iew_impl.hh (4033:7bb1223f9645) iew_impl.hh (4318:eb4241362a80)
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31// @todo: Fix the instantaneous communication among all the stages within
32// iew. There's a clear delay between issue and execute, yet backwards
33// communication happens simultaneously.
34
35#include <queue>
36
37#include "base/timebuf.hh"
38#include "cpu/o3/fu_pool.hh"
39#include "cpu/o3/iew.hh"
40
41template<class Impl>
42DefaultIEW<Impl>::DefaultIEW(Params *params)
43 : issueToExecQueue(params->backComSize, params->forwardComSize),
44 instQueue(params),
45 ldstQueue(params),
46 fuPool(params->fuPool),
47 commitToIEWDelay(params->commitToIEWDelay),
48 renameToIEWDelay(params->renameToIEWDelay),
49 issueToExecuteDelay(params->issueToExecuteDelay),
50 dispatchWidth(params->dispatchWidth),
51 issueWidth(params->issueWidth),
52 wbOutstanding(0),
53 wbWidth(params->wbWidth),
54 numThreads(params->numberOfThreads),
55 switchedOut(false)
56{
57 _status = Active;
58 exeStatus = Running;
59 wbStatus = Idle;
60
61 // Setup wire to read instructions coming from issue.
62 fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
63
64 // Instruction queue needs the queue between issue and execute.
65 instQueue.setIssueToExecuteQueue(&issueToExecQueue);
66
67 instQueue.setIEW(this);
68 ldstQueue.setIEW(this);
69
70 for (int i=0; i < numThreads; i++) {
71 dispatchStatus[i] = Running;
72 stalls[i].commit = false;
73 fetchRedirect[i] = false;
74 bdelayDoneSeqNum[i] = 0;
75 }
76
77 wbMax = wbWidth * params->wbDepth;
78
79 updateLSQNextCycle = false;
80
81 ableToIssue = true;
82
83 skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
84}
85
86template <class Impl>
87std::string
88DefaultIEW<Impl>::name() const
89{
90 return cpu->name() + ".iew";
91}
92
93template <class Impl>
94void
95DefaultIEW<Impl>::regStats()
96{
97 using namespace Stats;
98
99 instQueue.regStats();
100 ldstQueue.regStats();
101
102 iewIdleCycles
103 .name(name() + ".iewIdleCycles")
104 .desc("Number of cycles IEW is idle");
105
106 iewSquashCycles
107 .name(name() + ".iewSquashCycles")
108 .desc("Number of cycles IEW is squashing");
109
110 iewBlockCycles
111 .name(name() + ".iewBlockCycles")
112 .desc("Number of cycles IEW is blocking");
113
114 iewUnblockCycles
115 .name(name() + ".iewUnblockCycles")
116 .desc("Number of cycles IEW is unblocking");
117
118 iewDispatchedInsts
119 .name(name() + ".iewDispatchedInsts")
120 .desc("Number of instructions dispatched to IQ");
121
122 iewDispSquashedInsts
123 .name(name() + ".iewDispSquashedInsts")
124 .desc("Number of squashed instructions skipped by dispatch");
125
126 iewDispLoadInsts
127 .name(name() + ".iewDispLoadInsts")
128 .desc("Number of dispatched load instructions");
129
130 iewDispStoreInsts
131 .name(name() + ".iewDispStoreInsts")
132 .desc("Number of dispatched store instructions");
133
134 iewDispNonSpecInsts
135 .name(name() + ".iewDispNonSpecInsts")
136 .desc("Number of dispatched non-speculative instructions");
137
138 iewIQFullEvents
139 .name(name() + ".iewIQFullEvents")
140 .desc("Number of times the IQ has become full, causing a stall");
141
142 iewLSQFullEvents
143 .name(name() + ".iewLSQFullEvents")
144 .desc("Number of times the LSQ has become full, causing a stall");
145
146 memOrderViolationEvents
147 .name(name() + ".memOrderViolationEvents")
148 .desc("Number of memory order violations");
149
150 predictedTakenIncorrect
151 .name(name() + ".predictedTakenIncorrect")
152 .desc("Number of branches that were predicted taken incorrectly");
153
154 predictedNotTakenIncorrect
155 .name(name() + ".predictedNotTakenIncorrect")
156 .desc("Number of branches that were predicted not taken incorrectly");
157
158 branchMispredicts
159 .name(name() + ".branchMispredicts")
160 .desc("Number of branch mispredicts detected at execute");
161
162 branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
163
164 iewExecutedInsts
165 .name(name() + ".iewExecutedInsts")
166 .desc("Number of executed instructions");
167
168 iewExecLoadInsts
169 .init(cpu->number_of_threads)
170 .name(name() + ".iewExecLoadInsts")
171 .desc("Number of load instructions executed")
172 .flags(total);
173
174 iewExecSquashedInsts
175 .name(name() + ".iewExecSquashedInsts")
176 .desc("Number of squashed instructions skipped in execute");
177
178 iewExecutedSwp
179 .init(cpu->number_of_threads)
180 .name(name() + ".EXEC:swp")
181 .desc("number of swp insts executed")
182 .flags(total);
183
184 iewExecutedNop
185 .init(cpu->number_of_threads)
186 .name(name() + ".EXEC:nop")
187 .desc("number of nop insts executed")
188 .flags(total);
189
190 iewExecutedRefs
191 .init(cpu->number_of_threads)
192 .name(name() + ".EXEC:refs")
193 .desc("number of memory reference insts executed")
194 .flags(total);
195
196 iewExecutedBranches
197 .init(cpu->number_of_threads)
198 .name(name() + ".EXEC:branches")
199 .desc("Number of branches executed")
200 .flags(total);
201
202 iewExecStoreInsts
203 .name(name() + ".EXEC:stores")
204 .desc("Number of stores executed")
205 .flags(total);
206 iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
207
208 iewExecRate
209 .name(name() + ".EXEC:rate")
210 .desc("Inst execution rate")
211 .flags(total);
212
213 iewExecRate = iewExecutedInsts / cpu->numCycles;
214
215 iewInstsToCommit
216 .init(cpu->number_of_threads)
217 .name(name() + ".WB:sent")
218 .desc("cumulative count of insts sent to commit")
219 .flags(total);
220
221 writebackCount
222 .init(cpu->number_of_threads)
223 .name(name() + ".WB:count")
224 .desc("cumulative count of insts written-back")
225 .flags(total);
226
227 producerInst
228 .init(cpu->number_of_threads)
229 .name(name() + ".WB:producers")
230 .desc("num instructions producing a value")
231 .flags(total);
232
233 consumerInst
234 .init(cpu->number_of_threads)
235 .name(name() + ".WB:consumers")
236 .desc("num instructions consuming a value")
237 .flags(total);
238
239 wbPenalized
240 .init(cpu->number_of_threads)
241 .name(name() + ".WB:penalized")
242 .desc("number of instrctions required to write to 'other' IQ")
243 .flags(total);
244
245 wbPenalizedRate
246 .name(name() + ".WB:penalized_rate")
247 .desc ("fraction of instructions written-back that wrote to 'other' IQ")
248 .flags(total);
249
250 wbPenalizedRate = wbPenalized / writebackCount;
251
252 wbFanout
253 .name(name() + ".WB:fanout")
254 .desc("average fanout of values written-back")
255 .flags(total);
256
257 wbFanout = producerInst / consumerInst;
258
259 wbRate
260 .name(name() + ".WB:rate")
261 .desc("insts written-back per cycle")
262 .flags(total);
263 wbRate = writebackCount / cpu->numCycles;
264}
265
266template<class Impl>
267void
268DefaultIEW<Impl>::initStage()
269{
270 for (int tid=0; tid < numThreads; tid++) {
271 toRename->iewInfo[tid].usedIQ = true;
272 toRename->iewInfo[tid].freeIQEntries =
273 instQueue.numFreeEntries(tid);
274
275 toRename->iewInfo[tid].usedLSQ = true;
276 toRename->iewInfo[tid].freeLSQEntries =
277 ldstQueue.numFreeEntries(tid);
278 }
279}
280
281template<class Impl>
282void
283DefaultIEW<Impl>::setCPU(O3CPU *cpu_ptr)
284{
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31// @todo: Fix the instantaneous communication among all the stages within
32// iew. There's a clear delay between issue and execute, yet backwards
33// communication happens simultaneously.
