1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43// @todo: Fix the instantaneous communication among all the stages within
44// iew. There's a clear delay between issue and execute, yet backwards
45// communication happens simultaneously.
46
47#include <queue>
48
49#include "arch/utility.hh"
50#include "config/the_isa.hh"
51#include "cpu/o3/fu_pool.hh"
52#include "cpu/o3/iew.hh"
53#include "cpu/timebuf.hh"
54#include "params/DerivO3CPU.hh"
55
56using namespace std;
57
58template<class Impl>
59DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params)
60 : issueToExecQueue(params->backComSize, params->forwardComSize),
61 cpu(_cpu),
62 instQueue(_cpu, this, params),
63 ldstQueue(_cpu, this, params),
64 fuPool(params->fuPool),
65 commitToIEWDelay(params->commitToIEWDelay),
66 renameToIEWDelay(params->renameToIEWDelay),
67 issueToExecuteDelay(params->issueToExecuteDelay),
68 dispatchWidth(params->dispatchWidth),
69 issueWidth(params->issueWidth),
70 wbOutstanding(0),
71 wbWidth(params->wbWidth),
72 numThreads(params->numThreads),
73 switchedOut(false)
74{
75 _status = Active;
76 exeStatus = Running;
77 wbStatus = Idle;
78
79 // Setup wire to read instructions coming from issue.
80 fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
81
82 // Instruction queue needs the queue between issue and execute.
83 instQueue.setIssueToExecuteQueue(&issueToExecQueue);
84
85 for (ThreadID tid = 0; tid < numThreads; tid++) {
86 dispatchStatus[tid] = Running;
87 stalls[tid].commit = false;
88 fetchRedirect[tid] = false;
89 }
90
91 wbMax = wbWidth * params->wbDepth;
92
93 updateLSQNextCycle = false;
94
95 ableToIssue = true;
96
97 skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
98}
99
100template <class Impl>
101std::string
102DefaultIEW<Impl>::name() const
103{
104 return cpu->name() + ".iew";
105}
106
107template <class Impl>
108void
109DefaultIEW<Impl>::regStats()
110{
111 using namespace Stats;
112
113 instQueue.regStats();
114 ldstQueue.regStats();
115
116 iewIdleCycles
117 .name(name() + ".iewIdleCycles")
118 .desc("Number of cycles IEW is idle");
119
120 iewSquashCycles
121 .name(name() + ".iewSquashCycles")
122 .desc("Number of cycles IEW is squashing");
123
124 iewBlockCycles
125 .name(name() + ".iewBlockCycles")
126 .desc("Number of cycles IEW is blocking");
127
128 iewUnblockCycles
129 .name(name() + ".iewUnblockCycles")
130 .desc("Number of cycles IEW is unblocking");
131
132 iewDispatchedInsts
133 .name(name() + ".iewDispatchedInsts")
134 .desc("Number of instructions dispatched to IQ");
135
136 iewDispSquashedInsts
137 .name(name() + ".iewDispSquashedInsts")
138 .desc("Number of squashed instructions skipped by dispatch");
139
140 iewDispLoadInsts
141 .name(name() + ".iewDispLoadInsts")
142 .desc("Number of dispatched load instructions");
143
144 iewDispStoreInsts
145 .name(name() + ".iewDispStoreInsts")
146 .desc("Number of dispatched store instructions");
147
148 iewDispNonSpecInsts
149 .name(name() + ".iewDispNonSpecInsts")
150 .desc("Number of dispatched non-speculative instructions");
151
152 iewIQFullEvents
153 .name(name() + ".iewIQFullEvents")
154 .desc("Number of times the IQ has become full, causing a stall");
155
156 iewLSQFullEvents
157 .name(name() + ".iewLSQFullEvents")
158 .desc("Number of times the LSQ has become full, causing a stall");
159
160 memOrderViolationEvents
161 .name(name() + ".memOrderViolationEvents")
162 .desc("Number of memory order violations");
163
164 predictedTakenIncorrect
165 .name(name() + ".predictedTakenIncorrect")
166 .desc("Number of branches that were predicted taken incorrectly");
167
168 predictedNotTakenIncorrect
169 .name(name() + ".predictedNotTakenIncorrect")
170 .desc("Number of branches that were predicted not taken incorrectly");
171
172 branchMispredicts
173 .name(name() + ".branchMispredicts")
174 .desc("Number of branch mispredicts detected at execute");
175
176 branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
177
178 iewExecutedInsts
179 .name(name() + ".iewExecutedInsts")
180 .desc("Number of executed instructions");
181
182 iewExecLoadInsts
183 .init(cpu->numThreads)
184 .name(name() + ".iewExecLoadInsts")
185 .desc("Number of load instructions executed")
186 .flags(total);
187
188 iewExecSquashedInsts
189 .name(name() + ".iewExecSquashedInsts")
190 .desc("Number of squashed instructions skipped in execute");
191
192 iewExecutedSwp
193 .init(cpu->numThreads)
194 .name(name() + ".EXEC:swp")
195 .desc("number of swp insts executed")
196 .flags(total);
197
198 iewExecutedNop
199 .init(cpu->numThreads)
200 .name(name() + ".EXEC:nop")
201 .desc("number of nop insts executed")
202 .flags(total);
203
204 iewExecutedRefs
205 .init(cpu->numThreads)
206 .name(name() + ".EXEC:refs")
207 .desc("number of memory reference insts executed")
208 .flags(total);
209
210 iewExecutedBranches
211 .init(cpu->numThreads)
212 .name(name() + ".EXEC:branches")
213 .desc("Number of branches executed")
214 .flags(total);
215
216 iewExecStoreInsts
217 .name(name() + ".EXEC:stores")
218 .desc("Number of stores executed")
