inst_queue.hh (9184:a1a8f137b796) inst_queue.hh (9444:ab47fe7f03f0)
1/*
1/*
2 * Copyright (c) 2011 ARM Limited
2 * Copyright (c) 2011-2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43#ifndef __CPU_O3_INST_QUEUE_HH__
44#define __CPU_O3_INST_QUEUE_HH__
45
46#include <list>
47#include <map>
48#include <queue>
49#include <vector>
50
51#include "base/statistics.hh"
52#include "base/types.hh"
53#include "cpu/o3/dep_graph.hh"
54#include "cpu/inst_seq.hh"
55#include "cpu/op_class.hh"
56#include "cpu/timebuf.hh"
57#include "sim/eventq.hh"
58
59struct DerivO3CPUParams;
60class FUPool;
61class MemInterface;
62
63/**
64 * A standard instruction queue class. It holds ready instructions, in
65 * order, in seperate priority queues to facilitate the scheduling of
66 * instructions. The IQ uses a separate linked list to track dependencies.
67 * Similar to the rename map and the free list, it expects that
68 * floating point registers have their indices start after the integer
69 * registers (ie with 96 int and 96 fp registers, regs 0-95 are integer
70 * and 96-191 are fp). This remains true even for both logical and
71 * physical register indices. The IQ depends on the memory dependence unit to
72 * track when memory operations are ready in terms of ordering; register
73 * dependencies are tracked normally. Right now the IQ also handles the
74 * execution timing; this is mainly to allow back-to-back scheduling without
75 * requiring IEW to be able to peek into the IQ. At the end of the execution
76 * latency, the instruction is put into the queue to execute, where it will
77 * have the execute() function called on it.
78 * @todo: Make IQ able to handle multiple FU pools.
79 */
80template <class Impl>
81class InstructionQueue
82{
83 public:
84 //Typedefs from the Impl.
85 typedef typename Impl::O3CPU O3CPU;
86 typedef typename Impl::DynInstPtr DynInstPtr;
87
88 typedef typename Impl::CPUPol::IEW IEW;
89 typedef typename Impl::CPUPol::MemDepUnit MemDepUnit;
90 typedef typename Impl::CPUPol::IssueStruct IssueStruct;
91 typedef typename Impl::CPUPol::TimeStruct TimeStruct;
92
93 // Typedef of iterator through the list of instructions.
94 typedef typename std::list<DynInstPtr>::iterator ListIt;
95
96 /** FU completion event class. */
97 class FUCompletion : public Event {
98 private:
99 /** Executing instruction. */
100 DynInstPtr inst;
101
102 /** Index of the FU used for executing. */
103 int fuIdx;
104
105 /** Pointer back to the instruction queue. */
106 InstructionQueue<Impl> *iqPtr;
107
108 /** Should the FU be added to the list to be freed upon
109 * completing this event.
110 */
111 bool freeFU;
112
113 public:
114 /** Construct a FU completion event. */
115 FUCompletion(DynInstPtr &_inst, int fu_idx,
116 InstructionQueue<Impl> *iq_ptr);
117
118 virtual void process();
119 virtual const char *description() const;
120 void setFreeFU() { freeFU = true; }
121 };
122
123 /** Constructs an IQ. */
124 InstructionQueue(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params);
125
126 /** Destructs the IQ. */
127 ~InstructionQueue();
128
129 /** Returns the name of the IQ. */
130 std::string name() const;
131
132 /** Registers statistics. */
133 void regStats();
134
135 /** Resets all instruction queue state. */
136 void resetState();
137
138 /** Sets active threads list. */
139 void setActiveThreads(std::list<ThreadID> *at_ptr);
140
141 /** Sets the timer buffer between issue and execute. */
142 void setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2eQueue);
143
144 /** Sets the global time buffer. */
145 void setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr);
146
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43#ifndef __CPU_O3_INST_QUEUE_HH__
44#define __CPU_O3_INST_QUEUE_HH__
45
46#include <list>
47#include <map>
48#include <queue>
49#include <vector>
50
51#include "base/statistics.hh"
52#include "base/types.hh"
53#include "cpu/o3/dep_graph.hh"
54#include "cpu/inst_seq.hh"
55#include "cpu/op_class.hh"
56#include "cpu/timebuf.hh"
57#include "sim/eventq.hh"
58
59struct DerivO3CPUParams;
60class FUPool;
61class MemInterface;
62
63/**
64 * A standard instruction queue class. It holds ready instructions, in
65 * order, in seperate priority queues to facilitate the scheduling of
66 * instructions. The IQ uses a separate linked list to track dependencies.