34
35#include <queue>
36
37#include "base/timebuf.hh"
38#include "cpu/o3/fu_pool.hh"
39#include "cpu/o3/iew.hh"
40
41template<class Impl>
42DefaultIEW<Impl>::DefaultIEW(Params *params)
43 : issueToExecQueue(params->backComSize, params->forwardComSize),
44 instQueue(params),
45 ldstQueue(params),
46 fuPool(params->fuPool),
47 commitToIEWDelay(params->commitToIEWDelay),
48 renameToIEWDelay(params->renameToIEWDelay),
49 issueToExecuteDelay(params->issueToExecuteDelay),
50 dispatchWidth(params->dispatchWidth),
51 issueWidth(params->issueWidth),
52 wbOutstanding(0),
53 wbWidth(params->wbWidth),
54 numThreads(params->numberOfThreads),
55 switchedOut(false)
56{
57 _status = Active;
58 exeStatus = Running;
59 wbStatus = Idle;
60
61 // Setup wire to read instructions coming from issue.
62 fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
63
64 // Instruction queue needs the queue between issue and execute.
65 instQueue.setIssueToExecuteQueue(&issueToExecQueue);
66
67 instQueue.setIEW(this);
68 ldstQueue.setIEW(this);
69
70 for (int i=0; i < numThreads; i++) {
71 dispatchStatus[i] = Running;
72 stalls[i].commit = false;
73 fetchRedirect[i] = false;
74 bdelayDoneSeqNum[i] = 0;
75 }
76
77 wbMax = wbWidth * params->wbDepth;
78
79 updateLSQNextCycle = false;
80
81 ableToIssue = true;
82
83 skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
84}
85
86template <class Impl>
87std::string
88DefaultIEW<Impl>::name() const
89{
90 return cpu->name() + ".iew";
91}
92
93template <class Impl>
94void
95DefaultIEW<Impl>::regStats()
96{
97 using namespace Stats;
98
99 instQueue.regStats();
100 ldstQueue.regStats();
101
102 iewIdleCycles
103 .name(name() + ".iewIdleCycles")
104 .desc("Number of cycles IEW is idle");
105
106 iewSquashCycles
107 .name(name() + ".iewSquashCycles")
108 .desc("Number of cycles IEW is squashing");
109
110 iewBlockCycles
111 .name(name() + ".iewBlockCycles")
112 .desc("Number of cycles IEW is blocking");
113
114 iewUnblockCycles
115 .name(name() + ".iewUnblockCycles")
116 .desc("Number of cycles IEW is unblocking");
117
118 iewDispatchedInsts
119 .name(name() + ".iewDispatchedInsts")
120 .desc("Number of instructions dispatched to IQ");
121
122 iewDispSquashedInsts
123 .name(name() + ".iewDispSquashedInsts")
124 .desc("Number of squashed instructions skipped by dispatch");
125
126 iewDispLoadInsts
127 .name(name() + ".iewDispLoadInsts")
128 .desc("Number of dispatched load instructions");
129
130 iewDispStoreInsts
131 .name(name() + ".iewDispStoreInsts")
132 .desc("Number of dispatched store instructions");
133
134 iewDispNonSpecInsts
135 .name(name() + ".iewDispNonSpecInsts")
136 .desc("Number of dispatched non-speculative instructions");
137
138 iewIQFullEvents
139 .name(name() + ".iewIQFullEvents")
140 .desc("Number of times the IQ has become full, causing a stall");
141
142 iewLSQFullEvents
143 .name(name() + ".iewLSQFullEvents")
144 .desc("Number of times the LSQ has become full, causing a stall");
145
146 memOrderViolationEvents
147 .name(name() + ".memOrderViolationEvents")
148 .desc("Number of memory order violations");
149
150 predictedTakenIncorrect
151 .name(name() + ".predictedTakenIncorrect")
152 .desc("Number of branches that were predicted taken incorrectly");
153
154 predictedNotTakenIncorrect
155 .name(name() + ".predictedNotTakenIncorrect")
156 .desc("Number of branches that were predicted not taken incorrectly");
157
158 branchMispredicts
159 .name(name() + ".branchMispredicts")
160 .desc("Number of branch mispredicts detected at execute");
161
162 branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
163
164 iewExecutedInsts
165 .name(name() + ".iewExecutedInsts")
166 .desc("Number of executed instructions");
167
168 iewExecLoadInsts
169 .init(cpu->number_of_threads)
170 .name(name() + ".iewExecLoadInsts")
171 .desc("Number of load instructions executed")
172 .flags(total);
173
174 iewExecSquashedInsts
175 .name(name() + ".iewExecSquashedInsts")
176 .desc("Number of squashed instructions skipped in execute");
177
178 iewExecutedSwp
179 .init(cpu->number_of_threads)
180 .name(name() + ".EXEC:swp")
181 .desc("number of swp insts executed")
182 .flags(total);
183
184 iewExecutedNop
185 .init(cpu->number_of_threads)
186 .name(name() + ".EXEC:nop")
187 .desc("number of nop insts executed")
188 .flags(total);
189
190 iewExecutedRefs
191 .init(cpu->number_of_threads)
192 .name(name() + ".EXEC:refs")
193 .desc("number of memory reference insts executed")
194 .flags(total);
195
196 iewExecutedBranches
197 .init(cpu->number_of_threads)
198 .name(name() + ".EXEC:branches")
199 .desc("Number of branches executed")
200 .flags(total);
201
202 iewExecStoreInsts
203 .name(name() + ".EXEC:stores")
204 .desc("Number of stores executed")
205 .flags(total);
206 iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
207
208 iewExecRate
209 .name(name() + ".EXEC:rate")
210 .desc("Inst execution rate")
211 .flags(total);
212
213 iewExecRate = iewExecutedInsts / cpu->numCycles;
214
215 iewInstsToCommit
216 .init(cpu->number_of_threads)
217 .name(name() + ".WB:sent")
218 .desc("cumulative count of insts sent to commit")
219 .flags(total);
220
221 writebackCount
222 .init(cpu->number_of_threads)
223 .name(name() + ".WB:count")
224 .desc("cumulative count of insts written-back")
225 .flags(total);
226
227 producerInst
228 .init(cpu->number_of_threads)
229 .name(name() + ".WB:producers")
230 .desc("num instructions producing a value")
231 .flags(total);
232
233 consumerInst
234 .init(cpu->number_of_threads)
235 .name(name() + ".WB:consumers")
236 .desc("num instructions consuming a value")
237 .flags(total);
238
239 wbPenalized
240 .init(cpu->number_of_threads)
241 .name(name() + ".WB:penalized")
242 .desc("number of instrctions required to write to 'other' IQ")
243 .flags(total);
244
245 wbPenalizedRate
246 .name(name() + ".WB:penalized_rate")
247 .desc ("fraction of instructions written-back that wrote to 'other' IQ")
248 .flags(total);
249
250 wbPenalizedRate = wbPenalized / writebackCount;
251
252 wbFanout
253 .name(name() + ".WB:fanout")
254 .desc("average fanout of values written-back")
255 .flags(total);
256
257 wbFanout = producerInst / consumerInst;
258
259 wbRate
260 .name(name() + ".WB:rate")
261 .desc("insts written-back per cycle")
262 .flags(total);
263 wbRate = writebackCount / cpu->numCycles;
264}
265
266template<class Impl>
267void
268DefaultIEW<Impl>::initStage()
269{
270 for (int tid=0; tid < numThreads; tid++) {
271 toRename->iewInfo[tid].usedIQ = true;
272 toRename->iewInfo[tid].freeIQEntries =
273 instQueue.numFreeEntries(tid);
274
275 toRename->iewInfo[tid].usedLSQ = true;
276 toRename->iewInfo[tid].freeLSQEntries =
277 ldstQueue.numFreeEntries(tid);
278 }
279}
280
281template<class Impl>
282void
283DefaultIEW<Impl>::setCPU(O3CPU *cpu_ptr)
284{
285 DPRINTF(IEW, "Setting CPU pointer.\n");
286 cpu = cpu_ptr;
285 cpu = cpu_ptr;
286 DPRINTF(IEW, "Setting CPU pointer.\n");
287
288 instQueue.setCPU(cpu_ptr);
289 ldstQueue.setCPU(cpu_ptr);
290
291 cpu->activateStage(O3CPU::IEWIdx);
292}
293
294template<class Impl>
295void
296DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
297{
287
288 instQueue.setCPU(cpu_ptr);
289 ldstQueue.setCPU(cpu_ptr);
290
291 cpu->activateStage(O3CPU::IEWIdx);
292}
293
294template<class Impl>
295void
296DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
297{
298 DPRINTF(IEW, "Setting time buffer pointer.\n");
299 timeBuffer = tb_ptr;
300
301 // Setup wire to read information from time buffer, from commit.