219 .flags(total);
220 iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
221
222 iewExecRate
223 .name(name() + ".EXEC:rate")
224 .desc("Inst execution rate")
225 .flags(total);
226
227 iewExecRate = iewExecutedInsts / cpu->numCycles;
228
229 iewInstsToCommit
230 .init(cpu->numThreads)
231 .name(name() + ".WB:sent")
232 .desc("cumulative count of insts sent to commit")
233 .flags(total);
234
235 writebackCount
236 .init(cpu->numThreads)
237 .name(name() + ".WB:count")
238 .desc("cumulative count of insts written-back")
239 .flags(total);
240
241 producerInst
242 .init(cpu->numThreads)
243 .name(name() + ".WB:producers")
244 .desc("num instructions producing a value")
245 .flags(total);
246
247 consumerInst
248 .init(cpu->numThreads)
249 .name(name() + ".WB:consumers")
250 .desc("num instructions consuming a value")
251 .flags(total);
252
253 wbPenalized
254 .init(cpu->numThreads)
255 .name(name() + ".WB:penalized")
256 .desc("number of instrctions required to write to 'other' IQ")
257 .flags(total);
258
259 wbPenalizedRate
260 .name(name() + ".WB:penalized_rate")
261 .desc ("fraction of instructions written-back that wrote to 'other' IQ")
262 .flags(total);
263
264 wbPenalizedRate = wbPenalized / writebackCount;
265
266 wbFanout
267 .name(name() + ".WB:fanout")
268 .desc("average fanout of values written-back")
269 .flags(total);
270
271 wbFanout = producerInst / consumerInst;
272
273 wbRate
274 .name(name() + ".WB:rate")
275 .desc("insts written-back per cycle")
276 .flags(total);
277 wbRate = writebackCount / cpu->numCycles;
278}
279
280template<class Impl>
281void
282DefaultIEW<Impl>::initStage()
283{
284 for (ThreadID tid = 0; tid < numThreads; tid++) {
285 toRename->iewInfo[tid].usedIQ = true;
286 toRename->iewInfo[tid].freeIQEntries =
287 instQueue.numFreeEntries(tid);
288
289 toRename->iewInfo[tid].usedLSQ = true;
290 toRename->iewInfo[tid].freeLSQEntries =
291 ldstQueue.numFreeEntries(tid);
292 }
293
294 cpu->activateStage(O3CPU::IEWIdx);
295}
296
297template<class Impl>
298void
299DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
300{
301 timeBuffer = tb_ptr;
302
303 // Setup wire to read information from time buffer, from commit.
304 fromCommit = timeBuffer->getWire(-commitToIEWDelay);
305
306 // Setup wire to write information back to previous stages.
307 toRename = timeBuffer->getWire(0);
308
309 toFetch = timeBuffer->getWire(0);
310
311 // Instruction queue also needs main time buffer.
312 instQueue.setTimeBuffer(tb_ptr);
313}
314
315template<class Impl>
316void
317DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
318{
319 renameQueue = rq_ptr;
320
321 // Setup wire to read information from rename queue.
322 fromRename = renameQueue->getWire(-renameToIEWDelay);
323}
324
325template<class Impl>
326void
327DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
328{
329 iewQueue = iq_ptr;
330
331 // Setup wire to write instructions to commit.
332 toCommit = iewQueue->getWire(0);
333}
334
335template<class Impl>
336void
337DefaultIEW<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
338{
339 activeThreads = at_ptr;
340
341 ldstQueue.setActiveThreads(at_ptr);
342 instQueue.setActiveThreads(at_ptr);
343}
344
345template<class Impl>
346void
347DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
348{
349 scoreboard = sb_ptr;
350}
351
352template <class Impl>
353bool
354DefaultIEW<Impl>::drain()
355{
356 // IEW is ready to drain at any time.
357 cpu->signalDrained();
358 return true;
359}
360
361template <class Impl>
362void
363DefaultIEW<Impl>::resume()
364{
365}
366
367template <class Impl>
368void
369DefaultIEW<Impl>::switchOut()
370{
371 // Clear any state.
372 switchedOut = true;
373 assert(insts[0].empty());
374 assert(skidBuffer[0].empty());
375
376 instQueue.switchOut();
377 ldstQueue.switchOut();
378 fuPool->switchOut();
379
380 for (ThreadID tid = 0; tid < numThreads; tid++) {
381 while (!insts[tid].empty())
382 insts[tid].pop();
383 while (!skidBuffer[tid].empty())
384 skidBuffer[tid].pop();
385 }
386}
387
388template <class Impl>
389void
390DefaultIEW<Impl>::takeOverFrom()
391{
392 // Reset all state.
393 _status = Active;
394 exeStatus = Running;
395 wbStatus = Idle;
396 switchedOut = false;
397
398 instQueue.takeOverFrom();
399 ldstQueue.takeOverFrom();
400 fuPool->takeOverFrom();
401
402 initStage();
403 cpu->activityThisCycle();
404
405 for (ThreadID tid = 0; tid < numThreads; tid++) {
406 dispatchStatus[tid] = Running;
407 stalls[tid].commit = false;
408 fetchRedirect[tid] = false;
409 }
410
411 updateLSQNextCycle = false;
412
413 for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
414 issueToExecQueue.advance();
415 }
416}
417
418template<class Impl>
419void
420DefaultIEW<Impl>::squash(ThreadID tid)
421{
422 DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", tid);
423
424 // Tell the IQ to start squashing.
425 instQueue.squash(tid);
426
427 // Tell the LDSTQ to start squashing.
428 ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
429 updatedQueues = true;
430
431 // Clear the skid buffer in case it has any data in it.
