.empty()) {
543 return true;
544 }
545
546 for (int i = 0; i < Num_OpClasses; ++i) {
547 if (!readyInsts[i].empty()) {
548 return true;
549 }
550 }
551
552 return false;
553}
554
555template <class Impl>
556void
557InstructionQueue<Impl>::insert(DynInstPtr &new_inst)
558{
559 new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
560 // Make sure the instruction is valid
561 assert(new_inst);
562
563 DPRINTF(IQ, "Adding instruction [sn:%lli] PC %s to the IQ.\n",
564 new_inst->seqNum, new_inst->pcState());
565
566 assert(freeEntries != 0);
567
568 instList[new_inst->threadNumber].push_back(new_inst);
569
570 --freeEntries;
571
572 new_inst->setInIQ();
573
574 // Look through its source registers (physical regs), and mark any
575 // dependencies.
576 addToDependents(new_inst);
577
578 // Have this instruction set itself as the producer of its destination
579 // register(s).
580 addToProducers(new_inst);
581
582 if (new_inst->isMemRef()) {
583 memDepUnit[new_inst->threadNumber].insert(new_inst);
584 } else {
585 addIfReady(new_inst);
586 }
587
588 ++iqInstsAdded;
589
590 count[new_inst->threadNumber]++;
591
592 assert(freeEntries == (numEntries - countInsts()));
593}
594
595template <class Impl>
596void
597InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst)
598{
599 // @todo: Clean up this code; can do it by setting inst as unable
600 // to issue, then calling normal insert on the inst.
601 new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
602
603 assert(new_inst);
604
605 nonSpecInsts[new_inst->seqNum] = new_inst;
606
607 DPRINTF(IQ, "Adding non-speculative instruction [sn:%lli] PC %s "
608 "to the IQ.\n",
609 new_inst->seqNum, new_inst->pcState());
610
611 assert(freeEntries != 0);
612
613 instList[new_inst->threadNumber].push_back(new_inst);
614
615 --freeEntries;
616
617 new_inst->setInIQ();
618
619 // Have this instruction set itself as the producer of its destination
620 // register(s).
621 addToProducers(new_inst);
622
623 // If it's a memory instruction, add it to the memory dependency
624 // unit.
625 if (new_inst->isMemRef()) {
626 memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst);
627 }
628
629 ++iqNonSpecInstsAdded;
630
631 count[new_inst->threadNumber]++;
632
633 assert(freeEntries == (numEntries - countInsts()));
634}
635
636template <class Impl>
637void
638InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst)
639{
640 memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst);
641
642 insertNonSpec(barr_inst);
643}
644
645template <class Impl>
646typename Impl::DynInstPtr
647InstructionQueue<Impl>::getInstToExecute()
648{
649 assert(!instsToExecute.empty());
650 DynInstPtr inst = instsToExecute.front();
651 instsToExecute.pop_front();
652 if (inst->isFloating()){
653 fpInstQueueReads++;
654 } else {
655 intInstQueueReads++;
656 }
657 return inst;
658}
659
660template <class Impl>
661void
662InstructionQueue<Impl>::addToOrderList(OpClass op_class)
663{
664 assert(!readyInsts[op_class].empty());
665
666 ListOrderEntry queue_entry;
667
668 queue_entry.queueType = op_class;
669
670 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
671
672 ListOrderIt list_it = listOrder.begin();
673 ListOrderIt list_end_it = listOrder.end();
674
675 while (list_it != list_end_it) {
676 if ((*list_it).oldestInst > queue_entry.oldestInst) {
677 break;
678 }
679
680 list_it++;
681 }
682
683 readyIt[op_class] = listOrder.insert(list_it, queue_entry);
684 queueOnList[op_class] = true;
685}
686
687template <class Impl>
688void
689InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it)
690{
691 // Get iterator of next item on the list
692 // Delete the original iterator
693 // Determine if the next item is either the end of the list or younger
694 // than the new instruction. If so, then add in a new iterator right here.
695 // If not, then move along.
696 ListOrderEntry queue_entry;
697 OpClass op_class = (*list_order_it).queueType;
698 ListOrderIt next_it = list_order_it;
699
700 ++next_it;
701
702 queue_entry.queueType = op_class;
703 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
704
705 while (next_it != listOrder.end() &&
706 (*next_it).oldestInst < queue_entry.oldestInst) {
707 ++next_it;
708 }
709
710 readyIt[op_class] = listOrder.insert(next_it, queue_entry);
711}
712
713template <class Impl>
714void
715InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx)
716{
717 DPRINTF(IQ, "Processing FU completion [sn:%lli]\n", inst->seqNum);
718 // The CPU could have been sleeping until this op completed (*extremely*
719 // long latency op). Wake it if it was. This may be overkill.
720 if (isSwitchedOut()) {
721 DPRINTF(IQ, "FU completion not processed, IQ is switched out [sn:%lli]\n",
722 inst->seqNum);
723 return;
724 }
725
726 iewStage->wakeCPU();
727
728 if (fu_idx > -1)
729 fuPool->freeUnitNextCycle(fu_idx);
730
731 // @todo: Ensure that these FU Completions happen at the beginning
732 // of a cycle, otherwise they could add too many instructions to
733 // the queue.
734 issueToExecuteQueue->access(-1)->size++;
735 instsToExecute.push_back(inst);
736}
737
738// @todo: Figure out a better way to remove the squashed items from the
739// lists. Checking the top item of each list to see if it's squashed
740// wastes time and forces jumps.
741template <class Impl>
742void
743InstructionQueue<Impl>::scheduleReadyInsts()
744{
745 DPRINTF(IQ, "Attempting to schedule ready instructions from "
746 "the IQ.\n");
747
748 IssueStruct *i2e_info = issueToExecuteQueue->access(0);
749
750 DynInstPtr deferred_mem_inst;
751 int total_deferred_mem_issued = 0;
752 while (total_deferred_mem_issued < totalWidth &&
753 (deferred_mem_inst = getDeferredMemInstToExecute()) != 0) {
754 issueToExecuteQueue->access(0)->size++;
755 instsToExecute.push_back(deferred_mem_inst);
756 total_deferred_mem_issued++;
757 }
758
759 // Have iterator to head of the list
760 // While I haven't exceeded bandwidth or reached the end of the list,
761 // Try to get a FU that can do what this op needs.
762 // If successful, change the oldestInst to the new top of the list, put
763 // the queue in the proper place in the list.
764 // Increment the iterator.
765 // This will avoid trying to schedule a certain op class if there are no
766 // FUs that handle it.
767 ListOrderIt order_it = listOrder.begin();
768 ListOrderIt order_end_it = listOrder.end();
769 int total_issued = 0;
770
771 while (total_issued < (totalWidth - total_deferred_mem_issued) &&
772 iewStage->canIssue() &&
773 order_it != order_end_it) {
774 OpClass op_class = (*order_it).queueType;
775
776 assert(!readyInsts[op_class].empty());
777
778 DynInstPtr issuing_inst = readyInsts[op_class].top();
779
780 issuing_inst->isFloating() ? fpInstQueueReads++ : intInstQueueReads++;
781
782 assert(issuing_inst->seqNum == (*order_it).oldestInst);
783
784 if (issuing_inst->isSquashed()) {
785 readyInsts[op_class].pop();
786
787 if (!readyInsts[op_class].empty()) {
788 moveToYoungerInst(order_it);
789 } else {
790 readyIt[op_class] = listOrder.end();
791 queueOnList[op_class] = false;
792 }
793
794 listOrder.erase(order_it++);
795
796 ++iqSquashedInstsIssued;
797
798 continue;
799 }
800
801 int idx = -2;
802 int op_latency = 1;
803 ThreadID tid = issuing_inst->threadNumber;
804
805 if (op_class != No_OpClass) {
806 idx = fuPool->getUnit(op_class);
807 issuing_inst->isFloating() ? fpAluAccesses++ : intAluAccesses++;
808 if (idx > -1) {
809 op_latency = fuPool->getOpLatency(op_class);
810 }
811 }
812
813 // If we have an instruction that doesn't require a FU, or a
814 // valid FU, then schedule for execution.
815 if (idx == -2 || idx != -1) {
816 if (op_latency == 1) {
817 i2e_info->size++;
818 instsToExecute.push_back(issuing_inst);
819
820 // Add the FU onto the list of FU's to be freed next
821 // cycle if we used one.
822 if (idx >= 0)
823 fuPool->freeUnitNextCycle(idx);
824 } else {
825 int issue_latency = fuPool->getIssueLatency(op_class);
826 // Generate completion event for the FU
827 FUCompletion *execution = new FUCompletion(issuing_inst,
828 idx, this);
829
830 cpu->schedule(execution, curTick() + cpu->ticks(op_latency - 1));
831
832 // @todo: Enforce that issue_latency == 1 or op_latency
833 if (issue_latency > 1) {
834 // If FU isn't pipelined, then it must be freed
835 // upon the execution completing.
836 execution->setFreeFU();
837 } else {
838 // Add the FU onto the list of FU's to be freed next cycle.