302 fromCommit = timeBuffer->getWire(-commitToIEWDelay);
303
304 // Setup wire to write information back to previous stages.
305 toRename = timeBuffer->getWire(0);
306
307 toFetch = timeBuffer->getWire(0);
308
309 // Instruction queue also needs main time buffer.
310 instQueue.setTimeBuffer(tb_ptr);
311}
312
313template<class Impl>
314void
315DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
316{
298 timeBuffer = tb_ptr;
299
300 // Setup wire to read information from time buffer, from commit.
301 fromCommit = timeBuffer->getWire(-commitToIEWDelay);
302
303 // Setup wire to write information back to previous stages.
304 toRename = timeBuffer->getWire(0);
305
306 toFetch = timeBuffer->getWire(0);
307
308 // Instruction queue also needs main time buffer.
309 instQueue.setTimeBuffer(tb_ptr);
310}
311
312template<class Impl>
313void
314DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
315{
317 DPRINTF(IEW, "Setting rename queue pointer.\n");
318 renameQueue = rq_ptr;
319
320 // Setup wire to read information from rename queue.
321 fromRename = renameQueue->getWire(-renameToIEWDelay);
322}
323
324template<class Impl>
325void
326DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
327{
316 renameQueue = rq_ptr;
317
318 // Setup wire to read information from rename queue.
319 fromRename = renameQueue->getWire(-renameToIEWDelay);
320}
321
322template<class Impl>
323void
324DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
325{
328 DPRINTF(IEW, "Setting IEW queue pointer.\n");
329 iewQueue = iq_ptr;
330
331 // Setup wire to write instructions to commit.
332 toCommit = iewQueue->getWire(0);
333}
334
335template<class Impl>
336void
337DefaultIEW<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
338{
326 iewQueue = iq_ptr;
327
328 // Setup wire to write instructions to commit.
329 toCommit = iewQueue->getWire(0);
330}
331
332template<class Impl>
333void
334DefaultIEW<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
335{
339 DPRINTF(IEW, "Setting active threads list pointer.\n");
340 activeThreads = at_ptr;
341
342 ldstQueue.setActiveThreads(at_ptr);
343 instQueue.setActiveThreads(at_ptr);
344}
345
346template<class Impl>
347void
348DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
349{
336 activeThreads = at_ptr;
337
338 ldstQueue.setActiveThreads(at_ptr);
339 instQueue.setActiveThreads(at_ptr);
340}
341
342template<class Impl>
343void
344DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
345{
350 DPRINTF(IEW, "Setting scoreboard pointer.\n");
351 scoreboard = sb_ptr;
352}
353
354template <class Impl>
355bool
356DefaultIEW<Impl>::drain()
357{
358 // IEW is ready to drain at any time.
359 cpu->signalDrained();
360 return true;
361}
362
363template <class Impl>
364void
365DefaultIEW<Impl>::resume()
366{
367}
368
369template <class Impl>
370void
371DefaultIEW<Impl>::switchOut()
372{
373 // Clear any state.
374 switchedOut = true;
375 assert(insts[0].empty());
376 assert(skidBuffer[0].empty());
377
378 instQueue.switchOut();
379 ldstQueue.switchOut();
380 fuPool->switchOut();
381
382 for (int i = 0; i < numThreads; i++) {
383 while (!insts[i].empty())
384 insts[i].pop();
385 while (!skidBuffer[i].empty())
386 skidBuffer[i].pop();
387 }
388}
389
390template <class Impl>
391void
392DefaultIEW<Impl>::takeOverFrom()
393{
394 // Reset all state.
395 _status = Active;
396 exeStatus = Running;
397 wbStatus = Idle;
398 switchedOut = false;
399
400 instQueue.takeOverFrom();
401 ldstQueue.takeOverFrom();
402 fuPool->takeOverFrom();
403
404 initStage();
405 cpu->activityThisCycle();
406
407 for (int i=0; i < numThreads; i++) {
408 dispatchStatus[i] = Running;
409 stalls[i].commit = false;
410 fetchRedirect[i] = false;
411 }
412
413 updateLSQNextCycle = false;
414
415 for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
416 issueToExecQueue.advance();
417 }
418}
419
420template<class Impl>
421void
422DefaultIEW<Impl>::squash(unsigned tid)
423{
424 DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
425 tid);
426
427 // Tell the IQ to start squashing.
428 instQueue.squash(tid);
429
430 // Tell the LDSTQ to start squashing.
431#if ISA_HAS_DELAY_SLOT
432 ldstQueue.squash(fromCommit->commitInfo[tid].bdelayDoneSeqNum, tid);
433#else
434 ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
435#endif
436 updatedQueues = true;
437
438 // Clear the skid buffer in case it has any data in it.