432 DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
433 tid, fromCommit->commitInfo[tid].doneSeqNum);
434
435 while (!skidBuffer[tid].empty()) {
436 if (skidBuffer[tid].front()->isLoad() ||
437 skidBuffer[tid].front()->isStore() ) {
438 toRename->iewInfo[tid].dispatchedToLSQ++;
439 }
440
441 toRename->iewInfo[tid].dispatched++;
442
443 skidBuffer[tid].pop();
444 }
445
446 emptyRenameInsts(tid);
447}
448
449template<class Impl>
450void
451DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, ThreadID tid)
452{
453 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %s "
454 "[sn:%i].\n", tid, inst->pcState(), inst->seqNum);
455
456 if (toCommit->squash[tid] == false ||
457 inst->seqNum < toCommit->squashedSeqNum[tid]) {
458 toCommit->squash[tid] = true;
459 toCommit->squashedSeqNum[tid] = inst->seqNum;
460 toCommit->branchTaken[tid] = inst->pcState().branching();
461
462 TheISA::PCState pc = inst->pcState();
463 TheISA::advancePC(pc, inst->staticInst);
464
465 toCommit->pc[tid] = pc;
466 toCommit->mispredictInst[tid] = inst;
467 toCommit->includeSquashInst[tid] = false;
468
469 wroteToTimeBuffer = true;
470 }
471
472}
473
474template<class Impl>
475void
476DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, ThreadID tid)
477{
478 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
479 "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
480
481 if (toCommit->squash[tid] == false ||
482 inst->seqNum < toCommit->squashedSeqNum[tid]) {
483 toCommit->squash[tid] = true;
484 toCommit->squashedSeqNum[tid] = inst->seqNum;
485 TheISA::PCState pc = inst->pcState();
486 TheISA::advancePC(pc, inst->staticInst);
487 toCommit->pc[tid] = pc;
488 toCommit->mispredictInst[tid] = NULL;
489
490 toCommit->includeSquashInst[tid] = false;
491
492 wroteToTimeBuffer = true;
493 }
494}
495
496template<class Impl>
497void
498DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, ThreadID tid)
499{
500 DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
501 "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
502 if (toCommit->squash[tid] == false ||
503 inst->seqNum < toCommit->squashedSeqNum[tid]) {
504 toCommit->squash[tid] = true;
505
506 toCommit->squashedSeqNum[tid] = inst->seqNum;
507 toCommit->pc[tid] = inst->pcState();
508 toCommit->mispredictInst[tid] = NULL;
509
510 // Must include the broadcasted SN in the squash.
511 toCommit->includeSquashInst[tid] = true;
512
513 ldstQueue.setLoadBlockedHandled(tid);
514
515 wroteToTimeBuffer = true;
516 }
517}
518
519template<class Impl>
520void
521DefaultIEW<Impl>::block(ThreadID tid)
522{
523 DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
524
525 if (dispatchStatus[tid] != Blocked &&
526 dispatchStatus[tid] != Unblocking) {
527 toRename->iewBlock[tid] = true;
528 wroteToTimeBuffer = true;
529 }
530
531 // Add the current inputs to the skid buffer so they can be
532 // reprocessed when this stage unblocks.
533 skidInsert(tid);
534
535 dispatchStatus[tid] = Blocked;
536}
537
538template<class Impl>
539void
540DefaultIEW<Impl>::unblock(ThreadID tid)
541{
542 DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
543 "buffer %u.\n",tid, tid);
544
545 // If the skid bufffer is empty, signal back to previous stages to unblock.
546 // Also switch status to running.
547 if (skidBuffer[tid].empty()) {
548 toRename->iewUnblock[tid] = true;
549 wroteToTimeBuffer = true;
550 DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
551 dispatchStatus[tid] = Running;
552 }
553}
554
555template<class Impl>
556void
557DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
558{
559 instQueue.wakeDependents(inst);
560}
561
562template<class Impl>
563void
564DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
565{
566 instQueue.rescheduleMemInst(inst);
567}
568
569template<class Impl>
570void
571DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
572{
573 instQueue.replayMemInst(inst);
574}
575
576template<class Impl>
577void
578DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
579{
580 // This function should not be called after writebackInsts in a
581 // single cycle. That will cause problems with an instruction
582 // being added to the queue to commit without being processed by
583 // writebackInsts prior to being sent to commit.
584
585 // First check the time slot that this instruction will write
586 // to. If there are free write ports at the time, then go ahead
587 // and write the instruction to that time. If there are not,
588 // keep looking back to see where's the first time there's a
589 // free slot.
590 while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
591 ++wbNumInst;
592 if (wbNumInst == wbWidth) {
593 ++wbCycle;
594 wbNumInst = 0;
595 }
596
597 assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
598 }
599
600 DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
601 wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
602 // Add finished instruction to queue to commit.
603 (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
604 (*iewQueue)[wbCycle].size++;
605}
606
607template <class Impl>
608unsigned
609DefaultIEW<Impl>::validInstsFromRename()
610{
611 unsigned inst_count = 0;
612
613 for (int i=0; i<fromRename->size; i++) {
614 if (!fromRename->insts[i]->isSquashed())
615 inst_count++;
616 }
617
618 return inst_count;
619}
620
621template<class Impl>
622void
623DefaultIEW<Impl>::skidInsert(ThreadID tid)
624{
625 DynInstPtr inst = NULL;
626
627 while (!insts[tid].empty()) {
628 inst = insts[tid].front();
629
630 insts[tid].pop();
631
632 DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%s into "
633 "dispatch skidBuffer %i\n",tid, inst->seqNum,
634 inst->pcState(),tid);
635
636 skidBuffer[tid].push(inst);
637 }
638
639 assert(skidBuffer[tid].size() <= skidBufferMax &&
640 "Skidbuffer Exceeded Max Size");
641}
642
643template<class Impl>
644int
645DefaultIEW<Impl>::skidCount()
646{
647 int max=0;
648
649 list<ThreadID>::iterator threads = activeThreads->begin();
650 list<ThreadID>::iterator end = activeThreads->end();
651
652 while (threads != end) {
653 ThreadID tid = *threads++;
654 unsigned thread_count = skidBuffer[tid].size();
655 if (max < thread_count)
656 max = thread_count;
657 }
658
659 return max;
660}
661
662template<class Impl>
663bool
664DefaultIEW<Impl>::skidsEmpty()
665{
666 list<ThreadID>::iterator threads = activeThreads->begin();
667 list<ThreadID>::iterator end = activeThreads->end();
668
669 while (threads != end) {
670 ThreadID tid = *threads++;
671
672 if (!skidBuffer[tid].empty())
673 return false;
674 }
675
676 return true;
677}
678
679template <class Impl>
680void
681DefaultIEW<Impl>::updateStatus()
682{
683 bool any_unblocking = false;
684
685 list<ThreadID>::iterator threads = activeThreads->begin();
686 list<ThreadID>::iterator end = activeThreads->end();
687
688 while (threads != end) {
689 ThreadID tid = *threads++;
690
691 if (dispatchStatus[tid] == Unblocking) {
692 any_unblocking = true;
693 break;
694 }
695 }
696
697 // If there are no ready instructions waiting to be scheduled by the IQ,
698 // and there's no stores waiting to write back, and dispatch is not
699 // unblocking, then there is no internal activity for the IEW stage.