67 * Similar to the rename map and the free list, it expects that
68 * floating point registers have their indices start after the integer
69 * registers (ie with 96 int and 96 fp registers, regs 0-95 are integer
70 * and 96-191 are fp). This remains true even for both logical and
71 * physical register indices. The IQ depends on the memory dependence unit to
72 * track when memory operations are ready in terms of ordering; register
73 * dependencies are tracked normally. Right now the IQ also handles the
74 * execution timing; this is mainly to allow back-to-back scheduling without
75 * requiring IEW to be able to peek into the IQ. At the end of the execution
76 * latency, the instruction is put into the queue to execute, where it will
77 * have the execute() function called on it.
78 * @todo: Make IQ able to handle multiple FU pools.
79 */
80template <class Impl>
81class InstructionQueue
82{
83 public:
84 //Typedefs from the Impl.
85 typedef typename Impl::O3CPU O3CPU;
86 typedef typename Impl::DynInstPtr DynInstPtr;
87
88 typedef typename Impl::CPUPol::IEW IEW;
89 typedef typename Impl::CPUPol::MemDepUnit MemDepUnit;
90 typedef typename Impl::CPUPol::IssueStruct IssueStruct;
91 typedef typename Impl::CPUPol::TimeStruct TimeStruct;
92
93 // Typedef of iterator through the list of instructions.
94 typedef typename std::list<DynInstPtr>::iterator ListIt;
95
96 /** FU completion event class. */
97 class FUCompletion : public Event {
98 private:
99 /** Executing instruction. */
100 DynInstPtr inst;
101
102 /** Index of the FU used for executing. */
103 int fuIdx;
104
105 /** Pointer back to the instruction queue. */
106 InstructionQueue<Impl> *iqPtr;
107
108 /** Should the FU be added to the list to be freed upon
109 * completing this event.
110 */
111 bool freeFU;
112
113 public:
114 /** Construct a FU completion event. */
115 FUCompletion(DynInstPtr &_inst, int fu_idx,
116 InstructionQueue<Impl> *iq_ptr);
117
118 virtual void process();
119 virtual const char *description() const;
120 void setFreeFU() { freeFU = true; }
121 };
122
123 /** Constructs an IQ. */
124 InstructionQueue(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params);
125
126 /** Destructs the IQ. */
127 ~InstructionQueue();
128
129 /** Returns the name of the IQ. */
130 std::string name() const;
131
132 /** Registers statistics. */
133 void regStats();
134
135 /** Resets all instruction queue state. */
136 void resetState();
137
138 /** Sets active threads list. */
139 void setActiveThreads(std::list<ThreadID> *at_ptr);
140
141 /** Sets the timer buffer between issue and execute. */
142 void setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2eQueue);
143
144 /** Sets the global time buffer. */
145 void setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr);
146
147 /** Switches out the instruction queue. */
148 void switchOut();
147 /** Perform sanity checks after a drain. */
148 void drainSanityCheck() const;
149
150 /** Takes over execution from another CPU's thread. */
151 void takeOverFrom();
152
149
150 /** Takes over execution from another CPU's thread. */
151 void takeOverFrom();
152
153 /** Returns if the IQ is switched out. */
154 bool isSwitchedOut() { return switchedOut; }
155
156 /** Number of entries needed for given amount of threads. */
157 int entryAmount(ThreadID num_threads);
158
159 /** Resets max entries for all threads. */
160 void resetEntries();
161
162 /** Returns total number of free entries. */
163 unsigned numFreeEntries();
164
165 /** Returns number of free entries for a thread. */
166 unsigned numFreeEntries(ThreadID tid);
167
168 /** Returns whether or not the IQ is full. */
169 bool isFull();
170
171 /** Returns whether or not the IQ is full for a specific thread. */
172 bool isFull(ThreadID tid);
173
174 /** Returns if there are any ready instructions in the IQ. */
175 bool hasReadyInsts();
176
177 /** Inserts a new instruction into the IQ. */
178 void insert(DynInstPtr &new_inst);
179
180 /** Inserts a new, non-speculative instruction into the IQ. */
181 void insertNonSpec(DynInstPtr &new_inst);
182
183 /** Inserts a memory or write barrier into the IQ to make sure
184 * loads and stores are ordered properly.