439 DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
440 tid, fromCommit->commitInfo[tid].bdelayDoneSeqNum);
441
442 while (!skidBuffer[tid].empty()) {
443#if ISA_HAS_DELAY_SLOT
444 if (skidBuffer[tid].front()->seqNum <=
445 fromCommit->commitInfo[tid].bdelayDoneSeqNum) {
446 DPRINTF(IEW, "[tid:%i]: Cannot remove skidbuffer instructions "
447 "that occur before delay slot [sn:%i].\n",
448 fromCommit->commitInfo[tid].bdelayDoneSeqNum,
449 tid);
450 break;
451 } else {
452 DPRINTF(IEW, "[tid:%i]: Removing instruction [sn:%i] from "
453 "skidBuffer.\n", tid, skidBuffer[tid].front()->seqNum);
454 }
455#endif
456 if (skidBuffer[tid].front()->isLoad() ||
457 skidBuffer[tid].front()->isStore() ) {
458 toRename->iewInfo[tid].dispatchedToLSQ++;
459 }
460
461 toRename->iewInfo[tid].dispatched++;
462
463 skidBuffer[tid].pop();
464 }
465
466 bdelayDoneSeqNum[tid] = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
467
468 emptyRenameInsts(tid);
469}
470
471template<class Impl>
472void
473DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
474{
475 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
476 "[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
477
478 toCommit->squash[tid] = true;
479 toCommit->squashedSeqNum[tid] = inst->seqNum;
480 toCommit->mispredPC[tid] = inst->readPC();
481 toCommit->branchMispredict[tid] = true;
482
483 int instSize = sizeof(TheISA::MachInst);
484#if ISA_HAS_DELAY_SLOT
485 bool branch_taken =
486 !(inst->readNextPC() + instSize == inst->readNextNPC() &&
487 (inst->readNextPC() == inst->readPC() + instSize ||
488 inst->readNextPC() == inst->readPC() + 2 * instSize));
489 DPRINTF(Sparc, "Branch taken = %s [sn:%i]\n",
490 branch_taken ? "true": "false", inst->seqNum);
491
492 toCommit->branchTaken[tid] = branch_taken;
493
494 bool squashDelaySlot = true;
495// (inst->readNextPC() != inst->readPC() + sizeof(TheISA::MachInst));
496 DPRINTF(Sparc, "Squash delay slot = %s [sn:%i]\n",
497 squashDelaySlot ? "true": "false", inst->seqNum);
498 toCommit->squashDelaySlot[tid] = squashDelaySlot;
499 //If we're squashing the delay slot, we need to pick back up at NextPC.
500 //Otherwise, NextPC isn't being squashed, so we should pick back up at
501 //NextNPC.
502 if (squashDelaySlot) {
503 toCommit->nextPC[tid] = inst->readNextPC();
504 toCommit->nextNPC[tid] = inst->readNextNPC();
505 } else {
506 toCommit->nextPC[tid] = inst->readNextNPC();
507 toCommit->nextNPC[tid] = inst->readNextNPC() + instSize;
508 }
509#else
510 toCommit->branchTaken[tid] = inst->readNextPC() !=
511 (inst->readPC() + sizeof(TheISA::MachInst));
512 toCommit->nextPC[tid] = inst->readNextPC();
513 toCommit->nextNPC[tid] = inst->readNextPC() + instSize;
514#endif
515
516 toCommit->includeSquashInst[tid] = false;
517
518 wroteToTimeBuffer = true;
519}
520
521template<class Impl>
522void
523DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
524{
525 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
526 "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
527
528 toCommit->squash[tid] = true;
529 toCommit->squashedSeqNum[tid] = inst->seqNum;
530 toCommit->nextPC[tid] = inst->readNextPC();
531#if ISA_HAS_DELAY_SLOT
532 toCommit->nextNPC[tid] = inst->readNextNPC();
533#else
534 toCommit->nextNPC[tid] = inst->readNextPC() + sizeof(TheISA::MachInst);
535#endif
536 toCommit->branchMispredict[tid] = false;
537
538 toCommit->includeSquashInst[tid] = false;
539
540 wroteToTimeBuffer = true;
541}
542
543template<class Impl>
544void
545DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
546{
547 DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
548 "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
549
550 toCommit->squash[tid] = true;
551 toCommit->squashedSeqNum[tid] = inst->seqNum;
552 toCommit->nextPC[tid] = inst->readPC();
553#if ISA_HAS_DELAY_SLOT
554 toCommit->nextNPC[tid] = inst->readNextPC();
555#else
556 toCommit->nextNPC[tid] = inst->readPC() + sizeof(TheISA::MachInst);
557#endif
558 toCommit->branchMispredict[tid] = false;
559
560 // Must include the broadcasted SN in the squash.
561 toCommit->includeSquashInst[tid] = true;
562
563 ldstQueue.setLoadBlockedHandled(tid);
564
565 wroteToTimeBuffer = true;
566}
567
568template<class Impl>
569void
570DefaultIEW<Impl>::block(unsigned tid)
571{
572 DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
573
574 if (dispatchStatus[tid] != Blocked &&
575 dispatchStatus[tid] != Unblocking) {
576 toRename->iewBlock[tid] = true;
577 wroteToTimeBuffer = true;
578 }
579
580 // Add the current inputs to the skid buffer so they can be
581 // reprocessed when this stage unblocks.
582 skidInsert(tid);
583
584 dispatchStatus[tid] = Blocked;
585}
586
587template<class Impl>
588void
589DefaultIEW<Impl>::unblock(unsigned tid)
590{
591 DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
592 "buffer %u.\n",tid, tid);
593
594 // If the skid bufffer is empty, signal back to previous stages to unblock.
595 // Also switch status to running.
596 if (skidBuffer[tid].empty()) {
597 toRename->iewUnblock[tid] = true;
598 wroteToTimeBuffer = true;
599 DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
600 dispatchStatus[tid] = Running;
601 }
602}
603
604template<class Impl>
605void
606DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
607{
608 instQueue.wakeDependents(inst);
609}
610
611template<class Impl>
612void
613DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
614{
615 instQueue.rescheduleMemInst(inst);
616}
617
618template<class Impl>
619void
620DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
621{
622 instQueue.replayMemInst(inst);
623}
624
625template<class Impl>
626void
627DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
628{
629 // This function should not be called after writebackInsts in a
630 // single cycle. That will cause problems with an instruction
631 // being added to the queue to commit without being processed by
632 // writebackInsts prior to being sent to commit.
633
634 // First check the time slot that this instruction will write
635 // to. If there are free write ports at the time, then go ahead
636 // and write the instruction to that time. If there are not,
637 // keep looking back to see where's the first time there's a
638 // free slot.
639 while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
640 ++wbNumInst;
641 if (wbNumInst == wbWidth) {
642 ++wbCycle;
643 wbNumInst = 0;
644 }
645
646 assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
647 }
648
649 DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
650 wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
651 // Add finished instruction to queue to commit.
652 (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
653 (*iewQueue)[wbCycle].size++;
654}
655
656template <class Impl>
657unsigned
658DefaultIEW<Impl>::validInstsFromRename()
659{
660 unsigned inst_count = 0;
661
662 for (int i=0; i<fromRename->size; i++) {
663 if (!fromRename->insts[i]->isSquashed())
664 inst_count++;
665 }
666
667 return inst_count;
668}
669
670template<class Impl>
671void
672DefaultIEW<Impl>::skidInsert(unsigned tid)
673{
674 DynInstPtr inst = NULL;
675
676 while (!insts[tid].empty()) {
677 inst = insts[tid].front();
678
679 insts[tid].pop();
680
681 DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
682 "dispatch skidBuffer %i\n",tid, inst->seqNum,
683 inst->readPC(),tid);
684
685 skidBuffer[tid].push(inst);
686 }
687
688 assert(skidBuffer[tid].size() <= skidBufferMax &&
689 "Skidbuffer Exceeded Max Size");
690}
691
692template<class Impl>
693int
694DefaultIEW<Impl>::skidCount()
695{
696 int max=0;
697
698 std::list<unsigned>::iterator threads = activeThreads->begin();
699 std::list<unsigned>::iterator end = activeThreads->end();
700
701 while (threads != end) {
702 unsigned tid = *threads++;
703 unsigned thread_count = skidBuffer[tid].size();
704 if (max < thread_count)
705 max = thread_count;
706 }
707
708 return max;
709}
710
711template<class Impl>
712bool
713DefaultIEW<Impl>::skidsEmpty()
714{
715 std::list<unsigned>::iterator threads = activeThreads->begin();
716 std::list<unsigned>::iterator end = activeThreads->end();
717
718 while (threads != end) {
719 unsigned tid = *threads++;
720
721 if (!skidBuffer[tid].empty())
722 return false;
723 }
724
725 return true;
726}
727
728template <class Impl>
729void
730DefaultIEW<Impl>::updateStatus()
731{
732 bool any_unblocking = false;
733
734 std::list<unsigned>::iterator threads = activeThreads->begin();
735 std::list<unsigned>::iterator end = activeThreads->end();
736
737 while (threads != end) {
738 unsigned tid = *threads++;
739
740 if (dispatchStatus[tid] == Unblocking) {
741 any_unblocking = true;
742 break;
743 }
744 }
745
746 // If there are no ready instructions waiting to be scheduled by the IQ,
747 // and there's no stores waiting to write back, and dispatch is not
748 // unblocking, then there is no internal activity for the IEW stage.