700 instQueue.intInstQueueReads++;
701 if (_status == Active && !instQueue.hasReadyInsts() &&
702 !ldstQueue.willWB() && !any_unblocking) {
703 DPRINTF(IEW, "IEW switching to idle\n");
704
705 deactivateStage();
706
707 _status = Inactive;
708 } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
709 ldstQueue.willWB() ||
710 any_unblocking)) {
711 // Otherwise there is internal activity. Set to active.
712 DPRINTF(IEW, "IEW switching to active\n");
713
714 activateStage();
715
716 _status = Active;
717 }
718}
719
720template <class Impl>
721void
722DefaultIEW<Impl>::resetEntries()
723{
724 instQueue.resetEntries();
725 ldstQueue.resetEntries();
726}
727
728template <class Impl>
729void
730DefaultIEW<Impl>::readStallSignals(ThreadID tid)
731{
732 if (fromCommit->commitBlock[tid]) {
733 stalls[tid].commit = true;
734 }
735
736 if (fromCommit->commitUnblock[tid]) {
737 assert(stalls[tid].commit);
738 stalls[tid].commit = false;
739 }
740}
741
742template <class Impl>
743bool
744DefaultIEW<Impl>::checkStall(ThreadID tid)
745{
746 bool ret_val(false);
747
748 if (stalls[tid].commit) {
749 DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
750 ret_val = true;
751 } else if (instQueue.isFull(tid)) {
752 DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid);
753 ret_val = true;
754 } else if (ldstQueue.isFull(tid)) {
755 DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
756
757 if (ldstQueue.numLoads(tid) > 0 ) {
758
759 DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
760 tid,ldstQueue.getLoadHeadSeqNum(tid));
761 }
762
763 if (ldstQueue.numStores(tid) > 0) {
764
765 DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
766 tid,ldstQueue.getStoreHeadSeqNum(tid));
767 }
768
769 ret_val = true;
770 } else if (ldstQueue.isStalled(tid)) {
771 DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
772 ret_val = true;
773 }
774
775 return ret_val;
776}
777
778template <class Impl>
779void
780DefaultIEW<Impl>::checkSignalsAndUpdate(ThreadID tid)
781{
782 // Check if there's a squash signal, squash if there is
783 // Check stall signals, block if there is.
784 // If status was Blocked
785 // if so then go to unblocking
786 // If status was Squashing
787 // check if squashing is not high. Switch to running this cycle.
788
789 readStallSignals(tid);
790
791 if (fromCommit->commitInfo[tid].squash) {
792 squash(tid);
793
794 if (dispatchStatus[tid] == Blocked ||
795 dispatchStatus[tid] == Unblocking) {
796 toRename->iewUnblock[tid] = true;
797 wroteToTimeBuffer = true;
798 }
799
800 dispatchStatus[tid] = Squashing;
801 fetchRedirect[tid] = false;
802 return;
803 }
804
805 if (fromCommit->commitInfo[tid].robSquashing) {
806 DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
807
808 dispatchStatus[tid] = Squashing;
809 emptyRenameInsts(tid);
810 wroteToTimeBuffer = true;
811 return;
812 }
813
814 if (checkStall(tid)) {
815 block(tid);
816 dispatchStatus[tid] = Blocked;
817 return;
818 }
819
820 if (dispatchStatus[tid] == Blocked) {
821 // Status from previous cycle was blocked, but there are no more stall
822 // conditions. Switch over to unblocking.
823 DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
824 tid);
825
826 dispatchStatus[tid] = Unblocking;
827
828 unblock(tid);
829
830 return;
831 }
832
833 if (dispatchStatus[tid] == Squashing) {
834 // Switch status to running if rename isn't being told to block or
835 // squash this cycle.
836 DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
837 tid);
838
839 dispatchStatus[tid] = Running;
840
841 return;
842 }
843}
844
845template <class Impl>
846void
847DefaultIEW<Impl>::sortInsts()
848{
849 int insts_from_rename = fromRename->size;
850#ifdef DEBUG
851 for (ThreadID tid = 0; tid < numThreads; tid++)
852 assert(insts[tid].empty());
853#endif
854 for (int i = 0; i < insts_from_rename; ++i) {
855 insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
856 }
857}
858
859template <class Impl>
860void
861DefaultIEW<Impl>::emptyRenameInsts(ThreadID tid)
862{
863 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid);
864
865 while (!insts[tid].empty()) {
866
867 if (insts[tid].front()->isLoad() ||
868 insts[tid].front()->isStore() ) {
869 toRename->iewInfo[tid].dispatchedToLSQ++;
870 }
871
872 toRename->iewInfo[tid].dispatched++;
873
874 insts[tid].pop();
875 }
876}
877
878template <class Impl>
879void
880DefaultIEW<Impl>::wakeCPU()
881{
882 cpu->wakeCPU();
883}
884
885template <class Impl>
886void
887DefaultIEW<Impl>::activityThisCycle()
888{
889 DPRINTF(Activity, "Activity this cycle.\n");
890 cpu->activityThisCycle();
891}
892
893template <class Impl>
894inline void
895DefaultIEW<Impl>::activateStage()
896{
897 DPRINTF(Activity, "Activating stage.\n");
898 cpu->activateStage(O3CPU::IEWIdx);
899}
900
901template <class Impl>
902inline void
903DefaultIEW<Impl>::deactivateStage()
904{
905 DPRINTF(Activity, "Deactivating stage.\n");
906 cpu->deactivateStage(O3CPU::IEWIdx);
907}
908
909template<class Impl>
910void
911DefaultIEW<Impl>::dispatch(ThreadID tid)
912{
913 // If status is Running or idle,
914 // call dispatchInsts()
915 // If status is Unblocking,
916 // buffer any instructions coming from rename
917 // continue trying to empty skid buffer
918 // check if stall conditions have passed
919
920 if (dispatchStatus[tid] == Blocked) {
921 ++iewBlockCycles;
922
923 } else if (dispatchStatus[tid] == Squashing) {
924 ++iewSquashCycles;
925 }
926
927 // Dispatch should try to dispatch as many instructions as its bandwidth
928 // will allow, as long as it is not currently blocked.