839 fuPool->freeUnitNextCycle(idx);
840 }
841 }
842
843 DPRINTF(IQ, "Thread %i: Issuing instruction PC %s "
844 "[sn:%lli]\n",
845 tid, issuing_inst->pcState(),
846 issuing_inst->seqNum);
847
848 readyInsts[op_class].pop();
849
850 if (!readyInsts[op_class].empty()) {
851 moveToYoungerInst(order_it);
852 } else {
853 readyIt[op_class] = listOrder.end();
854 queueOnList[op_class] = false;
855 }
856
857 issuing_inst->setIssued();
858 ++total_issued;
859
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#include <limits>
45#include <vector>
46
47#include "cpu/o3/fu_pool.hh"
48#include "cpu/o3/inst_queue.hh"
49#include "debug/IQ.hh"
50#include "enums/OpClass.hh"
51#include "params/DerivO3CPU.hh"
52#include "sim/core.hh"
53
54using namespace std;
55
56template <class Impl>
57InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst,
58 int fu_idx, InstructionQueue<Impl> *iq_ptr)
59 : Event(Stat_Event_Pri), inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr),
60 freeFU(false)
61{
62 this->setFlags(Event::AutoDelete);
63}
64
65template <class Impl>
66void
67InstructionQueue<Impl>::FUCompletion::process()
68{
69 iqPtr->processFUCompletion(inst, freeFU ? fuIdx : -1);
70 inst = NULL;
71}
72
73
74template <class Impl>
75const char *
76InstructionQueue<Impl>::FUCompletion::description() const
77{
78 return "Functional unit completion";
79}
80
81template <class Impl>
82InstructionQueue<Impl>::InstructionQueue(O3CPU *cpu_ptr, IEW *iew_ptr,
83 DerivO3CPUParams *params)
84 : cpu(cpu_ptr),
85 iewStage(iew_ptr),
86 fuPool(params->fuPool),
87 numEntries(params->numIQEntries),
88 totalWidth(params->issueWidth),
89 numPhysIntRegs(params->numPhysIntRegs),
90 numPhysFloatRegs(params->numPhysFloatRegs),
91 commitToIEWDelay(params->commitToIEWDelay)
92{
93 assert(fuPool);
94
95 switchedOut = false;
96
97 numThreads = params->numThreads;
98
99 // Set the number of physical registers as the number of int + float
100 numPhysRegs = numPhysIntRegs + numPhysFloatRegs;
101
102 //Create an entry for each physical register within the
103 //dependency graph.
104 dependGraph.resize(numPhysRegs);
105
106 // Resize the register scoreboard.
107 regScoreboard.resize(numPhysRegs);
108
109 //Initialize Mem Dependence Units
110 for (ThreadID tid = 0; tid < numThreads; tid++) {
111 memDepUnit[tid].init(params, tid);
112 memDepUnit[tid].setIQ(this);
113 }
114
115 resetState();
116
117 std::string policy = params->smtIQPolicy;
118
119 //Convert string to lowercase
120 std::transform(policy.begin(), policy.end(), policy.begin(),
121 (int(*)(int)) tolower);
122
123 //Figure out resource sharing policy
124 if (policy == "dynamic") {
125 iqPolicy = Dynamic;
126
127 //Set Max Entries to Total ROB Capacity
128 for (ThreadID tid = 0; tid < numThreads; tid++) {
129 maxEntries[tid] = numEntries;
130 }
131
132 } else if (policy == "partitioned") {
133 iqPolicy = Partitioned;
134
135 //@todo:make work if part_amt doesnt divide evenly.
136 int part_amt = numEntries / numThreads;
137
138 //Divide ROB up evenly
139 for (ThreadID tid = 0; tid < numThreads; tid++) {
140 maxEntries[tid] = part_amt;
141 }
142
143 DPRINTF(IQ, "IQ sharing policy set to Partitioned:"
144 "%i entries per thread.\n",part_amt);
145 } else if (policy == "threshold") {
146 iqPolicy = Threshold;
147
148 double threshold = (double)params->smtIQThreshold / 100;
149
150 int thresholdIQ = (int)((double)threshold * numEntries);
151
152 //Divide up by threshold amount
153 for (ThreadID tid = 0; tid < numThreads; tid++) {
154 maxEntries[tid] = thresholdIQ;
155 }
156
157 DPRINTF(IQ, "IQ sharing policy set to Threshold:"
158 "%i entries per thread.\n",thresholdIQ);
159 } else {
160 assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic,"
161 "Partitioned, Threshold}");
162 }
163}
164
165template <class Impl>
166InstructionQueue<Impl>::~InstructionQueue()
167{
168 dependGraph.reset();
169#ifdef DEBUG
170 cprintf("Nodes traversed: %i, removed: %i\n",
171 dependGraph.nodesTraversed, dependGraph.nodesRemoved);
172#endif
173}
174
175template <class Impl>
176std::string
177InstructionQueue<Impl>::name() const
178{
179 return cpu->name() + ".iq";
180}
181
182template <class Impl>
183void
184InstructionQueue<Impl>::regStats()
185{
186 using namespace Stats;
187 iqInstsAdded
188 .name(name() + ".iqInstsAdded")
189 .desc("Number of instructions added to the IQ (excludes non-spec)")
190 .prereq(iqInstsAdded);
191
192 iqNonSpecInstsAdded
193 .name(name() + ".iqNonSpecInstsAdded")
194 .desc("Number of non-speculative instructions added to the IQ")
195 .prereq(iqNonSpecInstsAdded);
196
197 iqInstsIssued
198 .name(name() + ".iqInstsIssued")
199 .desc("Number of instructions issued")
200 .prereq(iqInstsIssued);
201
202 iqIntInstsIssued
203 .name(name() + ".iqIntInstsIssued")
204 .desc("Number of integer instructions issued")
205 .prereq(iqIntInstsIssued);
206
207 iqFloatInstsIssued
208 .name(name() + ".iqFloatInstsIssued")
209 .desc("Number of float instructions issued")
210 .prereq(iqFloatInstsIssued);
211
212 iqBranchInstsIssued
213 .name(name() + ".iqBranchInstsIssued")
214 .desc("Number of branch instructions issued")
215 .prereq(iqBranchInstsIssued);
216
217 iqMemInstsIssued
218 .name(name() + ".iqMemInstsIssued")
219 .desc("Number of memory instructions issued")
220 .prereq(iqMemInstsIssued);
221
222 iqMiscInstsIssued
223 .name(name() + ".iqMiscInstsIssued")
224 .desc("Number of miscellaneous instructions issued")
225 .prereq(iqMiscInstsIssued);
226
227 iqSquashedInstsIssued
228 .name(name() + ".iqSquashedInstsIssued")
229 .desc("Number of squashed instructions issued")
230 .prereq(iqSquashedInstsIssued);
231
232 iqSquashedInstsExamined
233 .name(name() + ".iqSquashedInstsExamined")
234 .desc("Number of squashed instructions iterated over during squash;"
235 " mainly for profiling")
236 .prereq(iqSquashedInstsExamined);
237
238 iqSquashedOperandsExamined
239 .name(name() + ".iqSquashedOperandsExamined")
240 .desc("Number of squashed operands that are examined and possibly "
241 "removed from graph")
242 .prereq(iqSquashedOperandsExamined);
243
244 iqSquashedNonSpecRemoved
245 .name(name() + ".iqSquashedNonSpecRemoved")
246 .desc("Number of squashed non-spec instructions that were removed")
247 .prereq(iqSquashedNonSpecRemoved);
248/*
249 queueResDist
250 .init(Num_OpClasses, 0, 99, 2)
251 .name(name() + ".IQ:residence:")
252 .desc("cycles from dispatch to issue")
253 .flags(total | pdf | cdf )
254 ;
255 for (int i = 0; i < Num_OpClasses; ++i) {
256 queueResDist.subname(i, opClassStrings[i]);
257 }
258*/
259 numIssuedDist
260 .init(0,totalWidth,1)
261 .name(name() + ".issued_per_cycle")
262 .desc("Number of insts issued each cycle")
263 .flags(pdf)
264 ;
265/*
266 dist_unissued
267 .init(Num_OpClasses+2)
268 .name(name() + ".unissued_cause")
269 .desc("Reason ready instruction not issued")
270 .flags(pdf | dist)
271 ;
272 for (int i=0; i < (Num_OpClasses + 2); ++i) {
273 dist_unissued.subname(i, unissued_names[i]);
274 }
275*/
276 statIssuedInstType
277 .init(numThreads,Enums::Num_OpClass)
278 .name(name() + ".FU_type")
279 .desc("Type of FU issued")
280 .flags(total | pdf | dist)
281 ;
282 statIssuedInstType.ysubnames(Enums::OpClassStrings);
283
284 //
285 // How long did instructions for a particular FU type wait prior to issue
286 //
287/*
288 issueDelayDist
289 .init(Num_OpClasses,0,99,2)
290 .name(name() + ".")
291 .desc("cycles from operands ready to issue")
292 .flags(pdf | cdf)
293 ;
294
295 for (int i=0; i<Num_OpClasses; ++i) {
296 std::stringstream subname;
297 subname << opClassStrings[i] << "_delay";
298 issueDelayDist.subname(i, subname.str());
299 }
300*/
301 issueRate
302 .name(name() + ".rate")
303 .desc("Inst issue rate")
304 .flags(total)
305 ;
306 issueRate = iqInstsIssued / cpu->numCycles;
307
308 statFuBusy
309 .init(Num_OpClasses)
310 .name(name() + ".fu_full")
311 .desc("attempts to use FU when none available")
312 .flags(pdf | dist)
313 ;
314 for (int i=0; i < Num_OpClasses; ++i) {
315 statFuBusy.subname(i, Enums::OpClassStrings[i]);
316 }
317
318 fuBusy
319 .init(numThreads)
320 .name(name() + ".fu_busy_cnt")
321 .desc("FU busy when requested")
322 .flags(total)
323 ;
324
325 fuBusyRate
326 .name(name() + ".fu_busy_rate")
327 .desc("FU busy rate (busy events/executed inst)")
328 .flags(total)
329 ;
330 fuBusyRate = fuBusy / iqInstsIssued;
331
332 for (ThreadID tid = 0; tid < numThreads; tid++) {
333 // Tell mem dependence unit to reg stats as well.