749 if (_status == Active && !instQueue.hasReadyInsts() &&
750 !ldstQueue.willWB() && !any_unblocking) {
751 DPRINTF(IEW, "IEW switching to idle\n");
752
753 deactivateStage();
754
755 _status = Inactive;
756 } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
757 ldstQueue.willWB() ||
758 any_unblocking)) {
759 // Otherwise there is internal activity. Set to active.
760 DPRINTF(IEW, "IEW switching to active\n");
761
762 activateStage();
763
764 _status = Active;
765 }
766}
767
768template <class Impl>
769void
770DefaultIEW<Impl>::resetEntries()
771{
772 instQueue.resetEntries();
773 ldstQueue.resetEntries();
774}
775
776template <class Impl>
777void
778DefaultIEW<Impl>::readStallSignals(unsigned tid)
779{
780 if (fromCommit->commitBlock[tid]) {
781 stalls[tid].commit = true;
782 }
783
784 if (fromCommit->commitUnblock[tid]) {
785 assert(stalls[tid].commit);
786 stalls[tid].commit = false;
787 }
788}
789
790template <class Impl>
791bool
792DefaultIEW<Impl>::checkStall(unsigned tid)
793{
794 bool ret_val(false);
795
796 if (stalls[tid].commit) {
797 DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
798 ret_val = true;
799 } else if (instQueue.isFull(tid)) {
800 DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid);
801 ret_val = true;
802 } else if (ldstQueue.isFull(tid)) {
803 DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
804
805 if (ldstQueue.numLoads(tid) > 0 ) {
806
807 DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
808 tid,ldstQueue.getLoadHeadSeqNum(tid));
809 }
810
811 if (ldstQueue.numStores(tid) > 0) {
812
813 DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
814 tid,ldstQueue.getStoreHeadSeqNum(tid));
815 }
816
817 ret_val = true;
818 } else if (ldstQueue.isStalled(tid)) {
819 DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
820 ret_val = true;
821 }
822
823 return ret_val;
824}
825
826template <class Impl>
827void
828DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
829{
830 // Check if there's a squash signal, squash if there is
831 // Check stall signals, block if there is.
832 // If status was Blocked
833 // if so then go to unblocking
834 // If status was Squashing
835 // check if squashing is not high. Switch to running this cycle.
836
837 readStallSignals(tid);
838
839 if (fromCommit->commitInfo[tid].squash) {
840 squash(tid);
841
842 if (dispatchStatus[tid] == Blocked ||
843 dispatchStatus[tid] == Unblocking) {
844 toRename->iewUnblock[tid] = true;
845 wroteToTimeBuffer = true;
846 }
847
848 dispatchStatus[tid] = Squashing;
849
850 fetchRedirect[tid] = false;
851 return;
852 }
853
854 if (fromCommit->commitInfo[tid].robSquashing) {
855 DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
856
857 dispatchStatus[tid] = Squashing;
858
859 emptyRenameInsts(tid);
860 wroteToTimeBuffer = true;
861 return;
862 }
863
864 if (checkStall(tid)) {
865 block(tid);
866 dispatchStatus[tid] = Blocked;
867 return;
868 }
869
870 if (dispatchStatus[tid] == Blocked) {
871 // Status from previous cycle was blocked, but there are no more stall
872 // conditions. Switch over to unblocking.
873 DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
874 tid);
875
876 dispatchStatus[tid] = Unblocking;
877
878 unblock(tid);
879
880 return;
881 }
882
883 if (dispatchStatus[tid] == Squashing) {
884 // Switch status to running if rename isn't being told to block or
885 // squash this cycle.
886 DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
887 tid);
888
889 dispatchStatus[tid] = Running;
890
891 return;
892 }
893}
894
895template <class Impl>
896void
897DefaultIEW<Impl>::sortInsts()
898{
899 int insts_from_rename = fromRename->size;
900#ifdef DEBUG
901#if !ISA_HAS_DELAY_SLOT
902 for (int i = 0; i < numThreads; i++)
903 assert(insts[i].empty());
904#endif
905#endif
906 for (int i = 0; i < insts_from_rename; ++i) {
907 insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
908 }
909}
910
911template <class Impl>
912void
913DefaultIEW<Impl>::emptyRenameInsts(unsigned tid)
914{
915 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions until "
916 "[sn:%i].\n", tid, bdelayDoneSeqNum[tid]);
917
918 while (!insts[tid].empty()) {
919#if ISA_HAS_DELAY_SLOT
920 if (insts[tid].front()->seqNum <= bdelayDoneSeqNum[tid]) {
921 DPRINTF(IEW, "[tid:%i]: Done removing, cannot remove instruction"
922 " that occurs at or before delay slot [sn:%i].\n",
923 tid, bdelayDoneSeqNum[tid]);
924 break;
925 } else {
926 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instruction "
927 "[sn:%i].\n", tid, insts[tid].front()->seqNum);
928 }
929#endif
930
931 if (insts[tid].front()->isLoad() ||
932 insts[tid].front()->isStore() ) {
933 toRename->iewInfo[tid].dispatchedToLSQ++;
934 }
935
936 toRename->iewInfo[tid].dispatched++;
937
938 insts[tid].pop();
939 }
940}
941
942template <class Impl>
943void
944DefaultIEW<Impl>::wakeCPU()
945{
946 cpu->wakeCPU();
947}
948
949template <class Impl>
950void
951DefaultIEW<Impl>::activityThisCycle()
952{
953 DPRINTF(Activity, "Activity this cycle.\n");
954 cpu->activityThisCycle();
955}
956
957template <class Impl>
958inline void
959DefaultIEW<Impl>::activateStage()
960{
961 DPRINTF(Activity, "Activating stage.\n");
962 cpu->activateStage(O3CPU::IEWIdx);
963}
964
965template <class Impl>
966inline void
967DefaultIEW<Impl>::deactivateStage()
968{
969 DPRINTF(Activity, "Deactivating stage.\n");
970 cpu->deactivateStage(O3CPU::IEWIdx);
971}
972
973template<class Impl>
974void
975DefaultIEW<Impl>::dispatch(unsigned tid)
976{
977 // If status is Running or idle,
978 // call dispatchInsts()
979 // If status is Unblocking,
980 // buffer any instructions coming from rename
981 // continue trying to empty skid buffer
982 // check if stall conditions have passed
983
984 if (dispatchStatus[tid] == Blocked) {
985 ++iewBlockCycles;
986
987 } else if (dispatchStatus[tid] == Squashing) {
988 ++iewSquashCycles;
989 }
990
991 // Dispatch should try to dispatch as many instructions as its bandwidth
992 // will allow, as long as it is not currently blocked.