929 if (dispatchStatus[tid] == Running ||
930 dispatchStatus[tid] == Idle) {
931 DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
932 "dispatch.\n", tid);
933
934 dispatchInsts(tid);
935 } else if (dispatchStatus[tid] == Unblocking) {
936 // Make sure that the skid buffer has something in it if the
937 // status is unblocking.
938 assert(!skidsEmpty());
939
940 // If the status was unblocking, then instructions from the skid
941 // buffer were used. Remove those instructions and handle
942 // the rest of unblocking.
943 dispatchInsts(tid);
944
945 ++iewUnblockCycles;
946
947 if (validInstsFromRename()) {
948 // Add the current inputs to the skid buffer so they can be
949 // reprocessed when this stage unblocks.
950 skidInsert(tid);
951 }
952
953 unblock(tid);
954 }
955}
956
957template <class Impl>
958void
959DefaultIEW<Impl>::dispatchInsts(ThreadID tid)
960{
961 // Obtain instructions from skid buffer if unblocking, or queue from rename
962 // otherwise.
963 std::queue<DynInstPtr> &insts_to_dispatch =
964 dispatchStatus[tid] == Unblocking ?
965 skidBuffer[tid] : insts[tid];
966
967 int insts_to_add = insts_to_dispatch.size();
968
969 DynInstPtr inst;
970 bool add_to_iq = false;
971 int dis_num_inst = 0;
972
973 // Loop through the instructions, putting them in the instruction
974 // queue.
975 for ( ; dis_num_inst < insts_to_add &&
976 dis_num_inst < dispatchWidth;
977 ++dis_num_inst)
978 {
979 inst = insts_to_dispatch.front();
980
981 if (dispatchStatus[tid] == Unblocking) {
982 DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
983 "buffer\n", tid);
984 }
985
986 // Make sure there's a valid instruction there.
987 assert(inst);
988
989 DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %s [sn:%lli] [tid:%i] to "
990 "IQ.\n",
991 tid, inst->pcState(), inst->seqNum, inst->threadNumber);
992
993 // Be sure to mark these instructions as ready so that the
994 // commit stage can go ahead and execute them, and mark
995 // them as issued so the IQ doesn't reprocess them.
996
997 // Check for squashed instructions.
998 if (inst->isSquashed()) {
999 DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
1000 "not adding to IQ.\n", tid);
1001
1002 ++iewDispSquashedInsts;
1003
1004 insts_to_dispatch.pop();
1005
1006 //Tell Rename That An Instruction has been processed
1007 if (inst->isLoad() || inst->isStore()) {
1008 toRename->iewInfo[tid].dispatchedToLSQ++;
1009 }
1010 toRename->iewInfo[tid].dispatched++;
1011
1012 continue;
1013 }
1014
1015 // Check for full conditions.
1016 if (instQueue.isFull(tid)) {
1017 DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1018
1019 // Call function to start blocking.
1020 block(tid);
1021
1022 // Set unblock to false. Special case where we are using
1023 // skidbuffer (unblocking) instructions but then we still
1024 // get full in the IQ.
1025 toRename->iewUnblock[tid] = false;
1026
1027 ++iewIQFullEvents;
1028 break;
1029 } else if (ldstQueue.isFull(tid)) {
1030 DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1031
1032 // Call function to start blocking.
1033 block(tid);
1034
1035 // Set unblock to false. Special case where we are using
1036 // skidbuffer (unblocking) instructions but then we still
1037 // get full in the IQ.
1038 toRename->iewUnblock[tid] = false;
1039
1040 ++iewLSQFullEvents;
1041 break;
1042 }
1043
1044 // Otherwise issue the instruction just fine.
1045 if (inst->isLoad()) {
1046 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1047 "encountered, adding to LSQ.\n", tid);
1048
1049 // Reserve a spot in the load store queue for this
1050 // memory access.
1051 ldstQueue.insertLoad(inst);
1052
1053 ++iewDispLoadInsts;
1054
1055 add_to_iq = true;
1056
1057 toRename->iewInfo[tid].dispatchedToLSQ++;
1058 } else if (inst->isStore()) {
1059 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1060 "encountered, adding to LSQ.\n", tid);
1061
1062 ldstQueue.insertStore(inst);
1063
1064 ++iewDispStoreInsts;
1065
1066 if (inst->isStoreConditional()) {
1067 // Store conditionals need to be set as "canCommit()"
1068 // so that commit can process them when they reach the
1069 // head of commit.
1070 // @todo: This is somewhat specific to Alpha.
1071 inst->setCanCommit();
1072 instQueue.insertNonSpec(inst);
1073 add_to_iq = false;
1074
1075 ++iewDispNonSpecInsts;
1076 } else {
1077 add_to_iq = true;
1078 }
1079
1080 toRename->iewInfo[tid].dispatchedToLSQ++;
1081 } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1082 // Same as non-speculative stores.