185 */
186 void insertBarrier(DynInstPtr &barr_inst);
187
188 /** Returns the oldest scheduled instruction, and removes it from
189 * the list of instructions waiting to execute.
190 */
191 DynInstPtr getInstToExecute();
192
193 /** Returns a memory instruction that was referred due to a delayed DTB
194 * translation if it is now ready to execute.
195 */
196 DynInstPtr getDeferredMemInstToExecute();
197
198 /**
199 * Records the instruction as the producer of a register without
200 * adding it to the rest of the IQ.
201 */
202 void recordProducer(DynInstPtr &inst)
203 { addToProducers(inst); }
204
205 /** Process FU completion event. */
206 void processFUCompletion(DynInstPtr &inst, int fu_idx);
207
208 /**
209 * Schedules ready instructions, adding the ready ones (oldest first) to
210 * the queue to execute.
211 */
212 void scheduleReadyInsts();
213
214 /** Schedules a single specific non-speculative instruction. */
215 void scheduleNonSpec(const InstSeqNum &inst);
216
217 /**
218 * Commits all instructions up to and including the given sequence number,
219 * for a specific thread.
220 */
221 void commit(const InstSeqNum &inst, ThreadID tid = 0);
222
223 /** Wakes all dependents of a completed instruction. */
224 int wakeDependents(DynInstPtr &completed_inst);
225
226 /** Adds a ready memory instruction to the ready list. */
227 void addReadyMemInst(DynInstPtr &ready_inst);
228
229 /**
230 * Reschedules a memory instruction. It will be ready to issue once
231 * replayMemInst() is called.
232 */
233 void rescheduleMemInst(DynInstPtr &resched_inst);
234
235 /** Replays a memory instruction. It must be rescheduled first. */
236 void replayMemInst(DynInstPtr &replay_inst);
237
238 /** Completes a memory operation. */
239 void completeMemInst(DynInstPtr &completed_inst);
240
241 /**
242 * Defers a memory instruction when its DTB translation incurs a hw
243 * page table walk.
244 */
245 void deferMemInst(DynInstPtr &deferred_inst);
246
247 /** Indicates an ordering violation between a store and a load. */
248 void violation(DynInstPtr &store, DynInstPtr &faulting_load);
249
250 /**
251 * Squashes instructions for a thread. Squashing information is obtained
252 * from the time buffer.
253 */
254 void squash(ThreadID tid);
255
256 /** Returns the number of used entries for a thread. */
257 unsigned getCount(ThreadID tid) { return count[tid]; };
258
259 /** Debug function to print all instructions. */
260 void printInsts();
261
262 private:
263 /** Does the actual squashing. */
264 void doSquash(ThreadID tid);
265
266 /////////////////////////
267 // Various pointers
268 /////////////////////////
269
270 /** Pointer to the CPU. */
271 O3CPU *cpu;
272
273 /** Cache interface. */
274 MemInterface *dcacheInterface;
275
276 /** Pointer to IEW stage. */
277 IEW *iewStage;
278
279 /** The memory dependence unit, which tracks/predicts memory dependences
280 * between instructions.
281 */
282 MemDepUnit memDepUnit[Impl::MaxThreads];
283
284 /** The queue to the execute stage. Issued instructions will be written
285 * into it.
286 */
287 TimeBuffer<IssueStruct> *issueToExecuteQueue;
288
289 /** The backwards time buffer. */
290 TimeBuffer<TimeStruct> *timeBuffer;
291
292 /** Wire to read information from timebuffer. */
293 typename TimeBuffer<TimeStruct>::wire fromCommit;
294
295 /** Function unit pool. */
296 FUPool *fuPool;
297
298 //////////////////////////////////////
299 // Instruction lists, ready queues, and ordering
300 //////////////////////////////////////
301
302 /** List of all the instructions in the IQ (some of which may be issued). */
303 std::list<DynInstPtr> instList[Impl::MaxThreads];
304
305 /** List of instructions that are ready to be executed. */
306 std::list<DynInstPtr> instsToExecute;
307
308 /** List of instructions waiting for their DTB translation to
309 * complete (hw page table walk in progress).
310 */
311 std::list<DynInstPtr> deferredMemInsts;
312
313 /**
314 * Struct for comparing entries to be added to the priority queue.
