iew_impl.hh (8229:78bf55f23338) iew_impl.hh (8230:845c8eb5ac49)
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43// @todo: Fix the instantaneous communication among all the stages within
44// iew. There's a clear delay between issue and execute, yet backwards
45// communication happens simultaneously.
46
47#include <queue>
48
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43// @todo: Fix the instantaneous communication among all the stages within
44// iew. There's a clear delay between issue and execute, yet backwards
45// communication happens simultaneously.
46
47#include <queue>
48
49#include "arch/utility.hh"
49#include "config/the_isa.hh"
50#include "cpu/o3/fu_pool.hh"
51#include "cpu/o3/iew.hh"
52#include "cpu/timebuf.hh"
53#include "params/DerivO3CPU.hh"
54
55using namespace std;
56
57template<class Impl>
58DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params)
59 : issueToExecQueue(params->backComSize, params->forwardComSize),
60 cpu(_cpu),
61 instQueue(_cpu, this, params),
62 ldstQueue(_cpu, this, params),
63 fuPool(params->fuPool),
64 commitToIEWDelay(params->commitToIEWDelay),
65 renameToIEWDelay(params->renameToIEWDelay),
66 issueToExecuteDelay(params->issueToExecuteDelay),
67 dispatchWidth(params->dispatchWidth),
68 issueWidth(params->issueWidth),
69 wbOutstanding(0),
70 wbWidth(params->wbWidth),
71 numThreads(params->numThreads),
72 switchedOut(false)
73{
74 _status = Active;
75 exeStatus = Running;
76 wbStatus = Idle;
77
78 // Setup wire to read instructions coming from issue.
79 fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
80
81 // Instruction queue needs the queue between issue and execute.
82 instQueue.setIssueToExecuteQueue(&issueToExecQueue);
83
84 for (ThreadID tid = 0; tid < numThreads; tid++) {
85 dispatchStatus[tid] = Running;
86 stalls[tid].commit = false;
87 fetchRedirect[tid] = false;
88 }
89
90 wbMax = wbWidth * params->wbDepth;
91
92 updateLSQNextCycle = false;
93
94 ableToIssue = true;
95
96 skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
97}
98
99template <class Impl>
100std::string
101DefaultIEW<Impl>::name() const
102{
103 return cpu->name() + ".iew";
104}
105
106template <class Impl>
107void
108DefaultIEW<Impl>::regStats()
109{
110 using namespace Stats;
111
112 instQueue.regStats();
113 ldstQueue.regStats();
114
115 iewIdleCycles
116 .name(name() + ".iewIdleCycles")
117 .desc("Number of cycles IEW is idle");
118
119 iewSquashCycles
120 .name(name() + ".iewSquashCycles")
121 .desc("Number of cycles IEW is squashing");
122
123 iewBlockCycles
124 .name(name() + ".iewBlockCycles")
125 .desc("Number of cycles IEW is blocking");
126
127 iewUnblockCycles
128 .name(name() + ".iewUnblockCycles")
129 .desc("Number of cycles IEW is unblocking");
130
131 iewDispatchedInsts
132 .name(name() + ".iewDispatchedInsts")
133 .desc("Number of instructions dispatched to IQ");
134
135 iewDispSquashedInsts
136 .name(name() + ".iewDispSquashedInsts")
137 .desc("Number of squashed instructions skipped by dispatch");
138
139 iewDispLoadInsts
140 .name(name() + ".iewDispLoadInsts")
141 .desc("Number of dispatched load instructions");
142
143 iewDispStoreInsts
144 .name(name() + ".iewDispStoreInsts")
145 .desc("Number of dispatched store instructions");
146
147 iewDispNonSpecInsts
148 .name(name() + ".iewDispNonSpecInsts")
149 .desc("Number of dispatched non-speculative instructions");
150
151 iewIQFullEvents
152 .name(name() + ".iewIQFullEvents")
153 .desc("Number of times the IQ has become full, causing a stall");
154
155 iewLSQFullEvents
156 .name(name() + ".iewLSQFullEvents")
157 .desc("Number of times the LSQ has become full, causing a stall");
158
159 memOrderViolationEvents
160 .name(name() + ".memOrderViolationEvents")
161 .desc("Number of memory order violations");
162
163 predictedTakenIncorrect
164 .name(name() + ".predictedTakenIncorrect")
165 .desc("Number of branches that were predicted taken incorrectly");
166
167 predictedNotTakenIncorrect
168 .name(name() + ".predictedNotTakenIncorrect")
169 .desc("Number of branches that were predicted not taken incorrectly");
170
171 branchMispredicts
172 .name(name() + ".branchMispredicts")
173 .desc("Number of branch mispredicts detected at execute");
174
175 branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
176
177 iewExecutedInsts
178 .name(name() + ".iewExecutedInsts")
179 .desc("Number of executed instructions");
180
181 iewExecLoadInsts
182 .init(cpu->numThreads)
183 .name(name() + ".iewExecLoadInsts")
184 .desc("Number of load instructions executed")
185 .flags(total);
186
187 iewExecSquashedInsts
188 .name(name() + ".iewExecSquashedInsts")
189 .desc("Number of squashed instructions skipped in execute");
190
191 iewExecutedSwp
192 .init(cpu->numThreads)
193 .name(name() + ".EXEC:swp")
194 .desc("number of swp insts executed")
195 .flags(total);
196
197 iewExecutedNop
198 .init(cpu->numThreads)
199 .name(name() + ".EXEC:nop")
200 .desc("number of nop insts executed")
201 .flags(total);
202
203 iewExecutedRefs
204 .init(cpu->numThreads)
205 .name(name() + ".EXEC:refs")
206 .desc("number of memory reference insts executed")
207 .flags(total);
208
209 iewExecutedBranches
210 .init(cpu->numThreads)
211 .name(name() + ".EXEC:branches")
212 .desc("Number of branches executed")
213 .flags(total);
214
215 iewExecStoreInsts
216 .name(name() + ".EXEC:stores")
217 .desc("Number of stores executed")
218 .flags(total);
219 iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
220
221 iewExecRate
222 .name(name() + ".EXEC:rate")
223 .desc("Inst execution rate")
224 .flags(total);
225
226 iewExecRate = iewExecutedInsts / cpu->numCycles;
227
228 iewInstsToCommit
229 .init(cpu->numThreads)
230 .name(name() + ".WB:sent")
231 .desc("cumulative count of insts sent to commit")
232 .flags(total);
233
234 writebackCount
235 .init(cpu->numThreads)
236 .name(name() + ".WB:count")
237 .desc("cumulative count of insts written-back")
238 .flags(total);
239
240 producerInst
241 .init(cpu->numThreads)
242 .name(name() + ".WB:producers")
243 .desc("num instructions producing a value")
244 .flags(total);
245
246 consumerInst
247 .init(cpu->numThreads)
248 .name(name() + ".WB:consumers")
249 .desc("num instructions consuming a value")
250 .flags(total);
251
252 wbPenalized
253 .init(cpu->numThreads)
254 .name(name() + ".WB:penalized")
255 .desc("number of instrctions required to write to 'other' IQ")
256 .flags(total);
257
258 wbPenalizedRate
259 .name(name() + ".WB:penalized_rate")
260 .desc ("fraction of instructions written-back that wrote to 'other' IQ")
261 .flags(total);
262
263 wbPenalizedRate = wbPenalized / writebackCount;
264
265 wbFanout
266 .name(name() + ".WB:fanout")
267 .desc("average fanout of values written-back")
268 .flags(total);
269
270 wbFanout = producerInst / consumerInst;
271
272 wbRate
273 .name(name() + ".WB:rate")
274 .desc("insts written-back per cycle")
275 .flags(total);
276 wbRate = writebackCount / cpu->numCycles;
277}
278
279template<class Impl>
280void
281DefaultIEW<Impl>::initStage()
282{
283 for (ThreadID tid = 0; tid < numThreads; tid++) {
284 toRename->iewInfo[tid].usedIQ = true;
285 toRename->iewInfo[tid].freeIQEntries =
286 instQueue.numFreeEntries(tid);
287
288 toRename->iewInfo[tid].usedLSQ = true;
289 toRename->iewInfo[tid].freeLSQEntries =
290 ldstQueue.numFreeEntries(tid);
291 }
292
293 cpu->activateStage(O3CPU::IEWIdx);
294}
295
296template<class Impl>
297void
298DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
299{
300 timeBuffer = tb_ptr;
301
302 // Setup wire to read information from time buffer, from commit.
303 fromCommit = timeBuffer->getWire(-commitToIEWDelay);
304
305 // Setup wire to write information back to previous stages.
306 toRename = timeBuffer->getWire(0);
307
308 toFetch = timeBuffer->getWire(0);
309
310 // Instruction queue also needs main time buffer.
311 instQueue.setTimeBuffer(tb_ptr);
312}
313
314template<class Impl>
315void
316DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
317{
318 renameQueue = rq_ptr;
319
320 // Setup wire to read information from rename queue.
321 fromRename = renameQueue->getWire(-renameToIEWDelay);
322}
323
324template<class Impl>
325void
326DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
327{
328 iewQueue = iq_ptr;
329
330 // Setup wire to write instructions to commit.
331 toCommit = iewQueue->getWire(0);
332}
333
334template<class Impl>
335void
336DefaultIEW<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
337{
338 activeThreads = at_ptr;
339
340 ldstQueue.setActiveThreads(at_ptr);
341 instQueue.setActiveThreads(at_ptr);
342}
343
344template<class Impl>
345void
346DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
347{
348 scoreboard = sb_ptr;
349}
350
351template <class Impl>
352bool
353DefaultIEW<Impl>::drain()
354{
355 // IEW is ready to drain at any time.
356 cpu->signalDrained();
357 return true;
358}
359
360template <class Impl>
361void
362DefaultIEW<Impl>::resume()
363{
364}
365
366template <class Impl>
367void
368DefaultIEW<Impl>::switchOut()
369{
370 // Clear any state.
371 switchedOut = true;
372 assert(insts[0].empty());
373 assert(skidBuffer[0].empty());
374
375 instQueue.switchOut();
376 ldstQueue.switchOut();
377 fuPool->switchOut();
378
379 for (ThreadID tid = 0; tid < numThreads; tid++) {
380 while (!insts[tid].empty())
381 insts[tid].pop();
382 while (!skidBuffer[tid].empty())
383 skidBuffer[tid].pop();
384 }
385}
386
387template <class Impl>
388void
389DefaultIEW<Impl>::takeOverFrom()
390{
391 // Reset all state.
392 _status = Active;
393 exeStatus = Running;
394 wbStatus = Idle;
395 switchedOut = false;
396
397 instQueue.takeOverFrom();
398 ldstQueue.takeOverFrom();
399 fuPool->takeOverFrom();
400
401 initStage();
402 cpu->activityThisCycle();
403
404 for (ThreadID tid = 0; tid < numThreads; tid++) {
405 dispatchStatus[tid] = Running;
406 stalls[tid].commit = false;
407 fetchRedirect[tid] = false;
408 }
409
410 updateLSQNextCycle = false;
411
412 for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
413 issueToExecQueue.advance();
414 }
415}
416
417template<class Impl>
418void
419DefaultIEW<Impl>::squash(ThreadID tid)
420{
421 DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", tid);
422
423 // Tell the IQ to start squashing.
424 instQueue.squash(tid);
425
426 // Tell the LDSTQ to start squashing.
427 ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
428 updatedQueues = true;
429
430 // Clear the skid buffer in case it has any data in it.