334 memDepUnit[tid].regStats();
335 }
336
337 intInstQueueReads
338 .name(name() + ".int_inst_queue_reads")
339 .desc("Number of integer instruction queue reads")
340 .flags(total);
341
342 intInstQueueWrites
343 .name(name() + ".int_inst_queue_writes")
344 .desc("Number of integer instruction queue writes")
345 .flags(total);
346
347 intInstQueueWakeupAccesses
348 .name(name() + ".int_inst_queue_wakeup_accesses")
349 .desc("Number of integer instruction queue wakeup accesses")
350 .flags(total);
351
352 fpInstQueueReads
353 .name(name() + ".fp_inst_queue_reads")
354 .desc("Number of floating instruction queue reads")
355 .flags(total);
356
357 fpInstQueueWrites
358 .name(name() + ".fp_inst_queue_writes")
359 .desc("Number of floating instruction queue writes")
360 .flags(total);
361
362 fpInstQueueWakeupQccesses
363 .name(name() + ".fp_inst_queue_wakeup_accesses")
364 .desc("Number of floating instruction queue wakeup accesses")
365 .flags(total);
366
367 intAluAccesses
368 .name(name() + ".int_alu_accesses")
369 .desc("Number of integer alu accesses")
370 .flags(total);
371
372 fpAluAccesses
373 .name(name() + ".fp_alu_accesses")
374 .desc("Number of floating point alu accesses")
375 .flags(total);
376
377}
378
379template <class Impl>
380void
381InstructionQueue<Impl>::resetState()
382{
383 //Initialize thread IQ counts
384 for (ThreadID tid = 0; tid <numThreads; tid++) {
385 count[tid] = 0;
386 instList[tid].clear();
387 }
388
389 // Initialize the number of free IQ entries.
390 freeEntries = numEntries;
391
392 // Note that in actuality, the registers corresponding to the logical
393 // registers start off as ready. However this doesn't matter for the
394 // IQ as the instruction should have been correctly told if those
395 // registers are ready in rename. Thus it can all be initialized as
396 // unready.
397 for (int i = 0; i < numPhysRegs; ++i) {
398 regScoreboard[i] = false;
399 }
400
401 for (ThreadID tid = 0; tid < numThreads; ++tid) {
402 squashedSeqNum[tid] = 0;
403 }
404
405 for (int i = 0; i < Num_OpClasses; ++i) {
406 while (!readyInsts[i].empty())
407 readyInsts[i].pop();
408 queueOnList[i] = false;
409 readyIt[i] = listOrder.end();
410 }
411 nonSpecInsts.clear();
412 listOrder.clear();
413 deferredMemInsts.clear();
414}
415
416template <class Impl>
417void
418InstructionQueue<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
419{
420 activeThreads = at_ptr;
421}
422
423template <class Impl>
424void
425InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr)
426{
427 issueToExecuteQueue = i2e_ptr;
428}
429
430template <class Impl>
431void
432InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
433{
434 timeBuffer = tb_ptr;
435
436 fromCommit = timeBuffer->getWire(-commitToIEWDelay);
437}
438
439template <class Impl>
440void
441InstructionQueue<Impl>::switchOut()
442{
443/*
444 if (!instList[0].empty() || (numEntries != freeEntries) ||
445 !readyInsts[0].empty() || !nonSpecInsts.empty() || !listOrder.empty()) {
446 dumpInsts();
447// assert(0);
448 }
449*/
450 resetState();
451 dependGraph.reset();
452 instsToExecute.clear();
453 switchedOut = true;
454 for (ThreadID tid = 0; tid < numThreads; ++tid) {
455 memDepUnit[tid].switchOut();
456 }
457}
458
459template <class Impl>
460void
461InstructionQueue<Impl>::takeOverFrom()
462{
463 switchedOut = false;
464}
465
466template <class Impl>
467int
468InstructionQueue<Impl>::entryAmount(ThreadID num_threads)
469{
470 if (iqPolicy == Partitioned) {
471 return numEntries / num_threads;
472 } else {
473 return 0;
474 }
475}
476
477
478template <class Impl>
479void
480InstructionQueue<Impl>::resetEntries()
481{
482 if (iqPolicy != Dynamic || numThreads > 1) {
483 int active_threads = activeThreads->size();
484
485 list<ThreadID>::iterator threads = activeThreads->begin();
486 list<ThreadID>::iterator end = activeThreads->end();
487
488 while (threads != end) {
489 ThreadID tid = *threads++;
490
491 if (iqPolicy == Partitioned) {
492 maxEntries[tid] = numEntries / active_threads;
493 } else if(iqPolicy == Threshold && active_threads == 1) {
494 maxEntries[tid] = numEntries;
495 }
496 }
497 }
498}
499
500template <class Impl>
501unsigned
502InstructionQueue<Impl>::numFreeEntries()
503{
504 return freeEntries;
505}
506
507template <class Impl>
508unsigned
509InstructionQueue<Impl>::numFreeEntries(ThreadID tid)
510{
511 return maxEntries[tid] - count[tid];
512}
513
514// Might want to do something more complex if it knows how many instructions
515// will be issued this cycle.
516template <class Impl>
517bool
518InstructionQueue<Impl>::isFull()
519{
520 if (freeEntries == 0) {
521 return(true);
522 } else {
523 return(false);
524 }
525}
526
527template <class Impl>
528bool
529InstructionQueue<Impl>::isFull(ThreadID tid)
530{
531 if (numFreeEntries(tid) == 0) {
532 return(true);
533 } else {
534 return(false);
535 }
536}
537
538template <class Impl>
539bool
540InstructionQueue<Impl>::hasReadyInsts()
541{
542 if (!listOrder.empty()) {
543 return true;
544 }
545
546 for (int i = 0; i < Num_OpClasses; ++i) {
547 if (!readyInsts[i].empty()) {
548 return true;
549 }
550 }
551
552 return false;
553}
554
555template <class Impl>
556void
557InstructionQueue<Impl>::insert(DynInstPtr &new_inst)
558{
559 new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
560 // Make sure the instruction is valid
561 assert(new_inst);
562
563 DPRINTF(IQ, "Adding instruction [sn:%lli] PC %s to the IQ.\n",
564 new_inst->seqNum, new_inst->pcState());
565
566 assert(freeEntries != 0);
567
568 instList[new_inst->threadNumber].push_back(new_inst);
569
570 --freeEntries;
571
572 new_inst->setInIQ();
573
574 // Look through its source registers (physical regs), and mark any
575 // dependencies.
576 addToDependents(new_inst);
577
578 // Have this instruction set itself as the producer of its destination
579 // register(s).
580 addToProducers(new_inst);
581
582 if (new_inst->isMemRef()) {
583 memDepUnit[new_inst->threadNumber].insert(new_inst);
584 } else {
585 addIfReady(new_inst);
586 }
587
588 ++iqInstsAdded;
589
590 count[new_inst->threadNumber]++;
591
592 assert(freeEntries == (numEntries - countInsts()));
593}
594
595template <class Impl>
596void
597InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst)
598{
599 // @todo: Clean up this code; can do it by setting inst as unable
600 // to issue, then calling normal insert on the inst.
601 new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
602
603 assert(new_inst);
604
605 nonSpecInsts[new_inst->seqNum] = new_inst;
606
607 DPRINTF(IQ, "Adding non-speculative instruction [sn:%lli] PC %s "
608 "to the IQ.\n",
609 new_inst->seqNum, new_inst->pcState());
610
611 assert(freeEntries != 0);
612
613 instList[new_inst->threadNumber].push_back(new_inst);
614
615 --freeEntries;
616
617 new_inst->setInIQ();
618
619 // Have this instruction set itself as the producer of its destination
620 // register(s).
621 addToProducers(new_inst);
622
623 // If it's a memory instruction, add it to the memory dependency
624 // unit.
625 if (new_inst->isMemRef()) {
626 memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst);
627 }
628
629 ++iqNonSpecInstsAdded;
630
631 count[new_inst->threadNumber]++;
632
633 assert(freeEntries == (numEntries - countInsts()));
634}
635
636template <class Impl>
637void
638InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst)
639{
640 memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst);
641
642 insertNonSpec(barr_inst);
643}
644
645template <class Impl>
646typename Impl::DynInstPtr
647InstructionQueue<Impl>::getInstToExecute()
648{
649 assert(!instsToExecute.empty());
650 DynInstPtr inst = instsToExecute.front();
651 instsToExecute.pop_front();
652 if (inst->isFloating()){
653 fpInstQueueReads++;
654 } else {
655 intInstQueueReads++;
656 }
657 return inst;
658}
659
660template <class Impl>
661void
662InstructionQueue<Impl>::addToOrderList(OpClass op_class)
663{
664 assert(!readyInsts[op_class].empty());
665
666 ListOrderEntry queue_entry;
667
668 queue_entry.queueType = op_class;
669
670 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
671
672 ListOrderIt list_it = listOrder.begin();
673 ListOrderIt list_end_it = listOrder.end();
674
675 while (list_it != list_end_it) {
676 if ((*list_it).oldestInst > queue_entry.oldestInst) {
677 break;
678 }
679
680 list_it++;
681 }
682
683 readyIt[op_class] = listOrder.insert(list_it, queue_entry);
684 queueOnList[op_class] = true;
685}
686
687template <class Impl>
688void
689InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it)
690{
691 // Get iterator of next item on the list
692 // Delete the original iterator
693 // Determine if the next item is either the end of the list or younger
694 // than the new instruction. If so, then add in a new iterator right here.
695 // If not, then move along.