1083 inst->setCanCommit();
1084 instQueue.insertBarrier(inst);
1085 add_to_iq = false;
1086 } else if (inst->isNop()) {
1087 DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1088 "skipping.\n", tid);
1089
1090 inst->setIssued();
1091 inst->setExecuted();
1092 inst->setCanCommit();
1093
1094 instQueue.recordProducer(inst);
1095
1096 iewExecutedNop[tid]++;
1097
1098 add_to_iq = false;
1099 } else if (inst->isExecuted()) {
1100 assert(0 && "Instruction shouldn't be executed.\n");
1101 DPRINTF(IEW, "Issue: Executed branch encountered, "
1102 "skipping.\n");
1103
1104 inst->setIssued();
1105 inst->setCanCommit();
1106
1107 instQueue.recordProducer(inst);
1108
1109 add_to_iq = false;
1110 } else {
1111 add_to_iq = true;
1112 }
1113 if (inst->isNonSpeculative()) {
1114 DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1115 "encountered, skipping.\n", tid);
1116
1117 // Same as non-speculative stores.
1118 inst->setCanCommit();
1119
1120 // Specifically insert it as nonspeculative.
1121 instQueue.insertNonSpec(inst);
1122
1123 ++iewDispNonSpecInsts;
1124
1125 add_to_iq = false;
1126 }
1127
1128 // If the instruction queue is not full, then add the
1129 // instruction.
1130 if (add_to_iq) {
1131 instQueue.insert(inst);
1132 }
1133
1134 insts_to_dispatch.pop();
1135
1136 toRename->iewInfo[tid].dispatched++;
1137
1138 ++iewDispatchedInsts;
1139 }
1140
1141 if (!insts_to_dispatch.empty()) {
1142 DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1143 block(tid);
1144 toRename->iewUnblock[tid] = false;
1145 }
1146
1147 if (dispatchStatus[tid] == Idle && dis_num_inst) {
1148 dispatchStatus[tid] = Running;
1149
1150 updatedQueues = true;
1151 }
1152
1153 dis_num_inst = 0;
1154}
1155
1156template <class Impl>
1157void
1158DefaultIEW<Impl>::printAvailableInsts()
1159{
1160 int inst = 0;
1161
1162 std::cout << "Available Instructions: ";
1163
1164 while (fromIssue->insts[inst]) {
1165
1166 if (inst%3==0) std::cout << "\n\t";
1167
1168 std::cout << "PC: " << fromIssue->insts[inst]->pcState()
1169 << " TN: " << fromIssue->insts[inst]->threadNumber
1170 << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1171
1172 inst++;
1173
1174 }
1175
1176 std::cout << "\n";
1177}
1178
1179template <class Impl>
1180void
1181DefaultIEW<Impl>::executeInsts()
1182{
1183 wbNumInst = 0;
1184 wbCycle = 0;
1185
1186 list<ThreadID>::iterator threads = activeThreads->begin();
1187 list<ThreadID>::iterator end = activeThreads->end();
1188
1189 while (threads != end) {
1190 ThreadID tid = *threads++;
1191 fetchRedirect[tid] = false;
1192 }
1193
1194 // Uncomment this if you want to see all available instructions.
1195 // @todo This doesn't actually work anymore, we should fix it.
1196// printAvailableInsts();
1197
1198 // Execute/writeback any instructions that are available.
1199 int insts_to_execute = fromIssue->size;
1200 int inst_num = 0;
1201 for (; inst_num < insts_to_execute;
1202 ++inst_num) {
1203
1204 DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1205
1206 DynInstPtr inst = instQueue.getInstToExecute();
1207
1208 DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%i].\n",
1209 inst->pcState(), inst->threadNumber,inst->seqNum);
1210
1211 // Check if the instruction is squashed; if so then skip it
1212 if (inst->isSquashed()) {
1213 DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1214
1215 // Consider this instruction executed so that commit can go
1216 // ahead and retire the instruction.
1217 inst->setExecuted();
1218
1219 // Not sure if I should set this here or just let commit try to
1220 // commit any squashed instructions. I like the latter a bit more.
1221 inst->setCanCommit();
1222
1223 ++iewExecSquashedInsts;
1224
1225 decrWb(inst->seqNum);
1226 continue;
1227 }
1228
1229 Fault fault = NoFault;
1230
1231 // Execute instruction.
1232 // Note that if the instruction faults, it will be handled
1233 // at the commit stage.
1234 if (inst->isMemRef()) {
1235 DPRINTF(IEW, "Execute: Calculating address for memory "
1236 "reference.\n");
1237
1238 // Tell the LDSTQ to execute this instruction (if it is a load).
1239 if (inst->isLoad()) {
1240 // Loads will mark themselves as executed, and their writeback
1241 // event adds the instruction to the queue to commit
1242 fault = ldstQueue.executeLoad(inst);
1243
1244 if (inst->isTranslationDelayed() &&
1245 fault == NoFault) {
1246 // A hw page table walk is currently going on; the
1247 // instruction must be deferred.
1248 DPRINTF(IEW, "Execute: Delayed translation, deferring "
1249 "load.\n");
1250 instQueue.deferMemInst(inst);
1251 continue;
1252 }
1253
1254 if (inst->isDataPrefetch() || inst->isInstPrefetch()) {
1255 inst->fault = NoFault;
1256 }
1257 } else if (inst->isStore()) {
1258 fault = ldstQueue.executeStore(inst);
1259
1260 if (inst->isTranslationDelayed() &&
1261 fault == NoFault) {
1262 // A hw page table walk is currently going on; the
1263 // instruction must be deferred.
1264 DPRINTF(IEW, "Execute: Delayed translation, deferring "
1265 "store.\n");
1266 instQueue.deferMemInst(inst);
1267 continue;
1268 }
1269
1270 // If the store had a fault then it may not have a mem req
1271 if (fault != NoFault || inst->readPredicate() == false ||
1272 !inst->isStoreConditional()) {
1273 // If the instruction faulted, then we need to send it along
1274 // to commit without the instruction completing.
1275 // Send this instruction to commit, also make sure iew stage
1276 // realizes there is activity.
1277 inst->setExecuted();
1278 instToCommit(inst);
1279 activityThisCycle();
1280 }
1281
1282 // Store conditionals will mark themselves as
1283 // executed, and their writeback event will add the
1284 // instruction to the queue to commit.