431 DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
432 tid, fromCommit->commitInfo[tid].doneSeqNum);
433
434 while (!skidBuffer[tid].empty()) {
435 if (skidBuffer[tid].front()->isLoad() ||
436 skidBuffer[tid].front()->isStore() ) {
437 toRename->iewInfo[tid].dispatchedToLSQ++;
438 }
439
440 toRename->iewInfo[tid].dispatched++;
441
442 skidBuffer[tid].pop();
443 }
444
445 emptyRenameInsts(tid);
446}
447
448template<class Impl>
449void
450DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, ThreadID tid)
451{
452 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %s "
453 "[sn:%i].\n", tid, inst->pcState(), inst->seqNum);
454
455 if (toCommit->squash[tid] == false ||
456 inst->seqNum < toCommit->squashedSeqNum[tid]) {
457 toCommit->squash[tid] = true;
458 toCommit->squashedSeqNum[tid] = inst->seqNum;
459 toCommit->branchTaken[tid] = inst->pcState().branching();
460
461 TheISA::PCState pc = inst->pcState();
462 TheISA::advancePC(pc, inst->staticInst);
463
464 toCommit->pc[tid] = pc;
465 toCommit->mispredictInst[tid] = inst;
466 toCommit->includeSquashInst[tid] = false;
467
468 wroteToTimeBuffer = true;
469 }
470
471}
472
473template<class Impl>
474void
475DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, ThreadID tid)
476{
477 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
478 "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
479
480 if (toCommit->squash[tid] == false ||
481 inst->seqNum < toCommit->squashedSeqNum[tid]) {
482 toCommit->squash[tid] = true;
483 toCommit->squashedSeqNum[tid] = inst->seqNum;
484 TheISA::PCState pc = inst->pcState();
485 TheISA::advancePC(pc, inst->staticInst);
486 toCommit->pc[tid] = pc;
487 toCommit->mispredictInst[tid] = NULL;
488
489 toCommit->includeSquashInst[tid] = false;
490
491 wroteToTimeBuffer = true;
492 }
493}
494
495template<class Impl>
496void
497DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, ThreadID tid)
498{
499 DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
500 "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
501 if (toCommit->squash[tid] == false ||
502 inst->seqNum < toCommit->squashedSeqNum[tid]) {
503 toCommit->squash[tid] = true;
504
505 toCommit->squashedSeqNum[tid] = inst->seqNum;
506 toCommit->pc[tid] = inst->pcState();
507 toCommit->mispredictInst[tid] = NULL;
508
509 // Must include the broadcasted SN in the squash.
510 toCommit->includeSquashInst[tid] = true;
511
512 ldstQueue.setLoadBlockedHandled(tid);
513
514 wroteToTimeBuffer = true;
515 }
516}
517
518template<class Impl>
519void
520DefaultIEW<Impl>::block(ThreadID tid)
521{
522 DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
523
524 if (dispatchStatus[tid] != Blocked &&
525 dispatchStatus[tid] != Unblocking) {
526 toRename->iewBlock[tid] = true;
527 wroteToTimeBuffer = true;
528 }
529
530 // Add the current inputs to the skid buffer so they can be
531 // reprocessed when this stage unblocks.
532 skidInsert(tid);
533
534 dispatchStatus[tid] = Blocked;
535}
536
537template<class Impl>
538void
539DefaultIEW<Impl>::unblock(ThreadID tid)
540{
541 DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
542 "buffer %u.\n",tid, tid);
543
544 // If the skid bufffer is empty, signal back to previous stages to unblock.
545 // Also switch status to running.
546 if (skidBuffer[tid].empty()) {
547 toRename->iewUnblock[tid] = true;
548 wroteToTimeBuffer = true;
549 DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
550 dispatchStatus[tid] = Running;
551 }
552}
553
554template<class Impl>
555void
556DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
557{
558 instQueue.wakeDependents(inst);
559}
560
561template<class Impl>
562void
563DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
564{
565 instQueue.rescheduleMemInst(inst);
566}
567
568template<class Impl>
569void
570DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
571{
572 instQueue.replayMemInst(inst);
573}
574
575template<class Impl>
576void
577DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
578{
579 // This function should not be called after writebackInsts in a
580 // single cycle. That will cause problems with an instruction
581 // being added to the queue to commit without being processed by
582 // writebackInsts prior to being sent to commit.
583
584 // First check the time slot that this instruction will write
585 // to. If there are free write ports at the time, then go ahead
586 // and write the instruction to that time. If there are not,
587 // keep looking back to see where's the first time there's a
588 // free slot.
589 while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
590 ++wbNumInst;
591 if (wbNumInst == wbWidth) {
592 ++wbCycle;
593 wbNumInst = 0;
594 }
595
596 assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
597 }
598
599 DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
600 wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
601 // Add finished instruction to queue to commit.
602 (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
603 (*iewQueue)[wbCycle].size++;
604}
605
606template <class Impl>
607unsigned
608DefaultIEW<Impl>::validInstsFromRename()
609{
610 unsigned inst_count = 0;
611
612 for (int i=0; i<fromRename->size; i++) {
613 if (!fromRename->insts[i]->isSquashed())
614 inst_count++;
615 }
616
617 return inst_count;
618}
619
620template<class Impl>
621void
622DefaultIEW<Impl>::skidInsert(ThreadID tid)
623{
624 DynInstPtr inst = NULL;
625
626 while (!insts[tid].empty()) {
627 inst = insts[tid].front();
628
629 insts[tid].pop();
630
631 DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%s into "
632 "dispatch skidBuffer %i\n",tid, inst->seqNum,
633 inst->pcState(),tid);
634
635 skidBuffer[tid].push(inst);
636 }
637
638 assert(skidBuffer[tid].size() <= skidBufferMax &&
639 "Skidbuffer Exceeded Max Size");
640}
641
642template<class Impl>
643int
644DefaultIEW<Impl>::skidCount()
645{
646 int max=0;
647
648 list<ThreadID>::iterator threads = activeThreads->begin();
649 list<ThreadID>::iterator end = activeThreads->end();
650
651 while (threads != end) {
652 ThreadID tid = *threads++;
653 unsigned thread_count = skidBuffer[tid].size();
654 if (max < thread_count)
655 max = thread_count;
656 }
657
658 return max;
659}
660
661template<class Impl>
662bool
663DefaultIEW<Impl>::skidsEmpty()
664{
665 list<ThreadID>::iterator threads = activeThreads->begin();
666 list<ThreadID>::iterator end = activeThreads->end();
667
668 while (threads != end) {
669 ThreadID tid = *threads++;
670
671 if (!skidBuffer[tid].empty())
672 return false;
673 }
674
675 return true;
676}
677
678template <class Impl>
679void
680DefaultIEW<Impl>::updateStatus()
681{
682 bool any_unblocking = false;
683
684 list<ThreadID>::iterator threads = activeThreads->begin();
685 list<ThreadID>::iterator end = activeThreads->end();
686
687 while (threads != end) {
688 ThreadID tid = *threads++;
689
690 if (dispatchStatus[tid] == Unblocking) {
691 any_unblocking = true;
692 break;
693 }
694 }
695
696 // If there are no ready instructions waiting to be scheduled by the IQ,
697 // and there's no stores waiting to write back, and dispatch is not
698 // unblocking, then there is no internal activity for the IEW stage.
699 instQueue.intInstQueueReads++;
700 if (_status == Active && !instQueue.hasReadyInsts() &&
701 !ldstQueue.willWB() && !any_unblocking) {
702 DPRINTF(IEW, "IEW switching to idle\n");
703
704 deactivateStage();
705
706 _status = Inactive;
707 } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
708 ldstQueue.willWB() ||
709 any_unblocking)) {
710 // Otherwise there is internal activity. Set to active.
711 DPRINTF(IEW, "IEW switching to active\n");
712
713 activateStage();
714
715 _status = Active;
716 }
717}
718
719template <class Impl>
720void
721DefaultIEW<Impl>::resetEntries()
722{
723 instQueue.resetEntries();
724 ldstQueue.resetEntries();
725}
726
727template <class Impl>
728void
729DefaultIEW<Impl>::readStallSignals(ThreadID tid)
730{
731 if (fromCommit->commitBlock[tid]) {
732 stalls[tid].commit = true;
733 }
734
735 if (fromCommit->commitUnblock[tid]) {
736 assert(stalls[tid].commit);
737 stalls[tid].commit = false;
738 }
739}
740
741template <class Impl>
742bool
743DefaultIEW<Impl>::checkStall(ThreadID tid)
744{
745 bool ret_val(false);
746
747 if (stalls[tid].commit) {
748 DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
749 ret_val = true;
750 } else if (instQueue.isFull(tid)) {
751 DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid);
752 ret_val = true;
753 } else if (ldstQueue.isFull(tid)) {
754 DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
755
756 if (ldstQueue.numLoads(tid) > 0 ) {
757
758 DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
759 tid,ldstQueue.getLoadHeadSeqNum(tid));
760 }
761
762 if (ldstQueue.numStores(tid) > 0) {
763
764 DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
765 tid,ldstQueue.getStoreHeadSeqNum(tid));
766 }
767
768 ret_val = true;
769 } else if (ldstQueue.isStalled(tid)) {
770 DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
771 ret_val = true;
772 }
773
774 return ret_val;
775}
776
777template <class Impl>
778void
779DefaultIEW<Impl>::checkSignalsAndUpdate(ThreadID tid)
780{
781 // Check if there's a squash signal, squash if there is
782 // Check stall signals, block if there is.
783 // If status was Blocked
784 // if so then go to unblocking
785 // If status was Squashing
786 // check if squashing is not high. Switch to running this cycle.
787
788 readStallSignals(tid);
789
790 if (fromCommit->commitInfo[tid].squash) {
791 squash(tid);
792
793 if (dispatchStatus[tid] == Blocked ||
794 dispatchStatus[tid] == Unblocking) {
795 toRename->iewUnblock[tid] = true;
796 wroteToTimeBuffer = true;
797 }
798
799 dispatchStatus[tid] = Squashing;
800 fetchRedirect[tid] = false;
801 return;
802 }
803
804 if (fromCommit->commitInfo[tid].robSquashing) {
805 DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
806
807 dispatchStatus[tid] = Squashing;
808 emptyRenameInsts(tid);
809 wroteToTimeBuffer = true;
810 return;
811 }
812
813 if (checkStall(tid)) {
814 block(tid);
815 dispatchStatus[tid] = Blocked;
816 return;
817 }
818
819 if (dispatchStatus[tid] == Blocked) {
820 // Status from previous cycle was blocked, but there are no more stall
821 // conditions. Switch over to unblocking.
822 DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
823 tid);
824
825 dispatchStatus[tid] = Unblocking;
826
827 unblock(tid);
828
829 return;
830 }
831
832 if (dispatchStatus[tid] == Squashing) {
833 // Switch status to running if rename isn't being told to block or
834 // squash this cycle.
835 DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
836 tid);
837
838 dispatchStatus[tid] = Running;
839
840 return;
841 }
842}
843
844template <class Impl>
845void
846DefaultIEW<Impl>::sortInsts()
847{
848 int insts_from_rename = fromRename->size;
849#ifdef DEBUG
850 for (ThreadID tid = 0; tid < numThreads; tid++)
851 assert(insts[tid].empty());
852#endif
853 for (int i = 0; i < insts_from_rename; ++i) {
854 insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
855 }
856}
857
858template <class Impl>
859void
860DefaultIEW<Impl>::emptyRenameInsts(ThreadID tid)
861{
862 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid);
863
864 while (!insts[tid].empty()) {
865
866 if (insts[tid].front()->isLoad() ||
867 insts[tid].front()->isStore() ) {
868 toRename->iewInfo[tid].dispatchedToLSQ++;
869 }
870
871 toRename->iewInfo[tid].dispatched++;
872
873 insts[tid].pop();
874 }
875}
876
877template <class Impl>
878void
879DefaultIEW<Impl>::wakeCPU()
880{
881 cpu->wakeCPU();
882}
883
884template <class Impl>
885void
886DefaultIEW<Impl>::activityThisCycle()
887{
888 DPRINTF(Activity, "Activity this cycle.\n");
889 cpu->activityThisCycle();
890}
891
892template <class Impl>
893inline void
894DefaultIEW<Impl>::activateStage()
895{
896 DPRINTF(Activity, "Activating stage.\n");
897 cpu->activateStage(O3CPU::IEWIdx);
898}
899
900template <class Impl>
901inline void
902DefaultIEW<Impl>::deactivateStage()
903{
904 DPRINTF(Activity, "Deactivating stage.\n");
905 cpu->deactivateStage(O3CPU::IEWIdx);
906}
907
908template<class Impl>
909void
910DefaultIEW<Impl>::dispatch(ThreadID tid)
911{
912 // If status is Running or idle,
913 // call dispatchInsts()
914 // If status is Unblocking,
915 // buffer any instructions coming from rename
916 // continue trying to empty skid buffer
917 // check if stall conditions have passed
918
919 if (dispatchStatus[tid] == Blocked) {
920 ++iewBlockCycles;
921
922 } else if (dispatchStatus[tid] == Squashing) {
923 ++iewSquashCycles;
924 }
925
926 // Dispatch should try to dispatch as many instructions as its bandwidth
927 // will allow, as long as it is not currently blocked.