696 ListOrderEntry queue_entry;
697 OpClass op_class = (*list_order_it).queueType;
698 ListOrderIt next_it = list_order_it;
699
700 ++next_it;
701
702 queue_entry.queueType = op_class;
703 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
704
705 while (next_it != listOrder.end() &&
706 (*next_it).oldestInst < queue_entry.oldestInst) {
707 ++next_it;
708 }
709
710 readyIt[op_class] = listOrder.insert(next_it, queue_entry);
711}
712
713template <class Impl>
714void
715InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx)
716{
717 DPRINTF(IQ, "Processing FU completion [sn:%lli]\n", inst->seqNum);
718 // The CPU could have been sleeping until this op completed (*extremely*
719 // long latency op). Wake it if it was. This may be overkill.
720 if (isSwitchedOut()) {
721 DPRINTF(IQ, "FU completion not processed, IQ is switched out [sn:%lli]\n",
722 inst->seqNum);
723 return;
724 }
725
726 iewStage->wakeCPU();
727
728 if (fu_idx > -1)
729 fuPool->freeUnitNextCycle(fu_idx);
730
731 // @todo: Ensure that these FU Completions happen at the beginning
732 // of a cycle, otherwise they could add too many instructions to
733 // the queue.
734 issueToExecuteQueue->access(-1)->size++;
735 instsToExecute.push_back(inst);
736}
737
738// @todo: Figure out a better way to remove the squashed items from the
739// lists. Checking the top item of each list to see if it's squashed
740// wastes time and forces jumps.
741template <class Impl>
742void
743InstructionQueue<Impl>::scheduleReadyInsts()
744{
745 DPRINTF(IQ, "Attempting to schedule ready instructions from "
746 "the IQ.\n");
747
748 IssueStruct *i2e_info = issueToExecuteQueue->access(0);
749
750 DynInstPtr deferred_mem_inst;
751 int total_deferred_mem_issued = 0;
752 while (total_deferred_mem_issued < totalWidth &&
753 (deferred_mem_inst = getDeferredMemInstToExecute()) != 0) {
754 issueToExecuteQueue->access(0)->size++;
755 instsToExecute.push_back(deferred_mem_inst);
756 total_deferred_mem_issued++;
757 }
758
759 // Have iterator to head of the list
760 // While I haven't exceeded bandwidth or reached the end of the list,
761 // Try to get a FU that can do what this op needs.
762 // If successful, change the oldestInst to the new top of the list, put
763 // the queue in the proper place in the list.
764 // Increment the iterator.
765 // This will avoid trying to schedule a certain op class if there are no
766 // FUs that handle it.
767 ListOrderIt order_it = listOrder.begin();
768 ListOrderIt order_end_it = listOrder.end();
769 int total_issued = 0;
770
771 while (total_issued < (totalWidth - total_deferred_mem_issued) &&
772 iewStage->canIssue() &&
773 order_it != order_end_it) {
774 OpClass op_class = (*order_it).queueType;
775
776 assert(!readyInsts[op_class].empty());
777
778 DynInstPtr issuing_inst = readyInsts[op_class].top();
779
780 issuing_inst->isFloating() ? fpInstQueueReads++ : intInstQueueReads++;
781
782 assert(issuing_inst->seqNum == (*order_it).oldestInst);
783
784 if (issuing_inst->isSquashed()) {
785 readyInsts[op_class].pop();
786
787 if (!readyInsts[op_class].empty()) {
788 moveToYoungerInst(order_it);
789 } else {
790 readyIt[op_class] = listOrder.end();
791 queueOnList[op_class] = false;
792 }
793
794 listOrder.erase(order_it++);
795
796 ++iqSquashedInstsIssued;
797
798 continue;
799 }
800
801 int idx = -2;
802 int op_latency = 1;
803 ThreadID tid = issuing_inst->threadNumber;
804
805 if (op_class != No_OpClass) {
806 idx = fuPool->getUnit(op_class);
807 issuing_inst->isFloating() ? fpAluAccesses++ : intAluAccesses++;
808 if (idx > -1) {
809 op_latency = fuPool->getOpLatency(op_class);
810 }
811 }
812
813 // If we have an instruction that doesn't require a FU, or a
814 // valid FU, then schedule for execution.
815 if (idx == -2 || idx != -1) {
816 if (op_latency == 1) {
817 i2e_info->size++;
818 instsToExecute.push_back(issuing_inst);
819
820 // Add the FU onto the list of FU's to be freed next
821 // cycle if we used one.
822 if (idx >= 0)
823 fuPool->freeUnitNextCycle(idx);
824 } else {
825 int issue_latency = fuPool->getIssueLatency(op_class);
826 // Generate completion event for the FU
827 FUCompletion *execution = new FUCompletion(issuing_inst,
828 idx, this);
829
830 cpu->schedule(execution, curTick() + cpu->ticks(op_latency - 1));
831
832 // @todo: Enforce that issue_latency == 1 or op_latency
833 if (issue_latency > 1) {
834 // If FU isn't pipelined, then it must be freed
835 // upon the execution completing.
836 execution->setFreeFU();
837 } else {
838 // Add the FU onto the list of FU's to be freed next cycle.
839 fuPool->freeUnitNextCycle(idx);
840 }
841 }
842
843 DPRINTF(IQ, "Thread %i: Issuing instruction PC %s "
844 "[sn:%lli]\n",
845 tid, issuing_inst->pcState(),
846 issuing_inst->seqNum);
847
848 readyInsts[op_class].pop();
849
850 if (!readyInsts[op_class].empty()) {
851 moveToYoungerInst(order_it);
852 } else {
853 readyIt[op_class] = listOrder.end();
854 queueOnList[op_class] = false;
855 }
856
857 issuing_inst->setIssued();
858 ++total_issued;
859
860#if TRACING_ON
861 issuing_inst->issueTick = curTick();
862#endif
863
860 if (!issuing_inst->isMemRef()) {
861 // Memory instructions can not be freed from the IQ until they
862 // complete.
863 ++freeEntries;
864 count[tid]--;
865 issuing_inst->clearInIQ();
866 } else {
867 memDepUnit[tid].issue(issuing_inst);
868 }
869
870 listOrder.erase(order_it++);
871 statIssuedInstType[tid][op_class]++;
872 iewStage->incrWb(issuing_inst->seqNum);
873 } else {
874 statFuBusy[op_class]++;
875 fuBusy[tid]++;
876 ++order_it;
877 }
878 }
879
880 numIssuedDist.sample(total_issued);
881 iqInstsIssued+= total_issued;
882
883 // If we issued any instructions, tell the CPU we had activity.
884 // @todo If the way deferred memory instructions are handeled due to
885 // translation changes then the deferredMemInsts condition should be removed
886 // from the code below.
887 if (total_issued || total_deferred_mem_issued || deferredMemInsts.size()) {
888 cpu->activityThisCycle();
889 } else {
890 DPRINTF(IQ, "Not able to schedule any instructions.\n");
891 }
892}
893
894template <class Impl>
895void
896InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst)
897{
898 DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready "
899 "to execute.\n", inst);
900
901 NonSpecMapIt inst_it = nonSpecInsts.find(inst);
902
903 assert(inst_it != nonSpecInsts.end());
904
905 ThreadID tid = (*inst_it).second->threadNumber;
906
907 (*inst_it).second->setAtCommit();
908
909 (*inst_it).second->setCanIssue();
910
911 if (!(*inst_it).second->isMemRef()) {
912 addIfReady((*inst_it).second);
913 } else {
914 memDepUnit[tid].nonSpecInstReady((*inst_it).second);
915 }
916
917 (*inst_it).second = NULL;
918
919 nonSpecInsts.erase(inst_it);
920}
921
922template <class Impl>
923void
924InstructionQueue<Impl>::commit(const InstSeqNum &inst, ThreadID tid)
925{
926 DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n",
927 tid,inst);
928
929 ListIt iq_it = instList[tid].begin();
930
931 while (iq_it != instList[tid].end() &&
932 (*iq_it)->seqNum <= inst) {
933 ++iq_it;
934 instList[tid].pop_front();
935 }
936
937 assert(freeEntries == (numEntries - countInsts()));
938}
939
940template <class Impl>
941int
942InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst)
943{
944 int dependents = 0;
945
946 // The instruction queue here takes care of both floating and int ops
947 if (completed_inst->isFloating()) {
948 fpInstQueueWakeupQccesses++;
949 } else {
950 intInstQueueWakeupAccesses++;
951 }
952
953 DPRINTF(IQ, "Waking dependents of completed instruction.\n");
954
955 assert(!completed_inst->isSquashed());
956
957 // Tell the memory dependence unit to wake any dependents on this
958 // instruction if it is a memory instruction. Also complete the memory
959 // instruction at this point since we know it executed without issues.
960 // @todo: Might want to rename "completeMemInst" to something that
961 // indicates that it won't need to be replayed, and call this
962 // earlier. Might not be a big deal.
963 if (completed_inst->isMemRef()) {
964 memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst);
965 completeMemInst(completed_inst);
966 } else if (completed_inst->isMemBarrier() ||
967 completed_inst->isWriteBarrier()) {
968 memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst);
969 }
970
971 for (int dest_reg_idx = 0;
972 dest_reg_idx < completed_inst->numDestRegs();
973 dest_reg_idx++)
974 {
975 PhysRegIndex dest_reg =
976 completed_inst->renamedDestRegIdx(dest_reg_idx);
977
978 // Special case of uniq or control registers. They are not
979 // handled by the IQ and thus have no dependency graph entry.
980 // @todo Figure out a cleaner way to handle this.
981 if (dest_reg >= numPhysRegs) {
982 DPRINTF(IQ, "dest_reg :%d, numPhysRegs: %d\n", dest_reg,
983 numPhysRegs);
984 continue;
985 }
986
987 DPRINTF(IQ, "Waking any dependents on register %i.\n",
988 (int) dest_reg);
989
990 //Go through the dependency chain, marking the registers as
991 //ready within the waiting instructions.