1285 } else {
1286 panic("Unexpected memory type!\n");
1287 }
1288
1289 } else {
1290 // If the instruction has already faulted, then skip executing it.
1291 // Such case can happen when it faulted during ITLB translation.
1292 // If we execute the instruction (even if it's a nop) the fault
1293 // will be replaced and we will lose it.
1294 if (inst->getFault() == NoFault) {
1295 inst->execute();
1296 if (inst->readPredicate() == false)
1297 inst->forwardOldRegs();
1298 }
1299
1300 inst->setExecuted();
1301
1302 instToCommit(inst);
1303 }
1304
1305 updateExeInstStats(inst);
1306
1307 // Check if branch prediction was correct, if not then we need
1308 // to tell commit to squash in flight instructions. Only
1309 // handle this if there hasn't already been something that
1310 // redirects fetch in this group of instructions.
1311
1312 // This probably needs to prioritize the redirects if a different
1313 // scheduler is used. Currently the scheduler schedules the oldest
1314 // instruction first, so the branch resolution order will be correct.
1315 ThreadID tid = inst->threadNumber;
1316
1317 if (!fetchRedirect[tid] ||
1318 !toCommit->squash[tid] ||
1319 toCommit->squashedSeqNum[tid] > inst->seqNum) {
1320
1321 // Prevent testing for misprediction on load instructions,
1322 // that have not been executed.
1323 bool loadNotExecuted = !inst->isExecuted() && inst->isLoad();
1324
1325 if (inst->mispredicted() && !loadNotExecuted) {
1326 fetchRedirect[tid] = true;
1327
1328 DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1329 DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1330 inst->predInstAddr(), inst->predNextInstAddr());
1331 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %s.\n",
1332 inst->pcState(), inst->nextInstAddr());
1333 // If incorrect, then signal the ROB that it must be squashed.
1334 squashDueToBranch(inst, tid);
1335
1336 if (inst->readPredTaken()) {
1337 predictedTakenIncorrect++;
1338 } else {
1339 predictedNotTakenIncorrect++;
1340 }
1341 } else if (ldstQueue.violation(tid)) {
1342 assert(inst->isMemRef());
1343 // If there was an ordering violation, then get the
1344 // DynInst that caused the violation. Note that this
1345 // clears the violation signal.
1346 DynInstPtr violator;
1347 violator = ldstQueue.getMemDepViolator(tid);
1348
1349 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s "
1350 "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n",
1351 violator->pcState(), violator->seqNum,
1352 inst->pcState(), inst->seqNum, inst->physEffAddr);
1353
1354 fetchRedirect[tid] = true;
1355
1356 // Tell the instruction queue that a violation has occured.
1357 instQueue.violation(inst, violator);
1358
1359 // Squash.
1360 squashDueToMemOrder(inst,tid);
1361
1362 ++memOrderViolationEvents;
1363 } else if (ldstQueue.loadBlocked(tid) &&
1364 !ldstQueue.isLoadBlockedHandled(tid)) {
1365 fetchRedirect[tid] = true;
1366
1367 DPRINTF(IEW, "Load operation couldn't execute because the "
1368 "memory system is blocked. PC: %s [sn:%lli]\n",
1369 inst->pcState(), inst->seqNum);
1370
1371 squashDueToMemBlocked(inst, tid);
1372 }
1373 } else {
1374 // Reset any state associated with redirects that will not
1375 // be used.
1376 if (ldstQueue.violation(tid)) {
1377 assert(inst->isMemRef());
1378
1379 DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1380
1381 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
1382 "%s, inst PC: %s. Addr is: %#x.\n",
1383 violator->pcState(), inst->pcState(),
1384 inst->physEffAddr);
1385 DPRINTF(IEW, "Violation will not be handled because "
1386 "already squashing\n");
1387
1388 ++memOrderViolationEvents;
1389 }
1390 if (ldstQueue.loadBlocked(tid) &&
1391 !ldstQueue.isLoadBlockedHandled(tid)) {
1392 DPRINTF(IEW, "Load operation couldn't execute because the "
1393 "memory system is blocked. PC: %s [sn:%lli]\n",
1394 inst->pcState(), inst->seqNum);
1395 DPRINTF(IEW, "Blocked load will not be handled because "
1396 "already squashing\n");
1397
1398 ldstQueue.setLoadBlockedHandled(tid);
1399 }
1400
1401 }
1402 }
1403
1404 // Update and record activity if we processed any instructions.
1405 if (inst_num) {
1406 if (exeStatus == Idle) {
1407 exeStatus = Running;
1408 }
1409
1410 updatedQueues = true;
1411
1412 cpu->activityThisCycle();
1413 }
1414
1415 // Need to reset this in case a writeback event needs to write into the
1416 // iew queue. That way the writeback event will write into the correct
1417 // spot in the queue.
1418 wbNumInst = 0;
1419
1420}
1421
1422template <class Impl>
1423void
1424DefaultIEW<Impl>::writebackInsts()
1425{
1426 // Loop through the head of the time buffer and wake any
1427 // dependents. These instructions are about to write back. Also
1428 // mark scoreboard that this instruction is finally complete.
1429 // Either have IEW have direct access to scoreboard, or have this
1430 // as part of backwards communication.
1431 for (int inst_num = 0; inst_num < wbWidth &&
1432 toCommit->insts[inst_num]; inst_num++) {
1433 DynInstPtr inst = toCommit->insts[inst_num];
1434 ThreadID tid = inst->threadNumber;
1435
1436 DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n",
1437 inst->seqNum, inst->pcState());
1438
1439 iewInstsToCommit[tid]++;
1440
1441 // Some instructions will be sent to commit without having
1442 // executed because they need commit to handle them.
1443 // E.g. Uncached loads have not actually executed when they
1444 // are first sent to commit. Instead commit must tell the LSQ
1445 // when it's ready to execute the uncached load.