928 if (dispatchStatus[tid] == Running ||
929 dispatchStatus[tid] == Idle) {
930 DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
931 "dispatch.\n", tid);
932
933 dispatchInsts(tid);
934 } else if (dispatchStatus[tid] == Unblocking) {
935 // Make sure that the skid buffer has something in it if the
936 // status is unblocking.
937 assert(!skidsEmpty());
938
939 // If the status was unblocking, then instructions from the skid
940 // buffer were used. Remove those instructions and handle
941 // the rest of unblocking.
942 dispatchInsts(tid);
943
944 ++iewUnblockCycles;
945
946 if (validInstsFromRename()) {
947 // Add the current inputs to the skid buffer so they can be
948 // reprocessed when this stage unblocks.
949 skidInsert(tid);
950 }
951
952 unblock(tid);
953 }
954}
955
956template <class Impl>
957void
958DefaultIEW<Impl>::dispatchInsts(ThreadID tid)
959{
960 // Obtain instructions from skid buffer if unblocking, or queue from rename
961 // otherwise.
962 std::queue<DynInstPtr> &insts_to_dispatch =
963 dispatchStatus[tid] == Unblocking ?
964 skidBuffer[tid] : insts[tid];
965
966 int insts_to_add = insts_to_dispatch.size();
967
968 DynInstPtr inst;
969 bool add_to_iq = false;
970 int dis_num_inst = 0;
971
972 // Loop through the instructions, putting them in the instruction
973 // queue.
974 for ( ; dis_num_inst < insts_to_add &&
975 dis_num_inst < dispatchWidth;
976 ++dis_num_inst)
977 {
978 inst = insts_to_dispatch.front();
979
980 if (dispatchStatus[tid] == Unblocking) {
981 DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
982 "buffer\n", tid);
983 }
984
985 // Make sure there's a valid instruction there.
986 assert(inst);
987
988 DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %s [sn:%lli] [tid:%i] to "
989 "IQ.\n",
990 tid, inst->pcState(), inst->seqNum, inst->threadNumber);
991
992 // Be sure to mark these instructions as ready so that the
993 // commit stage can go ahead and execute them, and mark
994 // them as issued so the IQ doesn't reprocess them.
995
996 // Check for squashed instructions.
997 if (inst->isSquashed()) {
998 DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
999 "not adding to IQ.\n", tid);
1000
1001 ++iewDispSquashedInsts;
1002
1003 insts_to_dispatch.pop();
1004
1005 //Tell Rename That An Instruction has been processed
1006 if (inst->isLoad() || inst->isStore()) {
1007 toRename->iewInfo[tid].dispatchedToLSQ++;
1008 }
1009 toRename->iewInfo[tid].dispatched++;
1010
1011 continue;
1012 }
1013
1014 // Check for full conditions.
1015 if (instQueue.isFull(tid)) {
1016 DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1017
1018 // Call function to start blocking.
1019 block(tid);
1020
1021 // Set unblock to false. Special case where we are using
1022 // skidbuffer (unblocking) instructions but then we still
1023 // get full in the IQ.
1024 toRename->iewUnblock[tid] = false;
1025
1026 ++iewIQFullEvents;
1027 break;
1028 } else if (ldstQueue.isFull(tid)) {
1029 DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1030
1031 // Call function to start blocking.
1032 block(tid);
1033
1034 // Set unblock to false. Special case where we are using
1035 // skidbuffer (unblocking) instructions but then we still
1036 // get full in the IQ.
1037 toRename->iewUnblock[tid] = false;
1038
1039 ++iewLSQFullEvents;
1040 break;
1041 }
1042
1043 // Otherwise issue the instruction just fine.
1044 if (inst->isLoad()) {
1045 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1046 "encountered, adding to LSQ.\n", tid);
1047
1048 // Reserve a spot in the load store queue for this
1049 // memory access.
1050 ldstQueue.insertLoad(inst);
1051
1052 ++iewDispLoadInsts;
1053
1054 add_to_iq = true;
1055
1056 toRename->iewInfo[tid].dispatchedToLSQ++;
1057 } else if (inst->isStore()) {
1058 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1059 "encountered, adding to LSQ.\n", tid);
1060
1061 ldstQueue.insertStore(inst);
1062
1063 ++iewDispStoreInsts;
1064
1065 if (inst->isStoreConditional()) {
1066 // Store conditionals need to be set as "canCommit()"
1067 // so that commit can process them when they reach the
1068 // head of commit.
1069 // @todo: This is somewhat specific to Alpha.
1070 inst->setCanCommit();
1071 instQueue.insertNonSpec(inst);
1072 add_to_iq = false;
1073
1074 ++iewDispNonSpecInsts;
1075 } else {
1076 add_to_iq = true;
1077 }
1078
1079 toRename->iewInfo[tid].dispatchedToLSQ++;
1080 } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1081 // Same as non-speculative stores.
1082 inst->setCanCommit();
1083 instQueue.insertBarrier(inst);
1084 add_to_iq = false;
1085 } else if (inst->isNop()) {
1086 DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1087 "skipping.\n", tid);
1088
1089 inst->setIssued();
1090 inst->setExecuted();
1091 inst->setCanCommit();
1092
1093 instQueue.recordProducer(inst);
1094
1095 iewExecutedNop[tid]++;
1096
1097 add_to_iq = false;
1098 } else if (inst->isExecuted()) {
1099 assert(0 && "Instruction shouldn't be executed.\n");
1100 DPRINTF(IEW, "Issue: Executed branch encountered, "
1101 "skipping.\n");
1102
1103 inst->setIssued();
1104 inst->setCanCommit();
1105
1106 instQueue.recordProducer(inst);
1107
1108 add_to_iq = false;
1109 } else {
1110 add_to_iq = true;
1111 }
1112 if (inst->isNonSpeculative()) {
1113 DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1114 "encountered, skipping.\n", tid);
1115
1116 // Same as non-speculative stores.
1117 inst->setCanCommit();
1118
1119 // Specifically insert it as nonspeculative.
1120 instQueue.insertNonSpec(inst);
1121
1122 ++iewDispNonSpecInsts;
1123
1124 add_to_iq = false;
1125 }
1126
1127 // If the instruction queue is not full, then add the
1128 // instruction.
1129 if (add_to_iq) {
1130 instQueue.insert(inst);
1131 }
1132
1133 insts_to_dispatch.pop();
1134
1135 toRename->iewInfo[tid].dispatched++;
1136
1137 ++iewDispatchedInsts;
1138 }
1139
1140 if (!insts_to_dispatch.empty()) {
1141 DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1142 block(tid);
1143 toRename->iewUnblock[tid] = false;
1144 }
1145
1146 if (dispatchStatus[tid] == Idle && dis_num_inst) {
1147 dispatchStatus[tid] = Running;
1148
1149 updatedQueues = true;
1150 }
1151
1152 dis_num_inst = 0;
1153}
1154
1155template <class Impl>
1156void
1157DefaultIEW<Impl>::printAvailableInsts()
1158{
1159 int inst = 0;
1160
1161 std::cout << "Available Instructions: ";
1162
1163 while (fromIssue->insts[inst]) {
1164
1165 if (inst%3==0) std::cout << "\n\t";
1166
1167 std::cout << "PC: " << fromIssue->insts[inst]->pcState()
1168 << " TN: " << fromIssue->insts[inst]->threadNumber
1169 << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1170
1171 inst++;
1172
1173 }
1174
1175 std::cout << "\n";
1176}
1177
1178template <class Impl>
1179void
1180DefaultIEW<Impl>::executeInsts()
1181{
1182 wbNumInst = 0;
1183 wbCycle = 0;
1184
1185 list<ThreadID>::iterator threads = activeThreads->begin();
1186 list<ThreadID>::iterator end = activeThreads->end();
1187
1188 while (threads != end) {
1189 ThreadID tid = *threads++;
1190 fetchRedirect[tid] = false;
1191 }
1192
1193 // Uncomment this if you want to see all available instructions.
1194 // @todo This doesn't actually work anymore, we should fix it.
1195// printAvailableInsts();
1196
1197 // Execute/writeback any instructions that are available.
1198 int insts_to_execute = fromIssue->size;
1199 int inst_num = 0;
1200 for (; inst_num < insts_to_execute;
1201 ++inst_num) {
1202
1203 DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1204
1205 DynInstPtr inst = instQueue.getInstToExecute();
1206
1207 DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%i].\n",
1208 inst->pcState(), inst->threadNumber,inst->seqNum);
1209
1210 // Check if the instruction is squashed; if so then skip it
1211 if (inst->isSquashed()) {
1212 DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1213
1214 // Consider this instruction executed so that commit can go
1215 // ahead and retire the instruction.
1216 inst->setExecuted();
1217
1218 // Not sure if I should set this here or just let commit try to
1219 // commit any squashed instructions. I like the latter a bit more.
1220 inst->setCanCommit();
1221
1222 ++iewExecSquashedInsts;
1223
1224 decrWb(inst->seqNum);
1225 continue;
1226 }
1227
1228 Fault fault = NoFault;
1229
1230 // Execute instruction.
1231 // Note that if the instruction faults, it will be handled
1232 // at the commit stage.
1233 if (inst->isMemRef()) {
1234 DPRINTF(IEW, "Execute: Calculating address for memory "
1235 "reference.\n");
1236
1237 // Tell the LDSTQ to execute this instruction (if it is a load).
1238 if (inst->isLoad()) {
1239 // Loads will mark themselves as executed, and their writeback
1240 // event adds the instruction to the queue to commit
1241 fault = ldstQueue.executeLoad(inst);
1242
1243 if (inst->isTranslationDelayed() &&
1244 fault == NoFault) {
1245 // A hw page table walk is currently going on; the
1246 // instruction must be deferred.
1247 DPRINTF(IEW, "Execute: Delayed translation, deferring "
1248 "load.\n");
1249 instQueue.deferMemInst(inst);
1250 continue;
1251 }
1252
1253 if (inst->isDataPrefetch() || inst->isInstPrefetch()) {
1254 inst->fault = NoFault;
1255 }
1256 } else if (inst->isStore()) {
1257 fault = ldstQueue.executeStore(inst);
1258
1259 if (inst->isTranslationDelayed() &&
1260 fault == NoFault) {
1261 // A hw page table walk is currently going on; the
1262 // instruction must be deferred.
1263 DPRINTF(IEW, "Execute: Delayed translation, deferring "
1264 "store.\n");
1265 instQueue.deferMemInst(inst);
1266 continue;
1267 }
1268
1269 // If the store had a fault then it may not have a mem req
1270 if (fault != NoFault || inst->readPredicate() == false ||
1271 !inst->isStoreConditional()) {
1272 // If the instruction faulted, then we need to send it along
1273 // to commit without the instruction completing.
1274 // Send this instruction to commit, also make sure iew stage
1275 // realizes there is activity.