992 DynInstPtr dep_inst = dependGraph.pop(dest_reg);
993
994 while (dep_inst) {
995 DPRINTF(IQ, "Waking up a dependent instruction, [sn:%lli] "
996 "PC %s.\n", dep_inst->seqNum, dep_inst->pcState());
997
998 // Might want to give more information to the instruction
999 // so that it knows which of its source registers is
1000 // ready. However that would mean that the dependency
1001 // graph entries would need to hold the src_reg_idx.
1002 dep_inst->markSrcRegReady();
1003
1004 addIfReady(dep_inst);
1005
1006 dep_inst = dependGraph.pop(dest_reg);
1007
1008 ++dependents;
1009 }
1010
1011 // Reset the head node now that all of its dependents have
1012 // been woken up.
1013 assert(dependGraph.empty(dest_reg));
1014 dependGraph.clearInst(dest_reg);
1015
1016 // Mark the scoreboard as having that register ready.
1017 regScoreboard[dest_reg] = true;
1018 }
1019 return dependents;
1020}
1021
1022template <class Impl>
1023void
1024InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst)
1025{
1026 OpClass op_class = ready_inst->opClass();
1027
1028 readyInsts[op_class].push(ready_inst);
1029
1030 // Will need to reorder the list if either a queue is not on the list,
1031 // or it has an older instruction than last time.
1032 if (!queueOnList[op_class]) {
1033 addToOrderList(op_class);
1034 } else if (readyInsts[op_class].top()->seqNum <
1035 (*readyIt[op_class]).oldestInst) {
1036 listOrder.erase(readyIt[op_class]);
1037 addToOrderList(op_class);
1038 }
1039
1040 DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
1041 "the ready list, PC %s opclass:%i [sn:%lli].\n",
1042 ready_inst->pcState(), op_class, ready_inst->seqNum);
1043}
1044
1045template <class Impl>
1046void
1047InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst)
1048{
1049 DPRINTF(IQ, "Rescheduling mem inst [sn:%lli]\n", resched_inst->seqNum);
1050
1051 // Reset DTB translation state
1052 resched_inst->translationStarted = false;
1053 resched_inst->translationCompleted = false;
1054
1055 resched_inst->clearCanIssue();
1056 memDepUnit[resched_inst->threadNumber].reschedule(resched_inst);
1057}
1058
1059template <class Impl>
1060void
1061InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst)
1062{
1063 memDepUnit[replay_inst->threadNumber].replay(replay_inst);
1064}
1065
1066template <class Impl>
1067void
1068InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst)
1069{
1070 ThreadID tid = completed_inst->threadNumber;
1071
1072 DPRINTF(IQ, "Completing mem instruction PC: %s [sn:%lli]\n",
1073 completed_inst->pcState(), completed_inst->seqNum);
1074
1075 ++freeEntries;
1076
1077 completed_inst->memOpDone = true;
1078
1079 memDepUnit[tid].completed(completed_inst);
1080 count[tid]--;
1081}
1082
1083template <class Impl>
1084void
1085InstructionQueue<Impl>::deferMemInst(DynInstPtr &deferred_inst)
1086{
1087 deferredMemInsts.push_back(deferred_inst);
1088}
1089
1090template <class Impl>
1091typename Impl::DynInstPtr
1092InstructionQueue<Impl>::getDeferredMemInstToExecute()
1093{
1094 for (ListIt it = deferredMemInsts.begin(); it != deferredMemInsts.end();
1095 ++it) {
1096 if ((*it)->translationCompleted) {
1097 DynInstPtr ret = *it;
1098 deferredMemInsts.erase(it);
1099 return ret;
1100 }
1101 }
1102 return NULL;
1103}
1104
1105template <class Impl>
1106void
1107InstructionQueue<Impl>::violation(DynInstPtr &store,
1108 DynInstPtr &faulting_load)
1109{
1110 intInstQueueWrites++;
1111 memDepUnit[store->threadNumber].violation(store, faulting_load);
1112}
1113
1114template <class Impl>
1115void
1116InstructionQueue<Impl>::squash(ThreadID tid)
1117{
1118 DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in "
1119 "the IQ.\n", tid);
1120
1121 // Read instruction sequence number of last instruction out of the
1122 // time buffer.
1123 squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum;
1124
1125 // Call doSquash if there are insts in the IQ
1126 if (count[tid] > 0) {
1127 doSquash(tid);
1128 }
1129
1130 // Also tell the memory dependence unit to squash.
1131 memDepUnit[tid].squash(squashedSeqNum[tid], tid);
1132}
1133
1134template <class Impl>
1135void
1136InstructionQueue<Impl>::doSquash(ThreadID tid)
1137{
1138 // Start at the tail.
1139 ListIt squash_it = instList[tid].end();
1140 --squash_it;
1141
1142 DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n",
1143 tid, squashedSeqNum[tid]);
1144
1145 // Squash any instructions younger than the squashed sequence number
1146 // given.
1147 while (squash_it != instList[tid].end() &&
1148 (*squash_it)->seqNum > squashedSeqNum[tid]) {
1149
1150 DynInstPtr squashed_inst = (*squash_it);
1151 squashed_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
1152
1153 // Only handle the instruction if it actually is in the IQ and
1154 // hasn't already been squashed in the IQ.
1155 if (squashed_inst->threadNumber != tid ||
1156 squashed_inst->isSquashedInIQ()) {
1157 --squash_it;
1158 continue;
1159 }
1160
1161 if (!squashed_inst->isIssued() ||
1162 (squashed_inst->isMemRef() &&
1163 !squashed_inst->memOpDone)) {
1164
1165 DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %s squashed.\n",
1166 tid, squashed_inst->seqNum, squashed_inst->pcState());
1167
1168 // Remove the instruction from the dependency list.
1169 if (!squashed_inst->isNonSpeculative() &&
1170 !squashed_inst->isStoreConditional() &&
1171 !squashed_inst->isMemBarrier() &&
1172 !squashed_inst->isWriteBarrier()) {
1173
1174 for (int src_reg_idx = 0;
1175 src_reg_idx < squashed_inst->numSrcRegs();
1176 src_reg_idx++)
1177 {
1178 PhysRegIndex src_reg =
1179 squashed_inst->renamedSrcRegIdx(src_reg_idx);
1180
1181 // Only remove it from the dependency graph if it
1182 // was placed there in the first place.
1183
1184 // Instead of doing a linked list traversal, we
1185 // can just remove these squashed instructions
1186 // either at issue time, or when the register is
1187 // overwritten. The only downside to this is it
1188 // leaves more room for error.
1189
1190 if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) &&
1191 src_reg < numPhysRegs) {
1192 dependGraph.remove(src_reg, squashed_inst);
1193 }
1194
1195
1196 ++iqSquashedOperandsExamined;
1197 }
1198 } else if (!squashed_inst->isStoreConditional() ||
1199 !squashed_inst->isCompleted()) {
1200 NonSpecMapIt ns_inst_it =
1201 nonSpecInsts.find(squashed_inst->seqNum);
1202
1203 if (ns_inst_it == nonSpecInsts.end()) {
1204 assert(squashed_inst->getFault() != NoFault);
1205 } else {
1206
1207 (*ns_inst_it).second = NULL;
1208
1209 nonSpecInsts.erase(ns_inst_it);
1210
1211 ++iqSquashedNonSpecRemoved;
1212 }
1213 }
1214
1215 // Might want to also clear out the head of the dependency graph.
1216
1217 // Mark it as squashed within the IQ.
1218 squashed_inst->setSquashedInIQ();
1219
1220 // @todo: Remove this hack where several statuses are set so the
1221 // inst will flow through the rest of the pipeline.
1222 squashed_inst->setIssued();
1223 squashed_inst->setCanCommit();
1224 squashed_inst->clearInIQ();
1225
1226 //Update Thread IQ Count
1227 count[squashed_inst->threadNumber]--;
1228
1229 ++freeEntries;
1230 }
1231
1232 instList[tid].erase(squash_it--);
1233 ++iqSquashedInstsExamined;
1234 }
1235}
1236
1237template <class Impl>
1238bool
1239InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst)
1240{
1241 // Loop through the instruction's source registers, adding
1242 // them to the dependency list if they are not ready.
1243 int8_t total_src_regs = new_inst->numSrcRegs();
1244 bool return_val = false;
1245
1246 for (int src_reg_idx = 0;
1247 src_reg_idx < total_src_regs;
1248 src_reg_idx++)
1249 {
1250 // Only add it to the dependency graph if it's not ready.
1251 if (!new_inst->isReadySrcRegIdx(src_reg_idx)) {
1252 PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx);
1253
1254 // Check the IQ's scoreboard to make sure the register
1255 // hasn't become ready while the instruction was in flight
1256 // between stages. Only if it really isn't ready should
1257 // it be added to the dependency graph.
1258 if (src_reg >= numPhysRegs) {
1259 continue;
1260 } else if (regScoreboard[src_reg] == false) {
1261 DPRINTF(IQ, "Instruction PC %s has src reg %i that "
1262 "is being added to the dependency chain.\n",
1263 new_inst->pcState(), src_reg);
1264
1265 dependGraph.insert(src_reg, new_inst);
1266
1267 // Change the return value to indicate that something
1268 // was added to the dependency graph.
1269 return_val = true;
1270 } else {
1271 DPRINTF(IQ, "Instruction PC %s has src reg %i that "
1272 "became ready before it reached the IQ.\n",
1273 new_inst->pcState(), src_reg);
1274 // Mark a register ready within the instruction.
1275 new_inst->markSrcRegReady(src_reg_idx);
1276 }
1277 }
1278 }
1279
1280 return return_val;
1281}
1282
1283template <class Impl>
1284void
1285InstructionQueue<Impl>::addToProducers(DynInstPtr &new_inst)
1286{
1287 // Nothing really needs to be marked when an instruction becomes
1288 // the producer of a register's value, but for convenience a ptr
1289 // to the producing instruction will be placed in the head node of
1290 // the dependency links.