315 * This gives reverse ordering to the instructions in terms of
316 * sequence numbers: the instructions with smaller sequence
317 * numbers (and hence are older) will be at the top of the
318 * priority queue.
319 */
320 struct pqCompare {
321 bool operator() (const DynInstPtr &lhs, const DynInstPtr &rhs) const
322 {
323 return lhs->seqNum > rhs->seqNum;
324 }
325 };
326
327 typedef std::priority_queue<DynInstPtr, std::vector<DynInstPtr>, pqCompare>
328 ReadyInstQueue;
329
330 /** List of ready instructions, per op class. They are separated by op
331 * class to allow for easy mapping to FUs.
332 */
333 ReadyInstQueue readyInsts[Num_OpClasses];
334
335 /** List of non-speculative instructions that will be scheduled
336 * once the IQ gets a signal from commit. While it's redundant to
337 * have the key be a part of the value (the sequence number is stored
338 * inside of DynInst), when these instructions are woken up only
339 * the sequence number will be available. Thus it is most efficient to be
340 * able to search by the sequence number alone.
341 */
342 std::map<InstSeqNum, DynInstPtr> nonSpecInsts;
343
344 typedef typename std::map<InstSeqNum, DynInstPtr>::iterator NonSpecMapIt;
345
346 /** Entry for the list age ordering by op class. */
347 struct ListOrderEntry {
348 OpClass queueType;
349 InstSeqNum oldestInst;
350 };
351
352 /** List that contains the age order of the oldest instruction of each
353 * ready queue. Used to select the oldest instruction available
354 * among op classes.
355 * @todo: Might be better to just move these entries around instead
356 * of creating new ones every time the position changes due to an
357 * instruction issuing. Not sure std::list supports this.
358 */
359 std::list<ListOrderEntry> listOrder;
360
361 typedef typename std::list<ListOrderEntry>::iterator ListOrderIt;
362
363 /** Tracks if each ready queue is on the age order list. */
364 bool queueOnList[Num_OpClasses];
365
366 /** Iterators of each ready queue. Points to their spot in the age order
367 * list.
368 */
369 ListOrderIt readyIt[Num_OpClasses];
370
371 /** Add an op class to the age order list. */
372 void addToOrderList(OpClass op_class);
373
374 /**
375 * Called when the oldest instruction has been removed from a ready queue;
376 * this places that ready queue into the proper spot in the age order list.
377 */
378 void moveToYoungerInst(ListOrderIt age_order_it);
379
380 DependencyGraph<DynInstPtr> dependGraph;
381
382 //////////////////////////////////////
383 // Various parameters
384 //////////////////////////////////////
385
386 /** IQ Resource Sharing Policy */
387 enum IQPolicy {
388 Dynamic,
389 Partitioned,
390 Threshold
391 };
392
393 /** IQ sharing policy for SMT. */
394 IQPolicy iqPolicy;
395
396 /** Number of Total Threads*/
397 ThreadID numThreads;
398
399 /** Pointer to list of active threads. */
400 std::list<ThreadID> *activeThreads;
401
402 /** Per Thread IQ count */
403 unsigned count[Impl::MaxThreads];
404
405 /** Max IQ Entries Per Thread */
406 unsigned maxEntries[Impl::MaxThreads];
407
408 /** Number of free IQ entries left. */
409 unsigned freeEntries;
410
411 /** The number of entries in the instruction queue. */
412 unsigned numEntries;
413
414 /** The total number of instructions that can be issued in one cycle. */
415 unsigned totalWidth;
416
417 /** The number of physical registers in the CPU. */
418 unsigned numPhysRegs;
419
420 /** The number of physical integer registers in the CPU. */
421 unsigned numPhysIntRegs;
422
423 /** The number of floating point registers in the CPU. */
424 unsigned numPhysFloatRegs;
425
426 /** Delay between commit stage and the IQ.
427 * @todo: Make there be a distinction between the delays within IEW.
428 */
429 Cycles commitToIEWDelay;
430
153 /** Number of entries needed for given amount of threads. */
154 int entryAmount(ThreadID num_threads);
155
156 /** Resets max entries for all threads. */
157 void resetEntries();
158
159 /** Returns total number of free entries. */
160 unsigned numFreeEntries();
161
162 /** Returns number of free entries for a thread. */
163 unsigned numFreeEntries(ThreadID tid);
164
165 /** Returns whether or not the IQ is full. */
166 bool isFull();
167
168 /** Returns whether or not the IQ is full for a specific thread. */
169 bool isFull(ThreadID tid);
170
171 /** Returns if there are any ready instructions in the IQ. */
172 bool hasReadyInsts();
173
174 /** Inserts a new instruction into the IQ. */
175 void insert(DynInstPtr &new_inst);
176
177 /** Inserts a new, non-speculative instruction into the IQ. */
178 void insertNonSpec(DynInstPtr &new_inst);
179
180 /** Inserts a memory or write barrier into the IQ to make sure
181 * loads and stores are ordered properly.