1276 inst->setExecuted();
1277 instToCommit(inst);
1278 activityThisCycle();
1279 }
1280
1281 // Store conditionals will mark themselves as
1282 // executed, and their writeback event will add the
1283 // instruction to the queue to commit.
1284 } else {
1285 panic("Unexpected memory type!\n");
1286 }
1287
1288 } else {
1289 // If the instruction has already faulted, then skip executing it.
1290 // Such case can happen when it faulted during ITLB translation.
1291 // If we execute the instruction (even if it's a nop) the fault
1292 // will be replaced and we will lose it.
1293 if (inst->getFault() == NoFault) {
1294 inst->execute();
1295 if (inst->readPredicate() == false)
1296 inst->forwardOldRegs();
1297 }
1298
1299 inst->setExecuted();
1300
1301 instToCommit(inst);
1302 }
1303
1304 updateExeInstStats(inst);
1305
1306 // Check if branch prediction was correct, if not then we need
1307 // to tell commit to squash in flight instructions. Only
1308 // handle this if there hasn't already been something that
1309 // redirects fetch in this group of instructions.
1310
1311 // This probably needs to prioritize the redirects if a different
1312 // scheduler is used. Currently the scheduler schedules the oldest
1313 // instruction first, so the branch resolution order will be correct.
1314 ThreadID tid = inst->threadNumber;
1315
1316 if (!fetchRedirect[tid] ||
1317 !toCommit->squash[tid] ||
1318 toCommit->squashedSeqNum[tid] > inst->seqNum) {
1319
1320 // Prevent testing for misprediction on load instructions,
1321 // that have not been executed.
1322 bool loadNotExecuted = !inst->isExecuted() && inst->isLoad();
1323
1324 if (inst->mispredicted() && !loadNotExecuted) {
1325 fetchRedirect[tid] = true;
1326
1327 DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1328 DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1329 inst->predInstAddr(), inst->predNextInstAddr());
1330 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %s.\n",
1331 inst->pcState(), inst->nextInstAddr());
1332 // If incorrect, then signal the ROB that it must be squashed.
1333 squashDueToBranch(inst, tid);
1334
1335 if (inst->readPredTaken()) {
1336 predictedTakenIncorrect++;
1337 } else {
1338 predictedNotTakenIncorrect++;
1339 }
1340 } else if (ldstQueue.violation(tid)) {
1341 assert(inst->isMemRef());
1342 // If there was an ordering violation, then get the
1343 // DynInst that caused the violation. Note that this
1344 // clears the violation signal.
1345 DynInstPtr violator;
1346 violator = ldstQueue.getMemDepViolator(tid);
1347
1348 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s "
1349 "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n",
1350 violator->pcState(), violator->seqNum,
1351 inst->pcState(), inst->seqNum, inst->physEffAddr);
1352
1353 fetchRedirect[tid] = true;
1354
1355 // Tell the instruction queue that a violation has occured.
1356 instQueue.violation(inst, violator);
1357
1358 // Squash.
1359 squashDueToMemOrder(inst,tid);
1360
1361 ++memOrderViolationEvents;
1362 } else if (ldstQueue.loadBlocked(tid) &&
1363 !ldstQueue.isLoadBlockedHandled(tid)) {
1364 fetchRedirect[tid] = true;
1365
1366 DPRINTF(IEW, "Load operation couldn't execute because the "
1367 "memory system is blocked. PC: %s [sn:%lli]\n",
1368 inst->pcState(), inst->seqNum);
1369
1370 squashDueToMemBlocked(inst, tid);
1371 }
1372 } else {
1373 // Reset any state associated with redirects that will not
1374 // be used.
1375 if (ldstQueue.violation(tid)) {
1376 assert(inst->isMemRef());
1377
1378 DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1379
1380 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
1381 "%s, inst PC: %s. Addr is: %#x.\n",
1382 violator->pcState(), inst->pcState(),
1383 inst->physEffAddr);
1384 DPRINTF(IEW, "Violation will not be handled because "
1385 "already squashing\n");
1386
1387 ++memOrderViolationEvents;
1388 }
1389 if (ldstQueue.loadBlocked(tid) &&
1390 !ldstQueue.isLoadBlockedHandled(tid)) {
1391 DPRINTF(IEW, "Load operation couldn't execute because the "
1392 "memory system is blocked. PC: %s [sn:%lli]\n",
1393 inst->pcState(), inst->seqNum);
1394 DPRINTF(IEW, "Blocked load will not be handled because "
1395 "already squashing\n");
1396
1397 ldstQueue.setLoadBlockedHandled(tid);
1398 }
1399
1400 }
1401 }
1402
1403 // Update and record activity if we processed any instructions.
1404 if (inst_num) {
1405 if (exeStatus == Idle) {
1406 exeStatus = Running;
1407 }
1408
1409 updatedQueues = true;
1410
1411 cpu->activityThisCycle();
1412 }
1413
1414 // Need to reset this in case a writeback event needs to write into the
1415 // iew queue. That way the writeback event will write into the correct
1416 // spot in the queue.
1417 wbNumInst = 0;
1418
1419}
1420
1421template <class Impl>
1422void
1423DefaultIEW<Impl>::writebackInsts()
1424{
1425 // Loop through the head of the time buffer and wake any
1426 // dependents. These instructions are about to write back. Also
1427 // mark scoreboard that this instruction is finally complete.
1428 // Either have IEW have direct access to scoreboard, or have this
1429 // as part of backwards communication.
1430 for (int inst_num = 0; inst_num < wbWidth &&
1431 toCommit->insts[inst_num]; inst_num++) {
1432 DynInstPtr inst = toCommit->insts[inst_num];
1433 ThreadID tid = inst->threadNumber;
1434
1435 DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n",
1436 inst->seqNum, inst->pcState());
1437
1438 iewInstsToCommit[tid]++;
1439
1440 // Some instructions will be sent to commit without having
1441 // executed because they need commit to handle them.
1442 // E.g. Uncached loads have not actually executed when they
1443 // are first sent to commit. Instead commit must tell the LSQ
1444 // when it's ready to execute the uncached load.
1445 if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1446 int dependents = instQueue.wakeDependents(inst);
1447
1448 for (int i = 0; i < inst->numDestRegs(); i++) {
1449 //mark as Ready
1450 DPRINTF(IEW,"Setting Destination Register %i\n",
1451 inst->renamedDestRegIdx(i));
1452 scoreboard->setReg(inst->renamedDestRegIdx(i));
1453 }
1454
1455 if (dependents) {
1456 producerInst[tid]++;
1457 consumerInst[tid]+= dependents;
1458 }
1459 writebackCount[tid]++;
1460 }
1461
1462 decrWb(inst->seqNum);
1463 }
1464}
1465
1466template<class Impl>
1467void
1468DefaultIEW<Impl>::tick()
1469{
1470 wbNumInst = 0;
1471 wbCycle = 0;
1472
1473 wroteToTimeBuffer = false;
1474 updatedQueues = false;
1475
1476 sortInsts();
1477
1478 // Free function units marked as being freed this cycle.
1479 fuPool->processFreeUnits();
1480
1481 list<ThreadID>::iterator threads = activeThreads->begin();
1482 list<ThreadID>::iterator end = activeThreads->end();
1483
1484 // Check stall and squash signals, dispatch any instructions.
1485 while (threads != end) {
1486 ThreadID tid = *threads++;
1487
1488 DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1489
1490 checkSignalsAndUpdate(tid);
1491 dispatch(tid);
1492 }
1493
1494 if (exeStatus != Squashing) {
1495 executeInsts();
1496
1497 writebackInsts();
1498
1499 // Have the instruction queue try to schedule any ready instructions.
1500 // (In actuality, this scheduling is for instructions that will
1501 // be executed next cycle.)
1502 instQueue.scheduleReadyInsts();
1503
1504 // Also should advance its own time buffers if the stage ran.
1505 // Not the best place for it, but this works (hopefully).
1506 issueToExecQueue.advance();
1507 }
1508
1509 bool broadcast_free_entries = false;
1510
1511 if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1512 exeStatus = Idle;
1513 updateLSQNextCycle = false;
1514
1515 broadcast_free_entries = true;
1516 }
1517
1518 // Writeback any stores using any leftover bandwidth.
1519 ldstQueue.writebackStores();
1520
1521 // Check the committed load/store signals to see if there's a load
1522 // or store to commit. Also check if it's being told to execute a
1523 // nonspeculative instruction.
1524 // This is pretty inefficient...
1525
1526 threads = activeThreads->begin();
1527 while (threads != end) {
1528 ThreadID tid = (*threads++);
1529
1530 DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1531
1532 // Update structures based on instructions committed.
1533 if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1534 !fromCommit->commitInfo[tid].squash &&
1535 !fromCommit->commitInfo[tid].robSquashing) {
1536
1537 ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1538
1539 ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1540
1541 updateLSQNextCycle = true;
1542 instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1543 }
1544
1545 if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1546
1547 //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1548 if (fromCommit->commitInfo[tid].uncached) {
1549 instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1550 fromCommit->commitInfo[tid].uncachedLoad->setAtCommit();
1551 } else {
1552 instQueue.scheduleNonSpec(
1553 fromCommit->commitInfo[tid].nonSpecSeqNum);
1554 }
1555 }
1556
1557 if (broadcast_free_entries) {
1558 toFetch->iewInfo[tid].iqCount =
1559 instQueue.getCount(tid);
1560 toFetch->iewInfo[tid].ldstqCount =
1561 ldstQueue.getCount(tid);
1562
1563 toRename->iewInfo[tid].usedIQ = true;
1564 toRename->iewInfo[tid].freeIQEntries =
1565 instQueue.numFreeEntries();
1566 toRename->iewInfo[tid].usedLSQ = true;
1567 toRename->iewInfo[tid].freeLSQEntries =
1568 ldstQueue.numFreeEntries(tid);
1569
1570 wroteToTimeBuffer = true;
1571 }
1572
1573 DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1574 tid, toRename->iewInfo[tid].dispatched);
1575 }
1576
1577 DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). "
1578 "LSQ has %i free entries.\n",
1579 instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1580 ldstQueue.numFreeEntries());
1581
1582 updateStatus();
1583
1584 if (wroteToTimeBuffer) {
1585 DPRINTF(Activity, "Activity this cycle.\n");
1586 cpu->activityThisCycle();
1587 }
1588}
1589
1590template <class Impl>
1591void
1592DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1593{
1594 ThreadID tid = inst->threadNumber;
1595
1596 //
1597 // Pick off the software prefetches
1598 //
1599#ifdef TARGET_ALPHA
1600 if (inst->isDataPrefetch())
1601 iewExecutedSwp[tid]++;
1602 else
1603 iewIewExecutedcutedInsts++;
1604#else
1605 iewExecutedInsts++;
1606#endif
1607
1608 //
1609 // Control operations
1610 //
1611 if (inst->isControl())
1612 iewExecutedBranches[tid]++;
1613
1614 //
1615 // Memory operations
1616 //
1617 if (inst->isMemRef()) {
1618 iewExecutedRefs[tid]++;
1619
1620 if (inst->isLoad()) {
1621 iewExecLoadInsts[tid]++;
1622 }
1623 }
1624}
1625
1626template <class Impl>
1627void
1628DefaultIEW<Impl>::checkMisprediction(DynInstPtr &inst)
1629{
1630 ThreadID tid = inst->threadNumber;
1631
1632 if (!fetchRedirect[tid] ||
1633 !toCommit->squash[tid] ||
1634 toCommit->squashedSeqNum[tid] > inst->seqNum) {
1635
1636 if (inst->mispredicted()) {
1637 fetchRedirect[tid] = true;
1638
1639 DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1640 DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1641 inst->predInstAddr(), inst->predNextInstAddr());
1642 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x,"
1643 " NPC: %#x.\n", inst->nextInstAddr(),
1644 inst->nextInstAddr());
1645 // If incorrect, then signal the ROB that it must be squashed.