993 if (dispatchStatus[tid] == Running ||
994 dispatchStatus[tid] == Idle) {
995 DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
996 "dispatch.\n", tid);
997
998 dispatchInsts(tid);
999 } else if (dispatchStatus[tid] == Unblocking) {
1000 // Make sure that the skid buffer has something in it if the
1001 // status is unblocking.
1002 assert(!skidsEmpty());
1003
1004 // If the status was unblocking, then instructions from the skid
1005 // buffer were used. Remove those instructions and handle
1006 // the rest of unblocking.
1007 dispatchInsts(tid);
1008
1009 ++iewUnblockCycles;
1010
1011 if (validInstsFromRename() && dispatchedAllInsts) {
1012 // Add the current inputs to the skid buffer so they can be
1013 // reprocessed when this stage unblocks.
1014 skidInsert(tid);
1015 }
1016
1017 unblock(tid);
1018 }
1019}
1020
1021template <class Impl>
1022void
1023DefaultIEW<Impl>::dispatchInsts(unsigned tid)
1024{
1025 dispatchedAllInsts = true;
1026
1027 // Obtain instructions from skid buffer if unblocking, or queue from rename
1028 // otherwise.
1029 std::queue<DynInstPtr> &insts_to_dispatch =
1030 dispatchStatus[tid] == Unblocking ?
1031 skidBuffer[tid] : insts[tid];
1032
1033 int insts_to_add = insts_to_dispatch.size();
1034
1035 DynInstPtr inst;
1036 bool add_to_iq = false;
1037 int dis_num_inst = 0;
1038
1039 // Loop through the instructions, putting them in the instruction
1040 // queue.
1041 for ( ; dis_num_inst < insts_to_add &&
1042 dis_num_inst < dispatchWidth;
1043 ++dis_num_inst)
1044 {
1045 inst = insts_to_dispatch.front();
1046
1047 if (dispatchStatus[tid] == Unblocking) {
1048 DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
1049 "buffer\n", tid);
1050 }
1051
1052 // Make sure there's a valid instruction there.
1053 assert(inst);
1054
1055 DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
1056 "IQ.\n",
1057 tid, inst->readPC(), inst->seqNum, inst->threadNumber);
1058
1059 // Be sure to mark these instructions as ready so that the
1060 // commit stage can go ahead and execute them, and mark
1061 // them as issued so the IQ doesn't reprocess them.
1062
1063 // Check for squashed instructions.
1064 if (inst->isSquashed()) {
1065 DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
1066 "not adding to IQ.\n", tid);
1067
1068 ++iewDispSquashedInsts;
1069
1070 insts_to_dispatch.pop();
1071
1072 //Tell Rename That An Instruction has been processed
1073 if (inst->isLoad() || inst->isStore()) {
1074 toRename->iewInfo[tid].dispatchedToLSQ++;
1075 }
1076 toRename->iewInfo[tid].dispatched++;
1077
1078 continue;
1079 }
1080
1081 // Check for full conditions.
1082 if (instQueue.isFull(tid)) {
1083 DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1084
1085 // Call function to start blocking.
1086 block(tid);
1087
1088 // Set unblock to false. Special case where we are using
1089 // skidbuffer (unblocking) instructions but then we still
1090 // get full in the IQ.
1091 toRename->iewUnblock[tid] = false;
1092
1093 dispatchedAllInsts = false;
1094
1095 ++iewIQFullEvents;
1096 break;
1097 } else if (ldstQueue.isFull(tid)) {
1098 DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1099
1100 // Call function to start blocking.
1101 block(tid);
1102
1103 // Set unblock to false. Special case where we are using
1104 // skidbuffer (unblocking) instructions but then we still
1105 // get full in the IQ.
1106 toRename->iewUnblock[tid] = false;
1107
1108 dispatchedAllInsts = false;
1109
1110 ++iewLSQFullEvents;
1111 break;
1112 }
1113
1114 // Otherwise issue the instruction just fine.
1115 if (inst->isLoad()) {
1116 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1117 "encountered, adding to LSQ.\n", tid);
1118
1119 // Reserve a spot in the load store queue for this
1120 // memory access.
1121 ldstQueue.insertLoad(inst);
1122
1123 ++iewDispLoadInsts;
1124
1125 add_to_iq = true;
1126
1127 toRename->iewInfo[tid].dispatchedToLSQ++;
1128 } else if (inst->isStore()) {
1129 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1130 "encountered, adding to LSQ.\n", tid);
1131
1132 ldstQueue.insertStore(inst);
1133
1134 ++iewDispStoreInsts;
1135
1136 if (inst->isStoreConditional()) {
1137 // Store conditionals need to be set as "canCommit()"
1138 // so that commit can process them when they reach the
1139 // head of commit.
1140 // @todo: This is somewhat specific to Alpha.
1141 inst->setCanCommit();
1142 instQueue.insertNonSpec(inst);
1143 add_to_iq = false;
1144
1145 ++iewDispNonSpecInsts;
1146 } else {
1147 add_to_iq = true;
1148 }
1149
1150 toRename->iewInfo[tid].dispatchedToLSQ++;
1151 } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1152 // Same as non-speculative stores.
1153 inst->setCanCommit();
1154 instQueue.insertBarrier(inst);
1155 add_to_iq = false;
1156 } else if (inst->isNop()) {
1157 DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1158 "skipping.\n", tid);
1159
1160 inst->setIssued();
1161 inst->setExecuted();
1162 inst->setCanCommit();
1163
1164 instQueue.recordProducer(inst);
1165
1166 iewExecutedNop[tid]++;
1167
1168 add_to_iq = false;
1169 } else if (inst->isExecuted()) {
1170 assert(0 && "Instruction shouldn't be executed.\n");
1171 DPRINTF(IEW, "Issue: Executed branch encountered, "
1172 "skipping.\n");
1173
1174 inst->setIssued();
1175 inst->setCanCommit();
1176
1177 instQueue.recordProducer(inst);
1178
1179 add_to_iq = false;
1180 } else {
1181 add_to_iq = true;
1182 }
1183 if (inst->isNonSpeculative()) {
1184 DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1185 "encountered, skipping.\n", tid);
1186
1187 // Same as non-speculative stores.
1188 inst->setCanCommit();
1189
1190 // Specifically insert it as nonspeculative.
1191 instQueue.insertNonSpec(inst);
1192
1193 ++iewDispNonSpecInsts;
1194
1195 add_to_iq = false;
1196 }
1197
1198 // If the instruction queue is not full, then add the
1199 // instruction.