182 */
183 void insertBarrier(DynInstPtr &barr_inst);
184
185 /** Returns the oldest scheduled instruction, and removes it from
186 * the list of instructions waiting to execute.
187 */
188 DynInstPtr getInstToExecute();
189
190 /** Returns a memory instruction that was referred due to a delayed DTB
191 * translation if it is now ready to execute.
192 */
193 DynInstPtr getDeferredMemInstToExecute();
194
195 /**
196 * Records the instruction as the producer of a register without
197 * adding it to the rest of the IQ.
198 */
199 void recordProducer(DynInstPtr &inst)
200 { addToProducers(inst); }
201
202 /** Process FU completion event. */
203 void processFUCompletion(DynInstPtr &inst, int fu_idx);
204
205 /**
206 * Schedules ready instructions, adding the ready ones (oldest first) to
207 * the queue to execute.
208 */
209 void scheduleReadyInsts();
210
211 /** Schedules a single specific non-speculative instruction. */
212 void scheduleNonSpec(const InstSeqNum &inst);
213
214 /**
215 * Commits all instructions up to and including the given sequence number,
216 * for a specific thread.
217 */
218 void commit(const InstSeqNum &inst, ThreadID tid = 0);
219
220 /** Wakes all dependents of a completed instruction. */
221 int wakeDependents(DynInstPtr &completed_inst);
222
223 /** Adds a ready memory instruction to the ready list. */
224 void addReadyMemInst(DynInstPtr &ready_inst);
225
226 /**
227 * Reschedules a memory instruction. It will be ready to issue once
228 * replayMemInst() is called.
229 */
230 void rescheduleMemInst(DynInstPtr &resched_inst);
231
232 /** Replays a memory instruction. It must be rescheduled first. */
233 void replayMemInst(DynInstPtr &replay_inst);
234
235 /** Completes a memory operation. */
236 void completeMemInst(DynInstPtr &completed_inst);
237
238 /**
239 * Defers a memory instruction when its DTB translation incurs a hw
240 * page table walk.
241 */
242 void deferMemInst(DynInstPtr &deferred_inst);
243
244 /** Indicates an ordering violation between a store and a load. */
245 void violation(DynInstPtr &store, DynInstPtr &faulting_load);
246
247 /**
248 * Squashes instructions for a thread. Squashing information is obtained
249 * from the time buffer.
250 */
251 void squash(ThreadID tid);
252
253 /** Returns the number of used entries for a thread. */
254 unsigned getCount(ThreadID tid) { return count[tid]; };
255
256 /** Debug function to print all instructions. */
257 void printInsts();
258
259 private:
260 /** Does the actual squashing. */
261 void doSquash(ThreadID tid);
262
263 /////////////////////////
264 // Various pointers
265 /////////////////////////
266
267 /** Pointer to the CPU. */
268 O3CPU *cpu;
269
270 /** Cache interface. */
271 MemInterface *dcacheInterface;
272
273 /** Pointer to IEW stage. */
274 IEW *iewStage;
275
276 /** The memory dependence unit, which tracks/predicts memory dependences
277 * between instructions.
278 */
279 MemDepUnit memDepUnit[Impl::MaxThreads];
280
281 /** The queue to the execute stage. Issued instructions will be written
282 * into it.
283 */
284 TimeBuffer<IssueStruct> *issueToExecuteQueue;
285
286 /** The backwards time buffer. */
287 TimeBuffer<TimeStruct> *timeBuffer;
288
289 /** Wire to read information from timebuffer. */
290 typename TimeBuffer<TimeStruct>::wire fromCommit;
291
292 /** Function unit pool. */
293 FUPool *fuPool;
294
295 //////////////////////////////////////
296 // Instruction lists, ready queues, and ordering
297 //////////////////////////////////////
298
299 /** List of all the instructions in the IQ (some of which may be issued). */
300 std::list<DynInstPtr> instList[Impl::MaxThreads];
301
302 /** List of instructions that are ready to be executed. */
303 std::list<DynInstPtr> instsToExecute;
304
305 /** List of instructions waiting for their DTB translation to
306 * complete (hw page table walk in progress).