1646 squashDueToBranch(inst, tid);
1647
1648 if (inst->readPredTaken()) {
1649 predictedTakenIncorrect++;
1650 } else {
1651 predictedNotTakenIncorrect++;
1652 }
1653 }
1654 }
1655}
50#include "config/the_isa.hh"
51#include "cpu/o3/fu_pool.hh"
52#include "cpu/o3/iew.hh"
53#include "cpu/timebuf.hh"
54#include "params/DerivO3CPU.hh"
55
56using namespace std;
57
58template<class Impl>
59DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params)
60 : issueToExecQueue(params->backComSize, params->forwardComSize),
61 cpu(_cpu),
62 instQueue(_cpu, this, params),
63 ldstQueue(_cpu, this, params),
64 fuPool(params->fuPool),
65 commitToIEWDelay(params->commitToIEWDelay),
66 renameToIEWDelay(params->renameToIEWDelay),
67 issueToExecuteDelay(params->issueToExecuteDelay),
68 dispatchWidth(params->dispatchWidth),
69 issueWidth(params->issueWidth),
70 wbOutstanding(0),
71 wbWidth(params->wbWidth),
72 numThreads(params->numThreads),
73 switchedOut(false)
74{
75 _status = Active;
76 exeStatus = Running;
77 wbStatus = Idle;
78
79 // Setup wire to read instructions coming from issue.
80 fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
81
82 // Instruction queue needs the queue between issue and execute.
83 instQueue.setIssueToExecuteQueue(&issueToExecQueue);
84
85 for (ThreadID tid = 0; tid < numThreads; tid++) {
86 dispatchStatus[tid] = Running;
87 stalls[tid].commit = false;
88 fetchRedirect[tid] = false;
89 }
90
91 wbMax = wbWidth * params->wbDepth;
92
93 updateLSQNextCycle = false;
94
95 ableToIssue = true;
96
97 skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
98}
99
100template <class Impl>
101std::string
102DefaultIEW<Impl>::name() const
103{
104 return cpu->name() + ".iew";
105}
106
107template <class Impl>
108void
109DefaultIEW<Impl>::regStats()
110{
111 using namespace Stats;
112
113 instQueue.regStats();
114 ldstQueue.regStats();
115
116 iewIdleCycles
117 .name(name() + ".iewIdleCycles")
118 .desc("Number of cycles IEW is idle");
119
120 iewSquashCycles
121 .name(name() + ".iewSquashCycles")
122 .desc("Number of cycles IEW is squashing");
123
124 iewBlockCycles
125 .name(name() + ".iewBlockCycles")
126 .desc("Number of cycles IEW is blocking");
127
128 iewUnblockCycles
129 .name(name() + ".iewUnblockCycles")
130 .desc("Number of cycles IEW is unblocking");
131
132 iewDispatchedInsts
133 .name(name() + ".iewDispatchedInsts")
134 .desc("Number of instructions dispatched to IQ");
135
136 iewDispSquashedInsts
137 .name(name() + ".iewDispSquashedInsts")
138 .desc("Number of squashed instructions skipped by dispatch");
139
140 iewDispLoadInsts
141 .name(name() + ".iewDispLoadInsts")
142 .desc("Number of dispatched load instructions");
143
144 iewDispStoreInsts
145 .name(name() + ".iewDispStoreInsts")
146 .desc("Number of dispatched store instructions");
147
148 iewDispNonSpecInsts
149 .name(name() + ".iewDispNonSpecInsts")
150 .desc("Number of dispatched non-speculative instructions");
151
152 iewIQFullEvents
153 .name(name() + ".iewIQFullEvents")
154 .desc("Number of times the IQ has become full, causing a stall");
155
156 iewLSQFullEvents
157 .name(name() + ".iewLSQFullEvents")
158 .desc("Number of times the LSQ has become full, causing a stall");
159
160 memOrderViolationEvents
161 .name(name() + ".memOrderViolationEvents")
162 .desc("Number of memory order violations");
163
164 predictedTakenIncorrect
165 .name(name() + ".predictedTakenIncorrect")
166 .desc("Number of branches that were predicted taken incorrectly");
167
168 predictedNotTakenIncorrect
169 .name(name() + ".predictedNotTakenIncorrect")
170 .desc("Number of branches that were predicted not taken incorrectly");
171
172 branchMispredicts
173 .name(name() + ".branchMispredicts")
174 .desc("Number of branch mispredicts detected at execute");
175
176 branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
177
178 iewExecutedInsts
179 .name(name() + ".iewExecutedInsts")
180 .desc("Number of executed instructions");
181
182 iewExecLoadInsts
183 .init(cpu->numThreads)
184 .name(name() + ".iewExecLoadInsts")
185 .desc("Number of load instructions executed")
186 .flags(total);
187
188 iewExecSquashedInsts
189 .name(name() + ".iewExecSquashedInsts")
190 .desc("Number of squashed instructions skipped in execute");
191
192 iewExecutedSwp
193 .init(cpu->numThreads)
194 .name(name() + ".EXEC:swp")
195 .desc("number of swp insts executed")
196 .flags(total);
197
198 iewExecutedNop
199 .init(cpu->numThreads)
200 .name(name() + ".EXEC:nop")
201 .desc("number of nop insts executed")
202 .flags(total);
203
204 iewExecutedRefs
205 .init(cpu->numThreads)
206 .name(name() + ".EXEC:refs")
207 .desc("number of memory reference insts executed")
208 .flags(total);
209
210 iewExecutedBranches
211 .init(cpu->numThreads)
212 .name(name() + ".EXEC:branches")
213 .desc("Number of branches executed")
214 .flags(total);
215
216 iewExecStoreInsts
217 .name(name() + ".EXEC:stores")
218 .desc("Number of stores executed")
219 .flags(total);
220 iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
221
222 iewExecRate
223 .name(name() + ".EXEC:rate")
224 .desc("Inst execution rate")
225 .flags(total);
226
227 iewExecRate = iewExecutedInsts / cpu->numCycles;
228
229 iewInstsToCommit
230 .init(cpu->numThreads)
231 .name(name() + ".WB:sent")
232 .desc("cumulative count of insts sent to commit")
233 .flags(total);
234
235 writebackCount
236 .init(cpu->numThreads)
237 .name(name() + ".WB:count")
238 .desc("cumulative count of insts written-back")
239 .flags(total);
240
241 producerInst
242 .init(cpu->numThreads)
243 .name(name() + ".WB:producers")
244 .desc("num instructions producing a value")
245 .flags(total);
246
247 consumerInst
248 .init(cpu->numThreads)
249 .name(name() + ".WB:consumers")
250 .desc("num instructions consuming a value")
251 .flags(total);
252
253 wbPenalized
254 .init(cpu->numThreads)
255 .name(name() + ".WB:penalized")
256 .desc("number of instrctions required to write to 'other' IQ")
257 .flags(total);
258
259 wbPenalizedRate
260 .name(name() + ".WB:penalized_rate")
261 .desc ("fraction of instructions written-back that wrote to 'other' IQ")
262 .flags(total);
263
264 wbPenalizedRate = wbPenalized / writebackCount;
265
266 wbFanout
267 .name(name() + ".WB:fanout")
268 .desc("average fanout of values written-back")
269 .flags(total);
270
271 wbFanout = producerInst / consumerInst;
272
273 wbRate
274 .name(name() + ".WB:rate")
275 .desc("insts written-back per cycle")
276 .flags(total);
277 wbRate = writebackCount / cpu->numCycles;
278}
279
280template<class Impl>
281void
282DefaultIEW<Impl>::initStage()
283{
284 for (ThreadID tid = 0; tid < numThreads; tid++) {
285 toRename->iewInfo[tid].usedIQ = true;
286 toRename->iewInfo[tid].freeIQEntries =
287 instQueue.numFreeEntries(tid);
288
289 toRename->iewInfo[tid].usedLSQ = true;
290 toRename->iewInfo[tid].freeLSQEntries =
291 ldstQueue.numFreeEntries(tid);
292 }
293
294 cpu->activateStage(O3CPU::IEWIdx);
295}
296
297template<class Impl>
298void
299DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
300{
301 timeBuffer = tb_ptr;
302
303 // Setup wire to read information from time buffer, from commit.
304 fromCommit = timeBuffer->getWire(-commitToIEWDelay);
305
306 // Setup wire to write information back to previous stages.
307 toRename = timeBuffer->getWire(0);
308
309 toFetch = timeBuffer->getWire(0);
310
311 // Instruction queue also needs main time buffer.
312 instQueue.setTimeBuffer(tb_ptr);
313}
314
315template<class Impl>
316void
317DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
318{
319 renameQueue = rq_ptr;
320
321 // Setup wire to read information from rename queue.
322 fromRename = renameQueue->getWire(-renameToIEWDelay);
323}
324
325template<class Impl>
326void
327DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
328{
329 iewQueue = iq_ptr;
330
331 // Setup wire to write instructions to commit.
332 toCommit = iewQueue->getWire(0);
333}
334
335template<class Impl>
336void
337DefaultIEW<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
338{
339 activeThreads = at_ptr;
340
341 ldstQueue.setActiveThreads(at_ptr);
342 instQueue.setActiveThreads(at_ptr);
343}
344
345template<class Impl>
346void
347DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
348{
349 scoreboard = sb_ptr;
350}
351
352template <class Impl>
353bool
354DefaultIEW<Impl>::drain()
355{
356 // IEW is ready to drain at any time.
357 cpu->signalDrained();
358 return true;
359}
360
361template <class Impl>
362void
363DefaultIEW<Impl>::resume()
364{
365}
366
367template <class Impl>
368void
369DefaultIEW<Impl>::switchOut()
370{
371 // Clear any state.
372 switchedOut = true;
373 assert(insts[0].empty());
374 assert(skidBuffer[0].empty());
375
376 instQueue.switchOut();
377 ldstQueue.switchOut();
378 fuPool->switchOut();
379
380 for (ThreadID tid = 0; tid < numThreads; tid++) {
381 while (!insts[tid].empty())
382 insts[tid].pop();
383 while (!skidBuffer[tid].empty())
384 skidBuffer[tid].pop();
385 }
386}
387
388template <class Impl>
389void
390DefaultIEW<Impl>::takeOverFrom()
391{
392 // Reset all state.
393 _status = Active;
394 exeStatus = Running;
395 wbStatus = Idle;
396 switchedOut = false;
397
398 instQueue.takeOverFrom();
399 ldstQueue.takeOverFrom();
400 fuPool->takeOverFrom();
401
402 initStage();
403 cpu->activityThisCycle();
404
405 for (ThreadID tid = 0; tid < numThreads; tid++) {
406 dispatchStatus[tid] = Running;
407 stalls[tid].commit = false;
408 fetchRedirect[tid] = false;
409 }
410
411 updateLSQNextCycle = false;
412
413 for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
414 issueToExecQueue.advance();
415 }
416}
417
418template<class Impl>
419void
420DefaultIEW<Impl>::squash(ThreadID tid)
421{
422 DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", tid);
423
424 // Tell the IQ to start squashing.
425 instQueue.squash(tid);
426
427 // Tell the LDSTQ to start squashing.
428 ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
429 updatedQueues = true;
430
431 // Clear the skid buffer in case it has any data in it.