1291 int8_t total_dest_regs = new_inst->numDestRegs();
1292
1293 for (int dest_reg_idx = 0;
1294 dest_reg_idx < total_dest_regs;
1295 dest_reg_idx++)
1296 {
1297 PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx);
1298
1299 // Instructions that use the misc regs will have a reg number
1300 // higher than the normal physical registers. In this case these
1301 // registers are not renamed, and there is no need to track
1302 // dependencies as these instructions must be executed at commit.
1303 if (dest_reg >= numPhysRegs) {
1304 continue;
1305 }
1306
1307 if (!dependGraph.empty(dest_reg)) {
1308 dependGraph.dump();
1309 panic("Dependency graph %i not empty!", dest_reg);
1310 }
1311
1312 dependGraph.setInst(dest_reg, new_inst);
1313
1314 // Mark the scoreboard to say it's not yet ready.
1315 regScoreboard[dest_reg] = false;
1316 }
1317}
1318
1319template <class Impl>
1320void
1321InstructionQueue<Impl>::addIfReady(DynInstPtr &inst)
1322{
1323 // If the instruction now has all of its source registers
1324 // available, then add it to the list of ready instructions.
1325 if (inst->readyToIssue()) {
1326
1327 //Add the instruction to the proper ready list.
1328 if (inst->isMemRef()) {
1329
1330 DPRINTF(IQ, "Checking if memory instruction can issue.\n");
1331
1332 // Message to the mem dependence unit that this instruction has
1333 // its registers ready.
1334 memDepUnit[inst->threadNumber].regsReady(inst);
1335
1336 return;
1337 }
1338
1339 OpClass op_class = inst->opClass();
1340
1341 DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
1342 "the ready list, PC %s opclass:%i [sn:%lli].\n",
1343 inst->pcState(), op_class, inst->seqNum);
1344
1345 readyInsts[op_class].push(inst);
1346
1347 // Will need to reorder the list if either a queue is not on the list,
1348 // or it has an older instruction than last time.
1349 if (!queueOnList[op_class]) {
1350 addToOrderList(op_class);
1351 } else if (readyInsts[op_class].top()->seqNum <
1352 (*readyIt[op_class]).oldestInst) {
1353 listOrder.erase(readyIt[op_class]);
1354 addToOrderList(op_class);
1355 }
1356 }
1357}
1358
1359template <class Impl>
1360int
1361InstructionQueue<Impl>::countInsts()
1362{
1363#if 0
1364 //ksewell:This works but definitely could use a cleaner write
1365 //with a more intuitive way of counting. Right now it's
1366 //just brute force ....
1367 // Change the #if if you want to use this method.
1368 int total_insts = 0;
1369
1370 for (ThreadID tid = 0; tid < numThreads; ++tid) {
1371 ListIt count_it = instList[tid].begin();
1372
1373 while (count_it != instList[tid].end()) {
1374 if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) {
1375 if (!(*count_it)->isIssued()) {
1376 ++total_insts;
1377 } else if ((*count_it)->isMemRef() &&
1378 !(*count_it)->memOpDone) {
1379 // Loads that have not been marked as executed still count
1380 // towards the total instructions.
1381 ++total_insts;
1382 }
1383 }
1384
1385 ++count_it;
1386 }
1387 }
1388
1389 return total_insts;
1390#else
1391 return numEntries - freeEntries;
1392#endif
1393}
1394
1395template <class Impl>
1396void
1397InstructionQueue<Impl>::dumpLists()
1398{
1399 for (int i = 0; i < Num_OpClasses; ++i) {
1400 cprintf("Ready list %i size: %i\n", i, readyInsts[i].size());
1401
1402 cprintf("\n");
1403 }
1404
1405 cprintf("Non speculative list size: %i\n", nonSpecInsts.size());
1406
1407 NonSpecMapIt non_spec_it = nonSpecInsts.begin();
1408 NonSpecMapIt non_spec_end_it = nonSpecInsts.end();
1409
1410 cprintf("Non speculative list: ");
1411
1412 while (non_spec_it != non_spec_end_it) {
1413 cprintf("%s [sn:%lli]", (*non_spec_it).second->pcState(),
1414 (*non_spec_it).second->seqNum);
1415 ++non_spec_it;
1416 }
1417
1418 cprintf("\n");
1419
1420 ListOrderIt list_order_it = listOrder.begin();
1421 ListOrderIt list_order_end_it = listOrder.end();
1422 int i = 1;
1423
1424 cprintf("List order: ");
1425
1426 while (list_order_it != list_order_end_it) {
1427 cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType,
1428 (*list_order_it).oldestInst);
1429
1430 ++list_order_it;
1431 ++i;
1432 }
1433
1434 cprintf("\n");
1435}
1436
1437
1438template <class Impl>
1439void
1440InstructionQueue<Impl>::dumpInsts()
1441{
1442 for (ThreadID tid = 0; tid < numThreads; ++tid) {
1443 int num = 0;
1444 int valid_num = 0;
1445 ListIt inst_list_it = instList[tid].begin();
1446
1447 while (inst_list_it != instList[tid].end()) {
1448 cprintf("Instruction:%i\n", num);
1449 if (!(*inst_list_it)->isSquashed()) {
1450 if (!(*inst_list_it)->isIssued()) {
1451 ++valid_num;
1452 cprintf("Count:%i\n", valid_num);
1453 } else if ((*inst_list_it)->isMemRef() &&
1454 !(*inst_list_it)->memOpDone) {
1455 // Loads that have not been marked as executed
1456 // still count towards the total instructions.
1457 ++valid_num;
1458 cprintf("Count:%i\n", valid_num);
1459 }
1460 }
1461
1462 cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n"
1463 "Issued:%i\nSquashed:%i\n",
1464 (*inst_list_it)->pcState(),
1465 (*inst_list_it)->seqNum,
1466 (*inst_list_it)->threadNumber,
1467 (*inst_list_it)->isIssued(),
1468 (*inst_list_it)->isSquashed());
1469
1470 if ((*inst_list_it)->isMemRef()) {
1471 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
1472 }
1473
1474 cprintf("\n");
1475
1476 inst_list_it++;
1477 ++num;
1478 }
1479 }
1480
1481 cprintf("Insts to Execute list:\n");
1482
1483 int num = 0;
1484 int valid_num = 0;
1485 ListIt inst_list_it = instsToExecute.begin();
1486
1487 while (inst_list_it != instsToExecute.end())
1488 {
1489 cprintf("Instruction:%i\n",
1490 num);
1491 if (!(*inst_list_it)->isSquashed()) {
1492 if (!(*inst_list_it)->isIssued()) {
1493 ++valid_num;
1494 cprintf("Count:%i\n", valid_num);
1495 } else if ((*inst_list_it)->isMemRef() &&
1496 !(*inst_list_it)->memOpDone) {
1497 // Loads that have not been marked as executed
1498 // still count towards the total instructions.
1499 ++valid_num;
1500 cprintf("Count:%i\n", valid_num);
1501 }
1502 }
1503
1504 cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n"
1505 "Issued:%i\nSquashed:%i\n",
1506 (*inst_list_it)->pcState(),
1507 (*inst_list_it)->seqNum,
1508 (*inst_list_it)->threadNumber,
1509 (*inst_list_it)->isIssued(),
1510 (*inst_list_it)->isSquashed());
1511
1512 if ((*inst_list_it)->isMemRef()) {
1513 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
1514 }
1515
1516 cprintf("\n");
1517
1518 inst_list_it++;
1519 ++num;
1520 }
1521}
864 if (!issuing_inst->isMemRef()) {
865 // Memory instructions can not be freed from the IQ until they
866 // complete.
867 ++freeEntries;
868 count[tid]--;
869 issuing_inst->clearInIQ();
870 } else {
871 memDepUnit[tid].issue(issuing_inst);
872 }
873
874 listOrder.erase(order_it++);
875 statIssuedInstType[tid][op_class]++;
876 iewStage->incrWb(issuing_inst->seqNum);
877 } else {
878 statFuBusy[op_class]++;
879 fuBusy[tid]++;
880 ++order_it;
881 }
882 }
883
884 numIssuedDist.sample(total_issued);
885 iqInstsIssued+= total_issued;
886
887 // If we issued any instructions, tell the CPU we had activity.
888 // @todo If the way deferred memory instructions are handeled due to
889 // translation changes then the deferredMemInsts condition should be removed
890 // from the code below.
891 if (total_issued || total_deferred_mem_issued || deferredMemInsts.size()) {
892 cpu->activityThisCycle();
893 } else {
894 DPRINTF(IQ, "Not able to schedule any instructions.\n");
895 }
896}
897
898template <class Impl>
899void
900InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst)
901{
902 DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready "
903 "to execute.\n", inst);
904
905 NonSpecMapIt inst_it = nonSpecInsts.find(inst);
906
907 assert(inst_it != nonSpecInsts.end());
908
909 ThreadID tid = (*inst_it).second->threadNumber;
910
911 (*inst_it).second->setAtCommit();
912
913 (*inst_it).second->setCanIssue();
914
915 if (!(*inst_it).second->isMemRef()) {
916 addIfReady((*inst_it).second);
917 } else {
918 memDepUnit[tid].nonSpecInstReady((*inst_it).second);
919 }
920
921 (*inst_it).second = NULL;
922
923 nonSpecInsts.erase(inst_it);
924}
925
926template <class Impl>
927void
928InstructionQueue<Impl>::commit(const InstSeqNum &inst, ThreadID tid)
929{
930 DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n",
931 tid,inst);
932
933 ListIt iq_it = instList[tid].begin();
934
935 while (iq_it != instList[tid].end() &&
936 (*iq_it)->seqNum <= inst) {
937 ++iq_it;
938 instList[tid].pop_front();
939 }
940
941 assert(freeEntries == (numEntries - countInsts()));
942}
943
944template <class Impl>
945int
946InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst)
947{
948 int dependents = 0;
949
950 // The instruction queue here takes care of both floating and int ops
951 if (completed_inst->isFloating()) {
952 fpInstQueueWakeupQccesses++;
953 } else {
954 intInstQueueWakeupAccesses++;
955 }
956
957 DPRINTF(IQ, "Waking dependents of completed instruction.\n");
958
959 assert(!completed_inst->isSquashed());
960
961 // Tell the memory dependence unit to wake any dependents on this
962 // instruction if it is a memory instruction. Also complete the memory
963 // instruction at this point since we know it executed without issues.