307 */
308 std::list<DynInstPtr> deferredMemInsts;
309
310 /**
311 * Struct for comparing entries to be added to the priority queue.
312 * This gives reverse ordering to the instructions in terms of
313 * sequence numbers: the instructions with smaller sequence
314 * numbers (and hence are older) will be at the top of the
315 * priority queue.
316 */
317 struct pqCompare {
318 bool operator() (const DynInstPtr &lhs, const DynInstPtr &rhs) const
319 {
320 return lhs->seqNum > rhs->seqNum;
321 }
322 };
323
324 typedef std::priority_queue<DynInstPtr, std::vector<DynInstPtr>, pqCompare>
325 ReadyInstQueue;
326
327 /** List of ready instructions, per op class. They are separated by op
328 * class to allow for easy mapping to FUs.
329 */
330 ReadyInstQueue readyInsts[Num_OpClasses];
331
332 /** List of non-speculative instructions that will be scheduled
333 * once the IQ gets a signal from commit. While it's redundant to
334 * have the key be a part of the value (the sequence number is stored
335 * inside of DynInst), when these instructions are woken up only
336 * the sequence number will be available. Thus it is most efficient to be
337 * able to search by the sequence number alone.
338 */
339 std::map<InstSeqNum, DynInstPtr> nonSpecInsts;
340
341 typedef typename std::map<InstSeqNum, DynInstPtr>::iterator NonSpecMapIt;
342
343 /** Entry for the list age ordering by op class. */
344 struct ListOrderEntry {
345 OpClass queueType;
346 InstSeqNum oldestInst;
347 };
348
349 /** List that contains the age order of the oldest instruction of each
350 * ready queue. Used to select the oldest instruction available
351 * among op classes.
352 * @todo: Might be better to just move these entries around instead
353 * of creating new ones every time the position changes due to an
354 * instruction issuing. Not sure std::list supports this.
355 */
356 std::list<ListOrderEntry> listOrder;
357
358 typedef typename std::list<ListOrderEntry>::iterator ListOrderIt;
359
360 /** Tracks if each ready queue is on the age order list. */
361 bool queueOnList[Num_OpClasses];
362
363 /** Iterators of each ready queue. Points to their spot in the age order
364 * list.
365 */
366 ListOrderIt readyIt[Num_OpClasses];
367
368 /** Add an op class to the age order list. */
369 void addToOrderList(OpClass op_class);
370
371 /**
372 * Called when the oldest instruction has been removed from a ready queue;
373 * this places that ready queue into the proper spot in the age order list.
374 */
375 void moveToYoungerInst(ListOrderIt age_order_it);
376
377 DependencyGraph<DynInstPtr> dependGraph;
378
379 //////////////////////////////////////
380 // Various parameters
381 //////////////////////////////////////
382
383 /** IQ Resource Sharing Policy */
384 enum IQPolicy {
385 Dynamic,
386 Partitioned,
387 Threshold
388 };
389
390 /** IQ sharing policy for SMT. */
391 IQPolicy iqPolicy;
392
393 /** Number of Total Threads*/
394 ThreadID numThreads;
395
396 /** Pointer to list of active threads. */
397 std::list<ThreadID> *activeThreads;
398
399 /** Per Thread IQ count */
400 unsigned count[Impl::MaxThreads];
401
402 /** Max IQ Entries Per Thread */
403 unsigned maxEntries[Impl::MaxThreads];
404
405 /** Number of free IQ entries left. */
406 unsigned freeEntries;
407
408 /** The number of entries in the instruction queue. */
409 unsigned numEntries;
410
411 /** The total number of instructions that can be issued in one cycle. */
412 unsigned totalWidth;
413
414 /** The number of physical registers in the CPU. */
415 unsigned numPhysRegs;
416
417 /** The number of physical integer registers in the CPU. */
418 unsigned numPhysIntRegs;
419
420 /** The number of floating point registers in the CPU. */
421 unsigned numPhysFloatRegs;
422
423 /** Delay between commit stage and the IQ.
424 * @todo: Make there be a distinction between the delays within IEW.