432 DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
433 tid, fromCommit->commitInfo[tid].doneSeqNum);
434
435 while (!skidBuffer[tid].empty()) {
436 if (skidBuffer[tid].front()->isLoad() ||
437 skidBuffer[tid].front()->isStore() ) {
438 toRename->iewInfo[tid].dispatchedToLSQ++;
439 }
440
441 toRename->iewInfo[tid].dispatched++;
442
443 skidBuffer[tid].pop();
444 }
445
446 emptyRenameInsts(tid);
447}
448
449template<class Impl>
450void
451DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, ThreadID tid)
452{
453 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %s "
454 "[sn:%i].\n", tid, inst->pcState(), inst->seqNum);
455
456 if (toCommit->squash[tid] == false ||
457 inst->seqNum < toCommit->squashedSeqNum[tid]) {
458 toCommit->squash[tid] = true;
459 toCommit->squashedSeqNum[tid] = inst->seqNum;
460 toCommit->branchTaken[tid] = inst->pcState().branching();
461
462 TheISA::PCState pc = inst->pcState();
463 TheISA::advancePC(pc, inst->staticInst);
464
465 toCommit->pc[tid] = pc;
466 toCommit->mispredictInst[tid] = inst;
467 toCommit->includeSquashInst[tid] = false;
468
469 wroteToTimeBuffer = true;
470 }
471
472}
473
474template<class Impl>
475void
476DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, ThreadID tid)
477{
478 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
479 "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
480
481 if (toCommit->squash[tid] == false ||
482 inst->seqNum < toCommit->squashedSeqNum[tid]) {
483 toCommit->squash[tid] = true;
484 toCommit->squashedSeqNum[tid] = inst->seqNum;
485 TheISA::PCState pc = inst->pcState();
486 TheISA::advancePC(pc, inst->staticInst);
487 toCommit->pc[tid] = pc;
488 toCommit->mispredictInst[tid] = NULL;
489
490 toCommit->includeSquashInst[tid] = false;
491
492 wroteToTimeBuffer = true;
493 }
494}
495
496template<class Impl>
497void
498DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, ThreadID tid)
499{
500 DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
501 "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
502 if (toCommit->squash[tid] == false ||
503 inst->seqNum < toCommit->squashedSeqNum[tid]) {
504 toCommit->squash[tid] = true;
505
506 toCommit->squashedSeqNum[tid] = inst->seqNum;
507 toCommit->pc[tid] = inst->pcState();
508 toCommit->mispredictInst[tid] = NULL;
509
510 // Must include the broadcasted SN in the squash.
511 toCommit->includeSquashInst[tid] = true;
512
513 ldstQueue.setLoadBlockedHandled(tid);
514
515 wroteToTimeBuffer = true;
516 }
517}
518
519template<class Impl>
520void
521DefaultIEW<Impl>::block(ThreadID tid)
522{
523 DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
524
525 if (dispatchStatus[tid] != Blocked &&
526 dispatchStatus[tid] != Unblocking) {
527 toRename->iewBlock[tid] = true;
528 wroteToTimeBuffer = true;
529 }
530
531 // Add the current inputs to the skid buffer so they can be
532 // reprocessed when this stage unblocks.
533 skidInsert(tid);
534
535 dispatchStatus[tid] = Blocked;
536}
537
538template<class Impl>
539void
540DefaultIEW<Impl>::unblock(ThreadID tid)
541{
542 DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
543 "buffer %u.\n",tid, tid);
544
545 // If the skid bufffer is empty, signal back to previous stages to unblock.
546 // Also switch status to running.
547 if (skidBuffer[tid].empty()) {
548 toRename->iewUnblock[tid] = true;
549 wroteToTimeBuffer = true;
550 DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
551 dispatchStatus[tid] = Running;
552 }
553}
554
555template<class Impl>
556void
557DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
558{
559 instQueue.wakeDependents(inst);
560}
561
562template<class Impl>
563void
564DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
565{
566 instQueue.rescheduleMemInst(inst);
567}
568
569template<class Impl>
570void
571DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
572{
573 instQueue.replayMemInst(inst);
574}
575
576template<class Impl>
577void
578DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
579{
580 // This function should not be called after writebackInsts in a
581 // single cycle. That will cause problems with an instruction
582 // being added to the queue to commit without being processed by
583 // writebackInsts prior to being sent to commit.
584
585 // First check the time slot that this instruction will write
586 // to. If there are free write ports at the time, then go ahead
587 // and write the instruction to that time. If there are not,
588 // keep looking back to see where's the first time there's a
589 // free slot.
590 while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
591 ++wbNumInst;
592 if (wbNumInst == wbWidth) {
593 ++wbCycle;
594 wbNumInst = 0;
595 }
596
597 assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
598 }
599
600 DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
601 wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
602 // Add finished instruction to queue to commit.
603 (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
604 (*iewQueue)[wbCycle].size++;
605}
606
607template <class Impl>
608unsigned
609DefaultIEW<Impl>::validInstsFromRename()
610{
611 unsigned inst_count = 0;
612
613 for (int i=0; i<fromRename->size; i++) {
614 if (!fromRename->insts[i]->isSquashed())
615 inst_count++;
616 }
617
618 return inst_count;
619}
620
621template<class Impl>
622void
623DefaultIEW<Impl>::skidInsert(ThreadID tid)
624{
625 DynInstPtr inst = NULL;
626
627 while (!insts[tid].empty()) {
628 inst = insts[tid].front();
629
630 insts[tid].pop();
631
632 DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%s into "
633 "dispatch skidBuffer %i\n",tid, inst->seqNum,
634 inst->pcState(),tid);
635
636 skidBuffer[tid].push(inst);
637 }
638
639 assert(skidBuffer[tid].size() <= skidBufferMax &&
640 "Skidbuffer Exceeded Max Size");
641}
642
643template<class Impl>
644int
645DefaultIEW<Impl>::skidCount()
646{
647 int max=0;
648
649 list<ThreadID>::iterator threads = activeThreads->begin();
650 list<ThreadID>::iterator end = activeThreads->end();
651
652 while (threads != end) {
653 ThreadID tid = *threads++;
654 unsigned thread_count = skidBuffer[tid].size();
655 if (max < thread_count)
656 max = thread_count;
657 }
658
659 return max;
660}
661
662template<class Impl>
663bool
664DefaultIEW<Impl>::skidsEmpty()
665{
666 list<ThreadID>::iterator threads = activeThreads->begin();
667 list<ThreadID>::iterator end = activeThreads->end();
668
669 while (threads != end) {
670 ThreadID tid = *threads++;
671
672 if (!skidBuffer[tid].empty())
673 return false;
674 }
675
676 return true;
677}
678
679template <class Impl>
680void
681DefaultIEW<Impl>::updateStatus()
682{
683 bool any_unblocking = false;
684
685 list<ThreadID>::iterator threads = activeThreads->begin();
686 list<ThreadID>::iterator end = activeThreads->end();
687
688 while (threads != end) {
689 ThreadID tid = *threads++;
690
691 if (dispatchStatus[tid] == Unblocking) {
692 any_unblocking = true;
693 break;
694 }
695 }
696
697 // If there are no ready instructions waiting to be scheduled by the IQ,
698 // and there's no stores waiting to write back, and dispatch is not
699 // unblocking, then there is no internal activity for the IEW stage.
700 instQueue.intInstQueueReads++;
701 if (_status == Active && !instQueue.hasReadyInsts() &&
702 !ldstQueue.willWB() && !any_unblocking) {
703 DPRINTF(IEW, "IEW switching to idle\n");
704
705 deactivateStage();
706
707 _status = Inactive;
708 } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
709 ldstQueue.willWB() ||
710 any_unblocking)) {
711 // Otherwise there is internal activity. Set to active.
712 DPRINTF(IEW, "IEW switching to active\n");
713
714 activateStage();
715
716 _status = Active;
717 }
718}
719
720template <class Impl>
721void
722DefaultIEW<Impl>::resetEntries()
723{
724 instQueue.resetEntries();
725 ldstQueue.resetEntries();
726}
727
728template <class Impl>
729void
730DefaultIEW<Impl>::readStallSignals(ThreadID tid)
731{
732 if (fromCommit->commitBlock[tid]) {
733 stalls[tid].commit = true;
734 }
735
736 if (fromCommit->commitUnblock[tid]) {
737 assert(stalls[tid].commit);
738 stalls[tid].commit = false;
739 }
740}
741
742template <class Impl>
743bool
744DefaultIEW<Impl>::checkStall(ThreadID tid)
745{
746 bool ret_val(false);
747
748 if (stalls[tid].commit) {
749 DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
750 ret_val = true;
751 } else if (instQueue.isFull(tid)) {
752 DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid);
753 ret_val = true;
754 } else if (ldstQueue.isFull(tid)) {
755 DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
756
757 if (ldstQueue.numLoads(tid) > 0 ) {
758
759 DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
760 tid,ldstQueue.getLoadHeadSeqNum(tid));
761 }
762
763 if (ldstQueue.numStores(tid) > 0) {
764
765 DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
766 tid,ldstQueue.getStoreHeadSeqNum(tid));
767 }
768
769 ret_val = true;
770 } else if (ldstQueue.isStalled(tid)) {
771 DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
772 ret_val = true;
773 }
774
775 return ret_val;
776}
777
778template <class Impl>
779void
780DefaultIEW<Impl>::checkSignalsAndUpdate(ThreadID tid)
781{
782 // Check if there's a squash signal, squash if there is
783 // Check stall signals, block if there is.
784 // If status was Blocked
785 // if so then go to unblocking
786 // If status was Squashing
787 // check if squashing is not high. Switch to running this cycle.
788
789 readStallSignals(tid);
790
791 if (fromCommit->commitInfo[tid].squash) {
792 squash(tid);
793
794 if (dispatchStatus[tid] == Blocked ||
795 dispatchStatus[tid] == Unblocking) {
796 toRename->iewUnblock[tid] = true;
797 wroteToTimeBuffer = true;
798 }
799
800 dispatchStatus[tid] = Squashing;
801 fetchRedirect[tid] = false;
802 return;
803 }
804
805 if (fromCommit->commitInfo[tid].robSquashing) {
806 DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
807
808 dispatchStatus[tid] = Squashing;
809 emptyRenameInsts(tid);
810 wroteToTimeBuffer = true;
811 return;
812 }
813
814 if (checkStall(tid)) {
815 block(tid);
816 dispatchStatus[tid] = Blocked;
817 return;
818 }
819
820 if (dispatchStatus[tid] == Blocked) {
821 // Status from previous cycle was blocked, but there are no more stall
822 // conditions. Switch over to unblocking.
823 DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
824 tid);
825
826 dispatchStatus[tid] = Unblocking;
827
828 unblock(tid);
829
830 return;
831 }
832
833 if (dispatchStatus[tid] == Squashing) {
834 // Switch status to running if rename isn't being told to block or
835 // squash this cycle.
836 DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
837 tid);
838
839 dispatchStatus[tid] = Running;
840
841 return;
842 }
843}
844
845template <class Impl>
846void
847DefaultIEW<Impl>::sortInsts()
848{
849 int insts_from_rename = fromRename->size;
850#ifdef DEBUG
851 for (ThreadID tid = 0; tid < numThreads; tid++)
852 assert(insts[tid].empty());
853#endif
854 for (int i = 0; i < insts_from_rename; ++i) {
855 insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
856 }
857}
858
859template <class Impl>
860void
861DefaultIEW<Impl>::emptyRenameInsts(ThreadID tid)
862{
863 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid);
864
865 while (!insts[tid].empty()) {
866
867 if (insts[tid].front()->isLoad() ||
868 insts[tid].front()->isStore() ) {
869 toRename->iewInfo[tid].dispatchedToLSQ++;
870 }
871
872 toRename->iewInfo[tid].dispatched++;
873
874 insts[tid].pop();
875 }
876}
877
878template <class Impl>
879void
880DefaultIEW<Impl>::wakeCPU()
881{
882 cpu->wakeCPU();
883}
884
885template <class Impl>
886void
887DefaultIEW<Impl>::activityThisCycle()
888{
889 DPRINTF(Activity, "Activity this cycle.\n");
890 cpu->activityThisCycle();
891}
892
893template <class Impl>
894inline void
895DefaultIEW<Impl>::activateStage()
896{
897 DPRINTF(Activity, "Activating stage.\n");
898 cpu->activateStage(O3CPU::IEWIdx);
899}
900
901template <class Impl>
902inline void
903DefaultIEW<Impl>::deactivateStage()
904{
905 DPRINTF(Activity, "Deactivating stage.\n");
906 cpu->deactivateStage(O3CPU::IEWIdx);
907}
908
909template<class Impl>
910void
911DefaultIEW<Impl>::dispatch(ThreadID tid)
912{
913 // If status is Running or idle,
914 // call dispatchInsts()
915 // If status is Unblocking,
916 // buffer any instructions coming from rename
917 // continue trying to empty skid buffer
918 // check if stall conditions have passed
919
920 if (dispatchStatus[tid] == Blocked) {
921 ++iewBlockCycles;
922
923 } else if (dispatchStatus[tid] == Squashing) {
924 ++iewSquashCycles;
925 }
926
927 // Dispatch should try to dispatch as many instructions as its bandwidth
928 // will allow, as long as it is not currently blocked.