1446 if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1447 int dependents = instQueue.wakeDependents(inst);
1448
1449 for (int i = 0; i < inst->numDestRegs(); i++) {
1450 //mark as Ready
1451 DPRINTF(IEW,"Setting Destination Register %i\n",
1452 inst->renamedDestRegIdx(i));
1453 scoreboard->setReg(inst->renamedDestRegIdx(i));
1454 }
1455
1456 if (dependents) {
1457 producerInst[tid]++;
1458 consumerInst[tid]+= dependents;
1459 }
1460 writebackCount[tid]++;
1461 }
1462
1463 decrWb(inst->seqNum);
1464 }
1465}
1466
1467template<class Impl>
1468void
1469DefaultIEW<Impl>::tick()
1470{
1471 wbNumInst = 0;
1472 wbCycle = 0;
1473
1474 wroteToTimeBuffer = false;
1475 updatedQueues = false;
1476
1477 sortInsts();
1478
1479 // Free function units marked as being freed this cycle.
1480 fuPool->processFreeUnits();
1481
1482 list<ThreadID>::iterator threads = activeThreads->begin();
1483 list<ThreadID>::iterator end = activeThreads->end();
1484
1485 // Check stall and squash signals, dispatch any instructions.
1486 while (threads != end) {
1487 ThreadID tid = *threads++;
1488
1489 DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1490
1491 checkSignalsAndUpdate(tid);
1492 dispatch(tid);
1493 }
1494
1495 if (exeStatus != Squashing) {
1496 executeInsts();
1497
1498 writebackInsts();
1499
1500 // Have the instruction queue try to schedule any ready instructions.
1501 // (In actuality, this scheduling is for instructions that will
1502 // be executed next cycle.)
1503 instQueue.scheduleReadyInsts();
1504
1505 // Also should advance its own time buffers if the stage ran.
1506 // Not the best place for it, but this works (hopefully).
1507 issueToExecQueue.advance();
1508 }
1509
1510 bool broadcast_free_entries = false;
1511
1512 if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1513 exeStatus = Idle;
1514 updateLSQNextCycle = false;
1515
1516 broadcast_free_entries = true;
1517 }
1518
1519 // Writeback any stores using any leftover bandwidth.
1520 ldstQueue.writebackStores();
1521
1522 // Check the committed load/store signals to see if there's a load
1523 // or store to commit. Also check if it's being told to execute a
1524 // nonspeculative instruction.
1525 // This is pretty inefficient...
1526
1527 threads = activeThreads->begin();
1528 while (threads != end) {
1529 ThreadID tid = (*threads++);
1530
1531 DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1532
1533 // Update structures based on instructions committed.
1534 if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1535 !fromCommit->commitInfo[tid].squash &&
1536 !fromCommit->commitInfo[tid].robSquashing) {
1537
1538 ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1539
1540 ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1541
1542 updateLSQNextCycle = true;
1543 instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1544 }
1545
1546 if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1547
1548 //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1549 if (fromCommit->commitInfo[tid].uncached) {
1550 instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1551 fromCommit->commitInfo[tid].uncachedLoad->setAtCommit();
1552 } else {
1553 instQueue.scheduleNonSpec(
1554 fromCommit->commitInfo[tid].nonSpecSeqNum);
1555 }
1556 }
1557
1558 if (broadcast_free_entries) {
1559 toFetch->iewInfo[tid].iqCount =
1560 instQueue.getCount(tid);
1561 toFetch->iewInfo[tid].ldstqCount =
1562 ldstQueue.getCount(tid);
1563
1564 toRename->iewInfo[tid].usedIQ = true;
1565 toRename->iewInfo[tid].freeIQEntries =
1566 instQueue.numFreeEntries();
1567 toRename->iewInfo[tid].usedLSQ = true;
1568 toRename->iewInfo[tid].freeLSQEntries =
1569 ldstQueue.numFreeEntries(tid);
1570
1571 wroteToTimeBuffer = true;
1572 }
1573
1574 DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1575 tid, toRename->iewInfo[tid].dispatched);
1576 }
1577
1578 DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). "
1579 "LSQ has %i free entries.\n",
1580 instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1581 ldstQueue.numFreeEntries());
1582
1583 updateStatus();
1584
1585 if (wroteToTimeBuffer) {
1586 DPRINTF(Activity, "Activity this cycle.\n");
1587 cpu->activityThisCycle();
1588 }
1589}
1590
1591template <class Impl>
1592void
1593DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1594{
1595 ThreadID tid = inst->threadNumber;
1596
1597 //
1598 // Pick off the software prefetches
1599 //
1600#ifdef TARGET_ALPHA
1601 if (inst->isDataPrefetch())
1602 iewExecutedSwp[tid]++;
1603 else
1604 iewIewExecutedcutedInsts++;
1605#else
1606 iewExecutedInsts++;
1607#endif
1608
1609 //
1610 // Control operations
1611 //
1612 if (inst->isControl())
1613 iewExecutedBranches[tid]++;
1614
1615 //
1616 // Memory operations
1617 //
1618 if (inst->isMemRef()) {
1619 iewExecutedRefs[tid]++;
1620
1621 if (inst->isLoad()) {
1622 iewExecLoadInsts[tid]++;
1623 }
1624 }
1625}
1626
1627template <class Impl>
1628void
1629DefaultIEW<Impl>::checkMisprediction(DynInstPtr &inst)
1630{
1631 ThreadID tid = inst->threadNumber;
1632
1633 if (!fetchRedirect[tid] ||
1634 !toCommit->squash[tid] ||
1635 toCommit->squashedSeqNum[tid] > inst->seqNum) {
1636
1637 if (inst->mispredicted()) {
1638 fetchRedirect[tid] = true;
1639
1640 DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1641 DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1642 inst->predInstAddr(), inst->predNextInstAddr());
1643 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x,"
1644 " NPC: %#x.\n", inst->nextInstAddr(),
1645 inst->nextInstAddr());
1646 // If incorrect, then signal the ROB that it must be squashed.
1647 squashDueToBranch(inst, tid);
1648
1649 if (inst->readPredTaken()) {
1650 predictedTakenIncorrect++;
1651 } else {
1652 predictedNotTakenIncorrect++;
1653 }
1654 }
1655 }
1656}