425 */
426 Cycles commitToIEWDelay;
427
431 /** Is the IQ switched out. */
432 bool switchedOut;
433
434 /** The sequence number of the squashed instruction. */
435 InstSeqNum squashedSeqNum[Impl::MaxThreads];
436
437 /** A cache of the recently woken registers. It is 1 if the register
438 * has been woken up recently, and 0 if the register has been added
439 * to the dependency graph and has not yet received its value. It
440 * is basically a secondary scoreboard, and should pretty much mirror
441 * the scoreboard that exists in the rename map.
442 */
443 std::vector<bool> regScoreboard;
444
445 /** Adds an instruction to the dependency graph, as a consumer. */
446 bool addToDependents(DynInstPtr &new_inst);
447
448 /** Adds an instruction to the dependency graph, as a producer. */
449 void addToProducers(DynInstPtr &new_inst);
450
451 /** Moves an instruction to the ready queue if it is ready. */
452 void addIfReady(DynInstPtr &inst);
453
454 /** Debugging function to count how many entries are in the IQ. It does
455 * a linear walk through the instructions, so do not call this function
456 * during normal execution.
457 */
458 int countInsts();
459
460 /** Debugging function to dump all the list sizes, as well as print
461 * out the list of nonspeculative instructions. Should not be used
462 * in any other capacity, but it has no harmful sideaffects.
463 */
464 void dumpLists();
465
466 /** Debugging function to dump out all instructions that are in the
467 * IQ.
468 */
469 void dumpInsts();
470
471 /** Stat for number of instructions added. */
472 Stats::Scalar iqInstsAdded;
473 /** Stat for number of non-speculative instructions added. */
474 Stats::Scalar iqNonSpecInstsAdded;
475
476 Stats::Scalar iqInstsIssued;
477 /** Stat for number of integer instructions issued. */
478 Stats::Scalar iqIntInstsIssued;
479 /** Stat for number of floating point instructions issued. */
480 Stats::Scalar iqFloatInstsIssued;
481 /** Stat for number of branch instructions issued. */
482 Stats::Scalar iqBranchInstsIssued;
483 /** Stat for number of memory instructions issued. */
484 Stats::Scalar iqMemInstsIssued;
485 /** Stat for number of miscellaneous instructions issued. */
486 Stats::Scalar iqMiscInstsIssued;
487 /** Stat for number of squashed instructions that were ready to issue. */
488 Stats::Scalar iqSquashedInstsIssued;
489 /** Stat for number of squashed instructions examined when squashing. */
490 Stats::Scalar iqSquashedInstsExamined;
491 /** Stat for number of squashed instruction operands examined when
492 * squashing.
493 */
494 Stats::Scalar iqSquashedOperandsExamined;
495 /** Stat for number of non-speculative instructions removed due to a squash.
496 */
497 Stats::Scalar iqSquashedNonSpecRemoved;
498 // Also include number of instructions rescheduled and replayed.
499
500 /** Distribution of number of instructions in the queue.
501 * @todo: Need to create struct to track the entry time for each
502 * instruction. */
503// Stats::VectorDistribution queueResDist;
504 /** Distribution of the number of instructions issued. */
505 Stats::Distribution numIssuedDist;
506 /** Distribution of the cycles it takes to issue an instruction.
507 * @todo: Need to create struct to track the ready time for each
508 * instruction. */
509// Stats::VectorDistribution issueDelayDist;
510
511 /** Number of times an instruction could not be issued because a
512 * FU was busy.
513 */
514 Stats::Vector statFuBusy;
515// Stats::Vector dist_unissued;
516 /** Stat for total number issued for each instruction type. */
517 Stats::Vector2d statIssuedInstType;
518
519 /** Number of instructions issued per cycle. */
520 Stats::Formula issueRate;
521
522 /** Number of times the FU was busy. */
523 Stats::Vector fuBusy;
524 /** Number of times the FU was busy per instruction issued. */
525 Stats::Formula fuBusyRate;
526 public:
527 Stats::Scalar intInstQueueReads;
528 Stats::Scalar intInstQueueWrites;
529 Stats::Scalar intInstQueueWakeupAccesses;
530 Stats::Scalar fpInstQueueReads;
531 Stats::Scalar fpInstQueueWrites;
532 Stats::Scalar fpInstQueueWakeupQccesses;
533
534 Stats::Scalar intAluAccesses;
535 Stats::Scalar fpAluAccesses;
536};
537
538#endif //__CPU_O3_INST_QUEUE_HH__
428 /** The sequence number of the squashed instruction. */
429 InstSeqNum squashedSeqNum[Impl::MaxThreads];
430
431 /** A cache of the recently woken registers. It is 1 if the register
432 * has been woken up recently, and 0 if the register has been added
433 * to the dependency graph and has not yet received its value. It
434 * is basically a secondary scoreboard, and should pretty much mirror
435 * the scoreboard that exists in the rename map.