929 if (dispatchStatus[tid] == Running ||
930 dispatchStatus[tid] == Idle) {
931 DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
932 "dispatch.\n", tid);
933
934 dispatchInsts(tid);
935 } else if (dispatchStatus[tid] == Unblocking) {
936 // Make sure that the skid buffer has something in it if the
937 // status is unblocking.
938 assert(!skidsEmpty());
939
940 // If the status was unblocking, then instructions from the skid
941 // buffer were used. Remove those instructions and handle
942 // the rest of unblocking.
943 dispatchInsts(tid);
944
945 ++iewUnblockCycles;
946
947 if (validInstsFromRename()) {
948 // Add the current inputs to the skid buffer so they can be
949 // reprocessed when this stage unblocks.
950 skidInsert(tid);
951 }
952
953 unblock(tid);
954 }
955}
956
957template <class Impl>
958void
959DefaultIEW<Impl>::dispatchInsts(ThreadID tid)
960{
961 // Obtain instructions from skid buffer if unblocking, or queue from rename
962 // otherwise.
963 std::queue<DynInstPtr> &insts_to_dispatch =
964 dispatchStatus[tid] == Unblocking ?
965 skidBuffer[tid] : insts[tid];
966
967 int insts_to_add = insts_to_dispatch.size();
968
969 DynInstPtr inst;
970 bool add_to_iq = false;
971 int dis_num_inst = 0;
972
973 // Loop through the instructions, putting them in the instruction
974 // queue.
975 for ( ; dis_num_inst < insts_to_add &&
976 dis_num_inst < dispatchWidth;
977 ++dis_num_inst)
978 {
979 inst = insts_to_dispatch.front();
980
981 if (dispatchStatus[tid] == Unblocking) {
982 DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
983 "buffer\n", tid);
984 }
985
986 // Make sure there's a valid instruction there.
987 assert(inst);
988
989 DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %s [sn:%lli] [tid:%i] to "
990 "IQ.\n",
991 tid, inst->pcState(), inst->seqNum, inst->threadNumber);
992
993 // Be sure to mark these instructions as ready so that the
994 // commit stage can go ahead and execute them, and mark
995 // them as issued so the IQ doesn't reprocess them.
996
997 // Check for squashed instructions.
998 if (inst->isSquashed()) {
999 DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
1000 "not adding to IQ.\n", tid);
1001
1002 ++iewDispSquashedInsts;
1003
1004 insts_to_dispatch.pop();
1005
1006 //Tell Rename That An Instruction has been processed
1007 if (inst->isLoad() || inst->isStore()) {
1008 toRename->iewInfo[tid].dispatchedToLSQ++;
1009 }
1010 toRename->iewInfo[tid].dispatched++;
1011
1012 continue;
1013 }
1014
1015 // Check for full conditions.
1016 if (instQueue.isFull(tid)) {
1017 DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1018
1019 // Call function to start blocking.
1020 block(tid);
1021
1022 // Set unblock to false. Special case where we are using
1023 // skidbuffer (unblocking) instructions but then we still
1024 // get full in the IQ.
1025 toRename->iewUnblock[tid] = false;
1026
1027 ++iewIQFullEvents;
1028 break;
1029 } else if (ldstQueue.isFull(tid)) {
1030 DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1031
1032 // Call function to start blocking.
1033 block(tid);
1034
1035 // Set unblock to false. Special case where we are using
1036 // skidbuffer (unblocking) instructions but then we still
1037 // get full in the IQ.
1038 toRename->iewUnblock[tid] = false;
1039
1040 ++iewLSQFullEvents;
1041 break;
1042 }
1043
1044 // Otherwise issue the instruction just fine.
1045 if (inst->isLoad()) {
1046 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1047 "encountered, adding to LSQ.\n", tid);
1048
1049 // Reserve a spot in the load store queue for this
1050 // memory access.
1051 ldstQueue.insertLoad(inst);
1052
1053 ++iewDispLoadInsts;
1054
1055 add_to_iq = true;
1056
1057 toRename->iewInfo[tid].dispatchedToLSQ++;
1058 } else if (inst->isStore()) {
1059 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1060 "encountered, adding to LSQ.\n", tid);
1061
1062 ldstQueue.insertStore(inst);
1063
1064 ++iewDispStoreInsts;
1065
1066 if (inst->isStoreConditional()) {
1067 // Store conditionals need to be set as "canCommit()"
1068 // so that commit can process them when they reach the
1069 // head of commit.
1070 // @todo: This is somewhat specific to Alpha.
1071 inst->setCanCommit();
1072 instQueue.insertNonSpec(inst);
1073 add_to_iq = false;
1074
1075 ++iewDispNonSpecInsts;
1076 } else {
1077 add_to_iq = true;
1078 }
1079
1080 toRename->iewInfo[tid].dispatchedToLSQ++;
1081 } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1082 // Same as non-speculative stores.
1083 inst->setCanCommit();
1084 instQueue.insertBarrier(inst);
1085 add_to_iq = false;
1086 } else if (inst->isNop()) {
1087 DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1088 "skipping.\n", tid);
1089
1090 inst->setIssued();
1091 inst->setExecuted();
1092 inst->setCanCommit();
1093
1094 instQueue.recordProducer(inst);
1095
1096 iewExecutedNop[tid]++;
1097
1098 add_to_iq = false;
1099 } else if (inst->isExecuted()) {
1100 assert(0 && "Instruction shouldn't be executed.\n");
1101 DPRINTF(IEW, "Issue: Executed branch encountered, "
1102 "skipping.\n");
1103
1104 inst->setIssued();
1105 inst->setCanCommit();
1106
1107 instQueue.recordProducer(inst);
1108
1109 add_to_iq = false;
1110 } else {
1111 add_to_iq = true;
1112 }
1113 if (inst->isNonSpeculative()) {
1114 DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1115 "encountered, skipping.\n", tid);
1116
1117 // Same as non-speculative stores.
1118 inst->setCanCommit();
1119
1120 // Specifically insert it as nonspeculative.
1121 instQueue.insertNonSpec(inst);
1122
1123 ++iewDispNonSpecInsts;
1124
1125 add_to_iq = false;
1126 }
1127
1128 // If the instruction queue is not full, then add the
1129 // instruction.
1130 if (add_to_iq) {
1131 instQueue.insert(inst);
1132 }
1133
1134 insts_to_dispatch.pop();
1135
1136 toRename->iewInfo[tid].dispatched++;
1137
1138 ++iewDispatchedInsts;
1139 }
1140
1141 if (!insts_to_dispatch.empty()) {
1142 DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1143 block(tid);
1144 toRename->iewUnblock[tid] = false;
1145 }
1146
1147 if (dispatchStatus[tid] == Idle && dis_num_inst) {
1148 dispatchStatus[tid] = Running;
1149
1150 updatedQueues = true;
1151 }
1152
1153 dis_num_inst = 0;
1154}
1155
1156template <class Impl>
1157void
1158DefaultIEW<Impl>::printAvailableInsts()
1159{
1160 int inst = 0;
1161
1162 std::cout << "Available Instructions: ";
1163
1164 while (fromIssue->insts[inst]) {
1165
1166 if (inst%3==0) std::cout << "\n\t";
1167
1168 std::cout << "PC: " << fromIssue->insts[inst]->pcState()
1169 << " TN: " << fromIssue->insts[inst]->threadNumber
1170 << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1171
1172 inst++;
1173
1174 }
1175
1176 std::cout << "\n";
1177}
1178
1179template <class Impl>
1180void
1181DefaultIEW<Impl>::executeInsts()
1182{
1183 wbNumInst = 0;
1184 wbCycle = 0;
1185
1186 list<ThreadID>::iterator threads = activeThreads->begin();
1187 list<ThreadID>::iterator end = activeThreads->end();
1188
1189 while (threads != end) {
1190 ThreadID tid = *threads++;
1191 fetchRedirect[tid] = false;
1192 }
1193
1194 // Uncomment this if you want to see all available instructions.
1195 // @todo This doesn't actually work anymore, we should fix it.
1196// printAvailableInsts();
1197
1198 // Execute/writeback any instructions that are available.
1199 int insts_to_execute = fromIssue->size;
1200 int inst_num = 0;
1201 for (; inst_num < insts_to_execute;
1202 ++inst_num) {
1203
1204 DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1205
1206 DynInstPtr inst = instQueue.getInstToExecute();
1207
1208 DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%i].\n",
1209 inst->pcState(), inst->threadNumber,inst->seqNum);
1210
1211 // Check if the instruction is squashed; if so then skip it
1212 if (inst->isSquashed()) {
1213 DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1214
1215 // Consider this instruction executed so that commit can go
1216 // ahead and retire the instruction.
1217 inst->setExecuted();
1218
1219 // Not sure if I should set this here or just let commit try to
1220 // commit any squashed instructions. I like the latter a bit more.
1221 inst->setCanCommit();
1222
1223 ++iewExecSquashedInsts;
1224
1225 decrWb(inst->seqNum);
1226 continue;
1227 }
1228
1229 Fault fault = NoFault;
1230
1231 // Execute instruction.
1232 // Note that if the instruction faults, it will be handled
1233 // at the commit stage.
1234 if (inst->isMemRef()) {
1235 DPRINTF(IEW, "Execute: Calculating address for memory "
1236 "reference.\n");
1237
1238 // Tell the LDSTQ to execute this instruction (if it is a load).
1239 if (inst->isLoad()) {
1240 // Loads will mark themselves as executed, and their writeback
1241 // event adds the instruction to the queue to commit
1242 fault = ldstQueue.executeLoad(inst);
1243
1244 if (inst->isTranslationDelayed() &&
1245 fault == NoFault) {
1246 // A hw page table walk is currently going on; the
1247 // instruction must be deferred.
1248 DPRINTF(IEW, "Execute: Delayed translation, deferring "
1249 "load.\n");
1250 instQueue.deferMemInst(inst);
1251 continue;
1252 }
1253
1254 if (inst->isDataPrefetch() || inst->isInstPrefetch()) {
1255 inst->fault = NoFault;
1256 }
1257 } else if (inst->isStore()) {
1258 fault = ldstQueue.executeStore(inst);
1259
1260 if (inst->isTranslationDelayed() &&
1261 fault == NoFault) {
1262 // A hw page table walk is currently going on; the
1263 // instruction must be deferred.
1264 DPRINTF(IEW, "Execute: Delayed translation, deferring "
1265 "store.\n");
1266 instQueue.deferMemInst(inst);
1267 continue;
1268 }
1269
1270 // If the store had a fault then it may not have a mem req
1271 if (fault != NoFault || inst->readPredicate() == false ||
1272 !inst->isStoreConditional()) {
1273 // If the instruction faulted, then we need to send it along
1274 // to commit without the instruction completing.
1275 // Send this instruction to commit, also make sure iew stage
1276 // realizes there is activity.
1277 inst->setExecuted();
1278 instToCommit(inst);
1279 activityThisCycle();
1280 }
1281
1282 // Store conditionals will mark themselves as
1283 // executed, and their writeback event will add the
1284 // instruction to the queue to commit.