1200 if (add_to_iq) {
1201 instQueue.insert(inst);
1202 }
1203
1204 insts_to_dispatch.pop();
1205
1206 toRename->iewInfo[tid].dispatched++;
1207
1208 ++iewDispatchedInsts;
1209 }
1210
1211 if (!insts_to_dispatch.empty()) {
1212 DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1213 block(tid);
1214 toRename->iewUnblock[tid] = false;
1215 }
1216
1217 if (dispatchStatus[tid] == Idle && dis_num_inst) {
1218 dispatchStatus[tid] = Running;
1219
1220 updatedQueues = true;
1221 }
1222
1223 dis_num_inst = 0;
1224}
1225
1226template <class Impl>
1227void
1228DefaultIEW<Impl>::printAvailableInsts()
1229{
1230 int inst = 0;
1231
1232 std::cout << "Available Instructions: ";
1233
1234 while (fromIssue->insts[inst]) {
1235
1236 if (inst%3==0) std::cout << "\n\t";
1237
1238 std::cout << "PC: " << fromIssue->insts[inst]->readPC()
1239 << " TN: " << fromIssue->insts[inst]->threadNumber
1240 << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1241
1242 inst++;
1243
1244 }
1245
1246 std::cout << "\n";
1247}
1248
1249template <class Impl>
1250void
1251DefaultIEW<Impl>::executeInsts()
1252{
1253 wbNumInst = 0;
1254 wbCycle = 0;
1255
1256 std::list<unsigned>::iterator threads = activeThreads->begin();
1257 std::list<unsigned>::iterator end = activeThreads->end();
1258
1259 while (threads != end) {
1260 unsigned tid = *threads++;
1261 fetchRedirect[tid] = false;
1262 }
1263
1264 // Uncomment this if you want to see all available instructions.
1265// printAvailableInsts();
1266
1267 // Execute/writeback any instructions that are available.
1268 int insts_to_execute = fromIssue->size;
1269 int inst_num = 0;
1270 for (; inst_num < insts_to_execute;
1271 ++inst_num) {
1272
1273 DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1274
1275 DynInstPtr inst = instQueue.getInstToExecute();
1276
1277 DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
1278 inst->readPC(), inst->threadNumber,inst->seqNum);
1279
1280 // Check if the instruction is squashed; if so then skip it
1281 if (inst->isSquashed()) {
1282 DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1283
1284 // Consider this instruction executed so that commit can go
1285 // ahead and retire the instruction.
1286 inst->setExecuted();
1287
1288 // Not sure if I should set this here or just let commit try to
1289 // commit any squashed instructions. I like the latter a bit more.
1290 inst->setCanCommit();
1291
1292 ++iewExecSquashedInsts;
1293
1294 decrWb(inst->seqNum);
1295 continue;
1296 }
1297
1298 Fault fault = NoFault;
1299
1300 // Execute instruction.
1301 // Note that if the instruction faults, it will be handled
1302 // at the commit stage.
1303 if (inst->isMemRef() &&
1304 (!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
1305 DPRINTF(IEW, "Execute: Calculating address for memory "
1306 "reference.\n");
1307
1308 // Tell the LDSTQ to execute this instruction (if it is a load).
1309 if (inst->isLoad()) {
1310 // Loads will mark themselves as executed, and their writeback
1311 // event adds the instruction to the queue to commit
1312 fault = ldstQueue.executeLoad(inst);
1313 } else if (inst->isStore()) {
1314 fault = ldstQueue.executeStore(inst);
1315
1316 // If the store had a fault then it may not have a mem req
1317 if (!inst->isStoreConditional() && fault == NoFault) {
1318 inst->setExecuted();
1319
1320 instToCommit(inst);
1321 } else if (fault != NoFault) {
1322 // If the instruction faulted, then we need to send it along to commit
1323 // without the instruction completing.
1324 DPRINTF(IEW, "Store has fault %s! [sn:%lli]\n",
1325 fault->name(), inst->seqNum);
1326
1327 // Send this instruction to commit, also make sure iew stage
1328 // realizes there is activity.
1329 inst->setExecuted();
1330
1331 instToCommit(inst);
1332 activityThisCycle();
1333 }
1334
1335 // Store conditionals will mark themselves as
1336 // executed, and their writeback event will add the
1337 // instruction to the queue to commit.
1338 } else {
1339 panic("Unexpected memory type!\n");
1340 }
1341
1342 } else {
1343 inst->execute();
1344
1345 inst->setExecuted();
1346
1347 instToCommit(inst);
1348 }
1349
1350 updateExeInstStats(inst);
1351
1352 // Check if branch prediction was correct, if not then we need
1353 // to tell commit to squash in flight instructions. Only
1354 // handle this if there hasn't already been something that
1355 // redirects fetch in this group of instructions.
1356
1357 // This probably needs to prioritize the redirects if a different
1358 // scheduler is used. Currently the scheduler schedules the oldest
1359 // instruction first, so the branch resolution order will be correct.
1360 unsigned tid = inst->threadNumber;
1361
1362 if (!fetchRedirect[tid] ||
1363 toCommit->squashedSeqNum[tid] > inst->seqNum) {
1364
1365 if (inst->mispredicted()) {
1366 fetchRedirect[tid] = true;
1367
1368 DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1369 DPRINTF(IEW, "Predicted target was %#x, %#x.\n",
1370 inst->readPredPC(), inst->readPredNPC());
1371 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x,"
1372 " NPC: %#x.\n", inst->readNextPC(),
1373 inst->readNextNPC());
1374 // If incorrect, then signal the ROB that it must be squashed.
1375 squashDueToBranch(inst, tid);
1376
1377 if (inst->readPredTaken()) {
1378 predictedTakenIncorrect++;
1379 } else {
1380 predictedNotTakenIncorrect++;
1381 }
1382 } else if (ldstQueue.violation(tid)) {
1383 assert(inst->isMemRef());
1384 // If there was an ordering violation, then get the
1385 // DynInst that caused the violation. Note that this
1386 // clears the violation signal.
1387 DynInstPtr violator;
1388 violator = ldstQueue.getMemDepViolator(tid);
1389
1390 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
1391 "%#x, inst PC: %#x. Addr is: %#x.\n",
1392 violator->readPC(), inst->readPC(), inst->physEffAddr);
1393
1394 // Ensure the violating instruction is older than
1395 // current squash
1396/* if (fetchRedirect[tid] &&
1397 violator->seqNum >= toCommit->squashedSeqNum[tid] + 1)
1398 continue;
1399*/
1400 fetchRedirect[tid] = true;
1401
1402 // Tell the instruction queue that a violation has occured.
1403 instQueue.violation(inst, violator);
1404
1405 // Squash.
1406 squashDueToMemOrder(inst,tid);
1407
1408 ++memOrderViolationEvents;
1409 } else if (ldstQueue.loadBlocked(tid) &&
1410 !ldstQueue.isLoadBlockedHandled(tid)) {
1411 fetchRedirect[tid] = true;
1412
1413 DPRINTF(IEW, "Load operation couldn't execute because the "
1414 "memory system is blocked. PC: %#x [sn:%lli]\n",
1415 inst->readPC(), inst->seqNum);
1416
1417 squashDueToMemBlocked(inst, tid);
1418 }
1419 } else {
1420 // Reset any state associated with redirects that will not
1421 // be used.
1422 if (ldstQueue.violation(tid)) {
1423 assert(inst->isMemRef());
1424
1425 DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1426
1427 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
1428 "%#x, inst PC: %#x. Addr is: %#x.\n",
1429 violator->readPC(), inst->readPC(), inst->physEffAddr);
1430 DPRINTF(IEW, "Violation will not be handled because "
1431 "already squashing\n");
1432
1433 ++memOrderViolationEvents;
1434 }
1435 if (ldstQueue.loadBlocked(tid) &&
1436 !ldstQueue.isLoadBlockedHandled(tid)) {
1437 DPRINTF(IEW, "Load operation couldn't execute because the "
1438 "memory system is blocked. PC: %#x [sn:%lli]\n",
1439 inst->readPC(), inst->seqNum);
1440 DPRINTF(IEW, "Blocked load will not be handled because "
1441 "already squashing\n");
1442
1443 ldstQueue.setLoadBlockedHandled(tid);
1444 }
1445
1446 }
1447 }
1448
1449 // Update and record activity if we processed any instructions.