964 // @todo: Might want to rename "completeMemInst" to something that
965 // indicates that it won't need to be replayed, and call this
966 // earlier. Might not be a big deal.
967 if (completed_inst->isMemRef()) {
968 memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst);
969 completeMemInst(completed_inst);
970 } else if (completed_inst->isMemBarrier() ||
971 completed_inst->isWriteBarrier()) {
972 memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst);
973 }
974
975 for (int dest_reg_idx = 0;
976 dest_reg_idx < completed_inst->numDestRegs();
977 dest_reg_idx++)
978 {
979 PhysRegIndex dest_reg =
980 completed_inst->renamedDestRegIdx(dest_reg_idx);
981
982 // Special case of uniq or control registers. They are not
983 // handled by the IQ and thus have no dependency graph entry.
984 // @todo Figure out a cleaner way to handle this.
985 if (dest_reg >= numPhysRegs) {
986 DPRINTF(IQ, "dest_reg :%d, numPhysRegs: %d\n", dest_reg,
987 numPhysRegs);
988 continue;
989 }
990
991 DPRINTF(IQ, "Waking any dependents on register %i.\n",
992 (int) dest_reg);
993
994 //Go through the dependency chain, marking the registers as
995 //ready within the waiting instructions.
996 DynInstPtr dep_inst = dependGraph.pop(dest_reg);
997
998 while (dep_inst) {
999 DPRINTF(IQ, "Waking up a dependent instruction, [sn:%lli] "
1000 "PC %s.\n", dep_inst->seqNum, dep_inst->pcState());
1001
1002 // Might want to give more information to the instruction
1003 // so that it knows which of its source registers is
1004 // ready. However that would mean that the dependency
1005 // graph entries would need to hold the src_reg_idx.
1006 dep_inst->markSrcRegReady();
1007
1008 addIfReady(dep_inst);
1009
1010 dep_inst = dependGraph.pop(dest_reg);
1011
1012 ++dependents;
1013 }
1014
1015 // Reset the head node now that all of its dependents have
1016 // been woken up.
1017 assert(dependGraph.empty(dest_reg));
1018 dependGraph.clearInst(dest_reg);
1019
1020 // Mark the scoreboard as having that register ready.
1021 regScoreboard[dest_reg] = true;
1022 }
1023 return dependents;
1024}
1025
1026template <class Impl>
1027void
1028InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst)
1029{
1030 OpClass op_class = ready_inst->opClass();
1031
1032 readyInsts[op_class].push(ready_inst);
1033
1034 // Will need to reorder the list if either a queue is not on the list,
1035 // or it has an older instruction than last time.
1036 if (!queueOnList[op_class]) {
1037 addToOrderList(op_class);
1038 } else if (readyInsts[op_class].top()->seqNum <
1039 (*readyIt[op_class]).oldestInst) {
1040 listOrder.erase(readyIt[op_class]);
1041 addToOrderList(op_class);
1042 }
1043
1044 DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
1045 "the ready list, PC %s opclass:%i [sn:%lli].\n",
1046 ready_inst->pcState(), op_class, ready_inst->seqNum);
1047}
1048
1049template <class Impl>
1050void
1051InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst)
1052{
1053 DPRINTF(IQ, "Rescheduling mem inst [sn:%lli]\n", resched_inst->seqNum);
1054
1055 // Reset DTB translation state
1056 resched_inst->translationStarted = false;
1057 resched_inst->translationCompleted = false;
1058
1059 resched_inst->clearCanIssue();
1060 memDepUnit[resched_inst->threadNumber].reschedule(resched_inst);
1061}
1062
1063template <class Impl>
1064void
1065InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst)
1066{
1067 memDepUnit[replay_inst->threadNumber].replay(replay_inst);
1068}
1069
1070template <class Impl>
1071void
1072InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst)
1073{
1074 ThreadID tid = completed_inst->threadNumber;
1075
1076 DPRINTF(IQ, "Completing mem instruction PC: %s [sn:%lli]\n",
1077 completed_inst->pcState(), completed_inst->seqNum);
1078
1079 ++freeEntries;
1080
1081 completed_inst->memOpDone = true;
1082
1083 memDepUnit[tid].completed(completed_inst);
1084 count[tid]--;
1085}
1086
1087template <class Impl>
1088void
1089InstructionQueue<Impl>::deferMemInst(DynInstPtr &deferred_inst)
1090{
1091 deferredMemInsts.push_back(deferred_inst);
1092}
1093
1094template <class Impl>
1095typename Impl::DynInstPtr
1096InstructionQueue<Impl>::getDeferredMemInstToExecute()
1097{
1098 for (ListIt it = deferredMemInsts.begin(); it != deferredMemInsts.end();
1099 ++it) {
1100 if ((*it)->translationCompleted) {
1101 DynInstPtr ret = *it;
1102 deferredMemInsts.erase(it);
1103 return ret;
1104 }
1105 }
1106 return NULL;
1107}
1108
1109template <class Impl>
1110void
1111InstructionQueue<Impl>::violation(DynInstPtr &store,
1112 DynInstPtr &faulting_load)
1113{
1114 intInstQueueWrites++;
1115 memDepUnit[store->threadNumber].violation(store, faulting_load);
1116}
1117
1118template <class Impl>
1119void
1120InstructionQueue<Impl>::squash(ThreadID tid)
1121{
1122 DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in "
1123 "the IQ.\n", tid);
1124
1125 // Read instruction sequence number of last instruction out of the
1126 // time buffer.
1127 squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum;
1128
1129 // Call doSquash if there are insts in the IQ
1130 if (count[tid] > 0) {
1131 doSquash(tid);
1132 }
1133
1134 // Also tell the memory dependence unit to squash.
1135 memDepUnit[tid].squash(squashedSeqNum[tid], tid);
1136}
1137
1138template <class Impl>
1139void
1140InstructionQueue<Impl>::doSquash(ThreadID tid)
1141{
1142 // Start at the tail.
1143 ListIt squash_it = instList[tid].end();
1144 --squash_it;
1145
1146 DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n",
1147 tid, squashedSeqNum[tid]);
1148
1149 // Squash any instructions younger than the squashed sequence number
1150 // given.
1151 while (squash_it != instList[tid].end() &&
1152 (*squash_it)->seqNum > squashedSeqNum[tid]) {
1153
1154 DynInstPtr squashed_inst = (*squash_it);
1155 squashed_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
1156
1157 // Only handle the instruction if it actually is in the IQ and
1158 // hasn't already been squashed in the IQ.
1159 if (squashed_inst->threadNumber != tid ||
1160 squashed_inst->isSquashedInIQ()) {
1161 --squash_it;
1162 continue;
1163 }
1164
1165 if (!squashed_inst->isIssued() ||
1166 (squashed_inst->isMemRef() &&
1167 !squashed_inst->memOpDone)) {
1168
1169 DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %s squashed.\n",
1170 tid, squashed_inst->seqNum, squashed_inst->pcState());
1171
1172 // Remove the instruction from the dependency list.
1173 if (!squashed_inst->isNonSpeculative() &&
1174 !squashed_inst->isStoreConditional() &&
1175 !squashed_inst->isMemBarrier() &&
1176 !squashed_inst->isWriteBarrier()) {
1177
1178 for (int src_reg_idx = 0;
1179 src_reg_idx < squashed_inst->numSrcRegs();
1180 src_reg_idx++)
1181 {
1182 PhysRegIndex src_reg =
1183 squashed_inst->renamedSrcRegIdx(src_reg_idx);
1184
1185 // Only remove it from the dependency graph if it
1186 // was placed there in the first place.
1187
1188 // Instead of doing a linked list traversal, we
1189 // can just remove these squashed instructions
1190 // either at issue time, or when the register is
1191 // overwritten. The only downside to this is it
1192 // leaves more room for error.
1193
1194 if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) &&
1195 src_reg < numPhysRegs) {
1196 dependGraph.remove(src_reg, squashed_inst);
1197 }
1198
1199
1200 ++iqSquashedOperandsExamined;
1201 }
1202 } else if (!squashed_inst->isStoreConditional() ||
1203 !squashed_inst->isCompleted()) {
1204 NonSpecMapIt ns_inst_it =
1205 nonSpecInsts.find(squashed_inst->seqNum);
1206
1207 if (ns_inst_it == nonSpecInsts.end()) {
1208 assert(squashed_inst->getFault() != NoFault);
1209 } else {
1210
1211 (*ns_inst_it).second = NULL;
1212
1213 nonSpecInsts.erase(ns_inst_it);
1214
1215 ++iqSquashedNonSpecRemoved;
1216 }
1217 }
1218
1219 // Might want to also clear out the head of the dependency graph.
1220
1221 // Mark it as squashed within the IQ.
1222 squashed_inst->setSquashedInIQ();
1223
1224 // @todo: Remove this hack where several statuses are set so the
1225 // inst will flow through the rest of the pipeline.