1285 } else {
1286 panic("Unexpected memory type!\n");
1287 }
1288
1289 } else {
1290 // If the instruction has already faulted, then skip executing it.
1291 // Such case can happen when it faulted during ITLB translation.
1292 // If we execute the instruction (even if it's a nop) the fault
1293 // will be replaced and we will lose it.
1294 if (inst->getFault() == NoFault) {
1295 inst->execute();
1296 if (inst->readPredicate() == false)
1297 inst->forwardOldRegs();
1298 }
1299
1300 inst->setExecuted();
1301
1302 instToCommit(inst);
1303 }
1304
1305 updateExeInstStats(inst);
1306
1307 // Check if branch prediction was correct, if not then we need
1308 // to tell commit to squash in flight instructions. Only
1309 // handle this if there hasn't already been something that
1310 // redirects fetch in this group of instructions.
1311
1312 // This probably needs to prioritize the redirects if a different
1313 // scheduler is used. Currently the scheduler schedules the oldest
1314 // instruction first, so the branch resolution order will be correct.
1315 ThreadID tid = inst->threadNumber;
1316
1317 if (!fetchRedirect[tid] ||
1318 !toCommit->squash[tid] ||
1319 toCommit->squashedSeqNum[tid] > inst->seqNum) {
1320
1321 // Prevent testing for misprediction on load instructions,
1322 // that have not been executed.
1323 bool loadNotExecuted = !inst->isExecuted() && inst->isLoad();
1324
1325 if (inst->mispredicted() && !loadNotExecuted) {
1326 fetchRedirect[tid] = true;
1327
1328 DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1329 DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1330 inst->predInstAddr(), inst->predNextInstAddr());
1331 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %s.\n",
1332 inst->pcState(), inst->nextInstAddr());
1333 // If incorrect, then signal the ROB that it must be squashed.
1334 squashDueToBranch(inst, tid);
1335
1336 if (inst->readPredTaken()) {
1337 predictedTakenIncorrect++;
1338 } else {
1339 predictedNotTakenIncorrect++;
1340 }
1341 } else if (ldstQueue.violation(tid)) {
1342 assert(inst->isMemRef());
1343 // If there was an ordering violation, then get the
1344 // DynInst that caused the violation. Note that this
1345 // clears the violation signal.
1346 DynInstPtr violator;
1347 violator = ldstQueue.getMemDepViolator(tid);
1348
1349 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s "
1350 "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n",
1351 violator->pcState(), violator->seqNum,
1352 inst->pcState(), inst->seqNum, inst->physEffAddr);
1353
1354 fetchRedirect[tid] = true;
1355
1356 // Tell the instruction queue that a violation has occured.
1357 instQueue.violation(inst, violator);
1358
1359 // Squash.
1360 squashDueToMemOrder(inst,tid);
1361
1362 ++memOrderViolationEvents;
1363 } else if (ldstQueue.loadBlocked(tid) &&
1364 !ldstQueue.isLoadBlockedHandled(tid)) {
1365 fetchRedirect[tid] = true;
1366
1367 DPRINTF(IEW, "Load operation couldn't execute because the "
1368 "memory system is blocked. PC: %s [sn:%lli]\n",
1369 inst->pcState(), inst->seqNum);
1370
1371 squashDueToMemBlocked(inst, tid);
1372 }
1373 } else {
1374 // Reset any state associated with redirects that will not
1375 // be used.
1376 if (ldstQueue.violation(tid)) {
1377 assert(inst->isMemRef());
1378
1379 DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1380
1381 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
1382 "%s, inst PC: %s. Addr is: %#x.\n",
1383 violator->pcState(), inst->pcState(),
1384 inst->physEffAddr);
1385 DPRINTF(IEW, "Violation will not be handled because "
1386 "already squashing\n");
1387
1388 ++memOrderViolationEvents;
1389 }
1390 if (ldstQueue.loadBlocked(tid) &&
1391 !ldstQueue.isLoadBlockedHandled(tid)) {
1392 DPRINTF(IEW, "Load operation couldn't execute because the "
1393 "memory system is blocked. PC: %s [sn:%lli]\n",
1394 inst->pcState(), inst->seqNum);
1395 DPRINTF(IEW, "Blocked load will not be handled because "
1396 "already squashing\n");
1397
1398 ldstQueue.setLoadBlockedHandled(tid);
1399 }
1400
1401 }
1402 }
1403
1404 // Update and record activity if we processed any instructions.
1405 if (inst_num) {
1406 if (exeStatus == Idle) {
1407 exeStatus = Running;
1408 }
1409
1410 updatedQueues = true;
1411
1412 cpu->activityThisCycle();
1413 }
1414
1415 // Need to reset this in case a writeback event needs to write into the
1416 // iew queue. That way the writeback event will write into the correct
1417 // spot in the queue.
1418 wbNumInst = 0;
1419
1420}
1421
1422template <class Impl>
1423void
1424DefaultIEW<Impl>::writebackInsts()
1425{
1426 // Loop through the head of the time buffer and wake any
1427 // dependents. These instructions are about to write back. Also
1428 // mark scoreboard that this instruction is finally complete.
1429 // Either have IEW have direct access to scoreboard, or have this
1430 // as part of backwards communication.
1431 for (int inst_num = 0; inst_num < wbWidth &&
1432 toCommit->insts[inst_num]; inst_num++) {
1433 DynInstPtr inst = toCommit->insts[inst_num];
1434 ThreadID tid = inst->threadNumber;
1435
1436 DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n",
1437 inst->seqNum, inst->pcState());
1438
1439 iewInstsToCommit[tid]++;
1440
1441 // Some instructions will be sent to commit without having
1442 // executed because they need commit to handle them.
1443 // E.g. Uncached loads have not actually executed when they
1444 // are first sent to commit. Instead commit must tell the LSQ
1445 // when it's ready to execute the uncached load.
1446 if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1447 int dependents = instQueue.wakeDependents(inst);
1448
1449 for (int i = 0; i < inst->numDestRegs(); i++) {
1450 //mark as Ready
1451 DPRINTF(IEW,"Setting Destination Register %i\n",
1452 inst->renamedDestRegIdx(i));
1453 scoreboard->setReg(inst->renamedDestRegIdx(i));
1454 }
1455
1456 if (dependents) {
1457 producerInst[tid]++;
1458 consumerInst[tid]+= dependents;
1459 }
1460 writebackCount[tid]++;
1461 }
1462
1463 decrWb(inst->seqNum);
1464 }
1465}
1466
1467template<class Impl>
1468void
1469DefaultIEW<Impl>::tick()
1470{
1471 wbNumInst = 0;
1472 wbCycle = 0;
1473
1474 wroteToTimeBuffer = false;
1475 updatedQueues = false;
1476
1477 sortInsts();
1478
1479 // Free function units marked as being freed this cycle.
1480 fuPool->processFreeUnits();
1481
1482 list<ThreadID>::iterator threads = activeThreads->begin();
1483 list<ThreadID>::iterator end = activeThreads->end();
1484
1485 // Check stall and squash signals, dispatch any instructions.
1486 while (threads != end) {
1487 ThreadID tid = *threads++;
1488
1489 DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1490
1491 checkSignalsAndUpdate(tid);
1492 dispatch(tid);
1493 }
1494
1495 if (exeStatus != Squashing) {
1496 executeInsts();
1497
1498 writebackInsts();
1499
1500 // Have the instruction queue try to schedule any ready instructions.
1501 // (In actuality, this scheduling is for instructions that will
1502 // be executed next cycle.)
1503 instQueue.scheduleReadyInsts();
1504
1505 // Also should advance its own time buffers if the stage ran.
1506 // Not the best place for it, but this works (hopefully).
1507 issueToExecQueue.advance();
1508 }
1509
1510 bool broadcast_free_entries = false;
1511
1512 if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1513 exeStatus = Idle;
1514 updateLSQNextCycle = false;
1515
1516 broadcast_free_entries = true;
1517 }
1518
1519 // Writeback any stores using any leftover bandwidth.
1520 ldstQueue.writebackStores();
1521
1522 // Check the committed load/store signals to see if there's a load
1523 // or store to commit. Also check if it's being told to execute a
1524 // nonspeculative instruction.
1525 // This is pretty inefficient...
1526
1527 threads = activeThreads->begin();
1528 while (threads != end) {
1529 ThreadID tid = (*threads++);
1530
1531 DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1532
1533 // Update structures based on instructions committed.
1534 if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1535 !fromCommit->commitInfo[tid].squash &&
1536 !fromCommit->commitInfo[tid].robSquashing) {
1537
1538 ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1539
1540 ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1541
1542 updateLSQNextCycle = true;
1543 instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1544 }
1545
1546 if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1547
1548 //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1549 if (fromCommit->commitInfo[tid].uncached) {
1550 instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1551 fromCommit->commitInfo[tid].uncachedLoad->setAtCommit();
1552 } else {
1553 instQueue.scheduleNonSpec(
1554 fromCommit->commitInfo[tid].nonSpecSeqNum);
1555 }
1556 }
1557
1558 if (broadcast_free_entries) {
1559 toFetch->iewInfo[tid].iqCount =
1560 instQueue.getCount(tid);
1561 toFetch->iewInfo[tid].ldstqCount =
1562 ldstQueue.getCount(tid);
1563
1564 toRename->iewInfo[tid].usedIQ = true;
1565 toRename->iewInfo[tid].freeIQEntries =
1566 instQueue.numFreeEntries();
1567 toRename->iewInfo[tid].usedLSQ = true;
1568 toRename->iewInfo[tid].freeLSQEntries =
1569 ldstQueue.numFreeEntries(tid);
1570
1571 wroteToTimeBuffer = true;
1572 }
1573
1574 DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1575 tid, toRename->iewInfo[tid].dispatched);
1576 }
1577
1578 DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). "
1579 "LSQ has %i free entries.\n",
1580 instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1581 ldstQueue.numFreeEntries());
1582
1583 updateStatus();
1584
1585 if (wroteToTimeBuffer) {
1586 DPRINTF(Activity, "Activity this cycle.\n");
1587 cpu->activityThisCycle();
1588 }
1589}
1590
1591template <class Impl>
1592void
1593DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1594{
1595 ThreadID tid = inst->threadNumber;
1596
1597 //
1598 // Pick off the software prefetches
1599 //
1600#ifdef TARGET_ALPHA
1601 if (inst->isDataPrefetch())
1602 iewExecutedSwp[tid]++;
1603 else
1604 iewIewExecutedcutedInsts++;
1605#else
1606 iewExecutedInsts++;
1607#endif
1608
1609 //
1610 // Control operations
1611 //
1612 if (inst->isControl())
1613 iewExecutedBranches[tid]++;
1614
1615 //
1616 // Memory operations
1617 //
1618 if (inst->isMemRef()) {
1619 iewExecutedRefs[tid]++;
1620
1621 if (inst->isLoad()) {
1622 iewExecLoadInsts[tid]++;
1623 }
1624 }
1625}
1626
1627template <class Impl>
1628void
1629DefaultIEW<Impl>::checkMisprediction(DynInstPtr &inst)
1630{
1631 ThreadID tid = inst->threadNumber;
1632
1633 if (!fetchRedirect[tid] ||
1634 !toCommit->squash[tid] ||
1635 toCommit->squashedSeqNum[tid] > inst->seqNum) {
1636
1637 if (inst->mispredicted()) {
1638 fetchRedirect[tid] = true;
1639
1640 DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1641 DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1642 inst->predInstAddr(), inst->predNextInstAddr());
1643 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x,"
1644 " NPC: %#x.\n", inst->nextInstAddr(),
1645 inst->nextInstAddr());
1646 // If incorrect, then signal the ROB that it must be squashed.
1647 squashDueToBranch(inst, tid);
1648
1649 if (inst->readPredTaken()) {
1650 predictedTakenIncorrect++;
1651 } else {
1652 predictedNotTakenIncorrect++;
1653 }
1654 }
1655 }
1656}