436 */
437 std::vector<bool> regScoreboard;
438
439 /** Adds an instruction to the dependency graph, as a consumer. */
440 bool addToDependents(DynInstPtr &new_inst);
441
442 /** Adds an instruction to the dependency graph, as a producer. */
443 void addToProducers(DynInstPtr &new_inst);
444
445 /** Moves an instruction to the ready queue if it is ready. */
446 void addIfReady(DynInstPtr &inst);
447
448 /** Debugging function to count how many entries are in the IQ. It does
449 * a linear walk through the instructions, so do not call this function
450 * during normal execution.
451 */
452 int countInsts();
453
454 /** Debugging function to dump all the list sizes, as well as print
455 * out the list of nonspeculative instructions. Should not be used
456 * in any other capacity, but it has no harmful sideaffects.
457 */
458 void dumpLists();
459
460 /** Debugging function to dump out all instructions that are in the
461 * IQ.
462 */
463 void dumpInsts();
464
465 /** Stat for number of instructions added. */
466 Stats::Scalar iqInstsAdded;
467 /** Stat for number of non-speculative instructions added. */
468 Stats::Scalar iqNonSpecInstsAdded;
469
470 Stats::Scalar iqInstsIssued;
471 /** Stat for number of integer instructions issued. */
472 Stats::Scalar iqIntInstsIssued;
473 /** Stat for number of floating point instructions issued. */
474 Stats::Scalar iqFloatInstsIssued;
475 /** Stat for number of branch instructions issued. */
476 Stats::Scalar iqBranchInstsIssued;
477 /** Stat for number of memory instructions issued. */
478 Stats::Scalar iqMemInstsIssued;
479 /** Stat for number of miscellaneous instructions issued. */
480 Stats::Scalar iqMiscInstsIssued;
481 /** Stat for number of squashed instructions that were ready to issue. */
482 Stats::Scalar iqSquashedInstsIssued;
483 /** Stat for number of squashed instructions examined when squashing. */
484 Stats::Scalar iqSquashedInstsExamined;
485 /** Stat for number of squashed instruction operands examined when
486 * squashing.
487 */
488 Stats::Scalar iqSquashedOperandsExamined;
489 /** Stat for number of non-speculative instructions removed due to a squash.
490 */
491 Stats::Scalar iqSquashedNonSpecRemoved;
492 // Also include number of instructions rescheduled and replayed.
493
494 /** Distribution of number of instructions in the queue.
495 * @todo: Need to create struct to track the entry time for each
496 * instruction. */
497// Stats::VectorDistribution queueResDist;
498 /** Distribution of the number of instructions issued. */
499 Stats::Distribution numIssuedDist;
500 /** Distribution of the cycles it takes to issue an instruction.
501 * @todo: Need to create struct to track the ready time for each
502 * instruction. */
503// Stats::VectorDistribution issueDelayDist;
504
505 /** Number of times an instruction could not be issued because a
506 * FU was busy.
507 */
508 Stats::Vector statFuBusy;
509// Stats::Vector dist_unissued;
510 /** Stat for total number issued for each instruction type. */
511 Stats::Vector2d statIssuedInstType;
512
513 /** Number of instructions issued per cycle. */
514 Stats::Formula issueRate;
515
516 /** Number of times the FU was busy. */
517 Stats::Vector fuBusy;
518 /** Number of times the FU was busy per instruction issued. */
519 Stats::Formula fuBusyRate;
520 public:
521 Stats::Scalar intInstQueueReads;
522 Stats::Scalar intInstQueueWrites;
523 Stats::Scalar intInstQueueWakeupAccesses;
524 Stats::Scalar fpInstQueueReads;
525 Stats::Scalar fpInstQueueWrites;
526 Stats::Scalar fpInstQueueWakeupQccesses;
527
528 Stats::Scalar intAluAccesses;
529 Stats::Scalar fpAluAccesses;
530};
531
532#endif //__CPU_O3_INST_QUEUE_HH__