1226 squashed_inst->setIssued();
1227 squashed_inst->setCanCommit();
1228 squashed_inst->clearInIQ();
1229
1230 //Update Thread IQ Count
1231 count[squashed_inst->threadNumber]--;
1232
1233 ++freeEntries;
1234 }
1235
1236 instList[tid].erase(squash_it--);
1237 ++iqSquashedInstsExamined;
1238 }
1239}
1240
1241template <class Impl>
1242bool
1243InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst)
1244{
1245 // Loop through the instruction's source registers, adding
1246 // them to the dependency list if they are not ready.
1247 int8_t total_src_regs = new_inst->numSrcRegs();
1248 bool return_val = false;
1249
1250 for (int src_reg_idx = 0;
1251 src_reg_idx < total_src_regs;
1252 src_reg_idx++)
1253 {
1254 // Only add it to the dependency graph if it's not ready.
1255 if (!new_inst->isReadySrcRegIdx(src_reg_idx)) {
1256 PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx);
1257
1258 // Check the IQ's scoreboard to make sure the register
1259 // hasn't become ready while the instruction was in flight
1260 // between stages. Only if it really isn't ready should
1261 // it be added to the dependency graph.
1262 if (src_reg >= numPhysRegs) {
1263 continue;
1264 } else if (regScoreboard[src_reg] == false) {
1265 DPRINTF(IQ, "Instruction PC %s has src reg %i that "
1266 "is being added to the dependency chain.\n",
1267 new_inst->pcState(), src_reg);
1268
1269 dependGraph.insert(src_reg, new_inst);
1270
1271 // Change the return value to indicate that something
1272 // was added to the dependency graph.
1273 return_val = true;
1274 } else {
1275 DPRINTF(IQ, "Instruction PC %s has src reg %i that "
1276 "became ready before it reached the IQ.\n",
1277 new_inst->pcState(), src_reg);
1278 // Mark a register ready within the instruction.
1279 new_inst->markSrcRegReady(src_reg_idx);
1280 }
1281 }
1282 }
1283
1284 return return_val;
1285}
1286
1287template <class Impl>
1288void
1289InstructionQueue<Impl>::addToProducers(DynInstPtr &new_inst)
1290{
1291 // Nothing really needs to be marked when an instruction becomes
1292 // the producer of a register's value, but for convenience a ptr
1293 // to the producing instruction will be placed in the head node of
1294 // the dependency links.
1295 int8_t total_dest_regs = new_inst->numDestRegs();
1296
1297 for (int dest_reg_idx = 0;
1298 dest_reg_idx < total_dest_regs;
1299 dest_reg_idx++)
1300 {
1301 PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx);
1302
1303 // Instructions that use the misc regs will have a reg number
1304 // higher than the normal physical registers. In this case these
1305 // registers are not renamed, and there is no need to track
1306 // dependencies as these instructions must be executed at commit.
1307 if (dest_reg >= numPhysRegs) {
1308 continue;
1309 }
1310
1311 if (!dependGraph.empty(dest_reg)) {
1312 dependGraph.dump();
1313 panic("Dependency graph %i not empty!", dest_reg);
1314 }
1315
1316 dependGraph.setInst(dest_reg, new_inst);
1317
1318 // Mark the scoreboard to say it's not yet ready.
1319 regScoreboard[dest_reg] = false;
1320 }
1321}
1322
1323template <class Impl>
1324void
1325InstructionQueue<Impl>::addIfReady(DynInstPtr &inst)
1326{
1327 // If the instruction now has all of its source registers
1328 // available, then add it to the list of ready instructions.
1329 if (inst->readyToIssue()) {
1330
1331 //Add the instruction to the proper ready list.
1332 if (inst->isMemRef()) {
1333
1334 DPRINTF(IQ, "Checking if memory instruction can issue.\n");
1335
1336 // Message to the mem dependence unit that this instruction has
1337 // its registers ready.
1338 memDepUnit[inst->threadNumber].regsReady(inst);
1339
1340 return;
1341 }
1342
1343 OpClass op_class = inst->opClass();
1344
1345 DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
1346 "the ready list, PC %s opclass:%i [sn:%lli].\n",
1347 inst->pcState(), op_class, inst->seqNum);
1348
1349 readyInsts[op_class].push(inst);
1350
1351 // Will need to reorder the list if either a queue is not on the list,
1352 // or it has an older instruction than last time.
1353 if (!queueOnList[op_class]) {
1354 addToOrderList(op_class);
1355 } else if (readyInsts[op_class].top()->seqNum <
1356 (*readyIt[op_class]).oldestInst) {
1357 listOrder.erase(readyIt[op_class]);
1358 addToOrderList(op_class);
1359 }
1360 }
1361}
1362
1363template <class Impl>
1364int
1365InstructionQueue<Impl>::countInsts()
1366{
1367#if 0
1368 //ksewell:This works but definitely could use a cleaner write
1369 //with a more intuitive way of counting. Right now it's
1370 //just brute force ....
1371 // Change the #if if you want to use this method.
1372 int total_insts = 0;
1373
1374 for (ThreadID tid = 0; tid < numThreads; ++tid) {
1375 ListIt count_it = instList[tid].begin();
1376
1377 while (count_it != instList[tid].end()) {
1378 if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) {
1379 if (!(*count_it)->isIssued()) {
1380 ++total_insts;
1381 } else if ((*count_it)->isMemRef() &&
1382 !(*count_it)->memOpDone) {
1383 // Loads that have not been marked as executed still count
1384 // towards the total instructions.
1385 ++total_insts;
1386 }
1387 }
1388
1389 ++count_it;
1390 }
1391 }
1392
1393 return total_insts;
1394#else
1395 return numEntries - freeEntries;
1396#endif
1397}
1398
1399template <class Impl>
1400void
1401InstructionQueue<Impl>::dumpLists()
1402{
1403 for (int i = 0; i < Num_OpClasses; ++i) {
1404 cprintf("Ready list %i size: %i\n", i, readyInsts[i].size());
1405
1406 cprintf("\n");
1407 }
1408
1409 cprintf("Non speculative list size: %i\n", nonSpecInsts.size());
1410
1411 NonSpecMapIt non_spec_it = nonSpecInsts.begin();
1412 NonSpecMapIt non_spec_end_it = nonSpecInsts.end();
1413
1414 cprintf("Non speculative list: ");
1415
1416 while (non_spec_it != non_spec_end_it) {
1417 cprintf("%s [sn:%lli]", (*non_spec_it).second->pcState(),
1418 (*non_spec_it).second->seqNum);
1419 ++non_spec_it;
1420 }
1421
1422 cprintf("\n");
1423
1424 ListOrderIt list_order_it = listOrder.begin();
1425 ListOrderIt list_order_end_it = listOrder.end();
1426 int i = 1;
1427
1428 cprintf("List order: ");
1429
1430 while (list_order_it != list_order_end_it) {
1431 cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType,
1432 (*list_order_it).oldestInst);
1433
1434 ++list_order_it;
1435 ++i;
1436 }
1437
1438 cprintf("\n");
1439}
1440
1441
1442template <class Impl>
1443void
1444InstructionQueue<Impl>::dumpInsts()
1445{
1446 for (ThreadID tid = 0; tid < numThreads; ++tid) {
1447 int num = 0;
1448 int valid_num = 0;
1449 ListIt inst_list_it = instList[tid].begin();
1450
1451 while (inst_list_it != instList[tid].end()) {
1452 cprintf("Instruction:%i\n", num);
1453 if (!(*inst_list_it)->isSquashed()) {
1454 if (!(*inst_list_it)->isIssued()) {
1455 ++valid_num;
1456 cprintf("Count:%i\n", valid_num);
1457 } else if ((*inst_list_it)->isMemRef() &&
1458 !(*inst_list_it)->memOpDone) {
1459 // Loads that have not been marked as executed
1460 // still count towards the total instructions.
1461 ++valid_num;
1462 cprintf("Count:%i\n", valid_num);
1463 }
1464 }
1465
1466 cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n"
1467 "Issued:%i\nSquashed:%i\n",
1468 (*inst_list_it)->pcState(),
1469 (*inst_list_it)->seqNum,
1470 (*inst_list_it)->threadNumber,
1471 (*inst_list_it)->isIssued(),
1472 (*inst_list_it)->isSquashed());
1473
1474 if ((*inst_list_it)->isMemRef()) {
1475 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
1476 }
1477
1478 cprintf("\n");
1479
1480 inst_list_it++;
1481 ++num;
1482 }
1483 }
1484
1485 cprintf("Insts to Execute list:\n");
1486
1487 int num = 0;
1488 int valid_num = 0;
1489 ListIt inst_list_it = instsToExecute.begin();
1490
1491 while (inst_list_it != instsToExecute.end())
1492 {
1493 cprintf("Instruction:%i\n",
1494 num);
1495 if (!(*inst_list_it)->isSquashed()) {
1496 if (!(*inst_list_it)->isIssued()) {
1497 ++valid_num;
1498 cprintf("Count:%i\n", valid_num);
1499 } else if ((*inst_list_it)->isMemRef() &&
1500 !(*inst_list_it)->memOpDone) {
1501 // Loads that have not been marked as executed
1502 // still count towards the total instructions.
1503 ++valid_num;
1504 cprintf("Count:%i\n", valid_num);
1505 }
1506 }
1507
1508 cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n"
1509 "Issued:%i\nSquashed:%i\n",
1510 (*inst_list_it)->pcState(),
1511 (*inst_list_it)->seqNum,
1512 (*inst_list_it)->threadNumber,
1513 (*inst_list_it)->isIssued(),
1514 (*inst_list_it)->isSquashed());
1515
1516 if ((*inst_list_it)->isMemRef()) {
1517 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
1518 }
1519
1520 cprintf("\n");
1521
1522 inst_list_it++;
1523 ++num;
1524 }
1525}