1450 if (inst_num) {
1451 if (exeStatus == Idle) {
1452 exeStatus = Running;
1453 }
1454
1455 updatedQueues = true;
1456
1457 cpu->activityThisCycle();
1458 }
1459
1460 // Need to reset this in case a writeback event needs to write into the
1461 // iew queue. That way the writeback event will write into the correct
1462 // spot in the queue.
1463 wbNumInst = 0;
1464}
1465
1466template <class Impl>
1467void
1468DefaultIEW<Impl>::writebackInsts()
1469{
1470 // Loop through the head of the time buffer and wake any
1471 // dependents. These instructions are about to write back. Also
1472 // mark scoreboard that this instruction is finally complete.
1473 // Either have IEW have direct access to scoreboard, or have this
1474 // as part of backwards communication.
1475 for (int inst_num = 0; inst_num < wbWidth &&
1476 toCommit->insts[inst_num]; inst_num++) {
1477 DynInstPtr inst = toCommit->insts[inst_num];
1478 int tid = inst->threadNumber;
1479
1480 DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %#x.\n",
1481 inst->seqNum, inst->readPC());
1482
1483 iewInstsToCommit[tid]++;
1484
1485 // Some instructions will be sent to commit without having
1486 // executed because they need commit to handle them.
1487 // E.g. Uncached loads have not actually executed when they
1488 // are first sent to commit. Instead commit must tell the LSQ
1489 // when it's ready to execute the uncached load.
1490 if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1491 int dependents = instQueue.wakeDependents(inst);
1492
1493 for (int i = 0; i < inst->numDestRegs(); i++) {
1494 //mark as Ready
1495 DPRINTF(IEW,"Setting Destination Register %i\n",
1496 inst->renamedDestRegIdx(i));
1497 scoreboard->setReg(inst->renamedDestRegIdx(i));
1498 }
1499
1500 if (dependents) {
1501 producerInst[tid]++;
1502 consumerInst[tid]+= dependents;
1503 }
1504 writebackCount[tid]++;
1505 }
1506
1507 decrWb(inst->seqNum);
1508 }
1509}
1510
1511template<class Impl>
1512void
1513DefaultIEW<Impl>::tick()
1514{
1515 wbNumInst = 0;
1516 wbCycle = 0;
1517
1518 wroteToTimeBuffer = false;
1519 updatedQueues = false;
1520
1521 sortInsts();
1522
1523 // Free function units marked as being freed this cycle.
1524 fuPool->processFreeUnits();
1525
1526 std::list<unsigned>::iterator threads = activeThreads->begin();
1527 std::list<unsigned>::iterator end = activeThreads->end();
1528
1529 // Check stall and squash signals, dispatch any instructions.
1530 while (threads != end) {
1531 unsigned tid = *threads++;
1532
1533 DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1534
1535 checkSignalsAndUpdate(tid);
1536 dispatch(tid);
1537 }
1538
1539 if (exeStatus != Squashing) {
1540 executeInsts();
1541
1542 writebackInsts();
1543
1544 // Have the instruction queue try to schedule any ready instructions.
1545 // (In actuality, this scheduling is for instructions that will
1546 // be executed next cycle.)
1547 instQueue.scheduleReadyInsts();
1548
1549 // Also should advance its own time buffers if the stage ran.
1550 // Not the best place for it, but this works (hopefully).
1551 issueToExecQueue.advance();
1552 }
1553
1554 bool broadcast_free_entries = false;
1555
1556 if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1557 exeStatus = Idle;
1558 updateLSQNextCycle = false;
1559
1560 broadcast_free_entries = true;
1561 }
1562
1563 // Writeback any stores using any leftover bandwidth.
1564 ldstQueue.writebackStores();
1565
1566 // Check the committed load/store signals to see if there's a load
1567 // or store to commit. Also check if it's being told to execute a
1568 // nonspeculative instruction.
1569 // This is pretty inefficient...
1570
1571 threads = activeThreads->begin();
1572 while (threads != end) {
1573 unsigned tid = (*threads++);
1574
1575 DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1576
1577 // Update structures based on instructions committed.
1578 if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1579 !fromCommit->commitInfo[tid].squash &&
1580 !fromCommit->commitInfo[tid].robSquashing) {
1581
1582 ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1583
1584 ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1585
1586 updateLSQNextCycle = true;
1587 instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1588 }
1589
1590 if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1591
1592 //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1593 if (fromCommit->commitInfo[tid].uncached) {
1594 instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1595 fromCommit->commitInfo[tid].uncachedLoad->setAtCommit();
1596 } else {
1597 instQueue.scheduleNonSpec(
1598 fromCommit->commitInfo[tid].nonSpecSeqNum);
1599 }
1600 }
1601
1602 if (broadcast_free_entries) {
1603 toFetch->iewInfo[tid].iqCount =
1604 instQueue.getCount(tid);
1605 toFetch->iewInfo[tid].ldstqCount =
1606 ldstQueue.getCount(tid);
1607
1608 toRename->iewInfo[tid].usedIQ = true;
1609 toRename->iewInfo[tid].freeIQEntries =
1610 instQueue.numFreeEntries();
1611 toRename->iewInfo[tid].usedLSQ = true;
1612 toRename->iewInfo[tid].freeLSQEntries =
1613 ldstQueue.numFreeEntries(tid);
1614
1615 wroteToTimeBuffer = true;
1616 }
1617
1618 DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1619 tid, toRename->iewInfo[tid].dispatched);
1620 }
1621
1622 DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). "
1623 "LSQ has %i free entries.\n",
1624 instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1625 ldstQueue.numFreeEntries());
1626
1627 updateStatus();
1628
1629 if (wroteToTimeBuffer) {
1630 DPRINTF(Activity, "Activity this cycle.\n");
1631 cpu->activityThisCycle();
1632 }
1633}
1634
1635template <class Impl>
1636void
1637DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1638{
1639 int thread_number = inst->threadNumber;
1640
1641 //
1642 // Pick off the software prefetches
1643 //
1644#ifdef TARGET_ALPHA
1645 if (inst->isDataPrefetch())
1646 iewExecutedSwp[thread_number]++;
1647 else
1648 iewIewExecutedcutedInsts++;
1649#else
1650 iewExecutedInsts++;
1651#endif
1652
1653 //
1654 // Control operations
1655 //
1656 if (inst->isControl())
1657 iewExecutedBranches[thread_number]++;
1658
1659 //
1660 // Memory operations
1661 //
1662 if (inst->isMemRef()) {
1663 iewExecutedRefs[thread_number]++;
1664
1665 if (inst->isLoad()) {
1666 iewExecLoadInsts[thread_number]++;
1667 }
1668 }
1669}
346 scoreboard = sb_ptr;
347}
348
349template <class Impl>
350bool
351DefaultIEW<Impl>::drain()
352{
353 // IEW is ready to drain at any time.
354 cpu->signalDrained();
355 return true;
356}
357
358template <class Impl>
359void
360DefaultIEW<Impl>::resume()
361{
362}
363
364template <class Impl>
365void
366DefaultIEW<Impl>::switchOut()
367{
368 // Clear any state.
369 switchedOut = true;
370 assert(insts[0].empty());
371 assert(skidBuffer[0].empty());
372
373 instQueue.switchOut();
374 ldstQueue.switchOut();
375 fuPool->switchOut();
376
377 for (int i = 0; i < numThreads; i++) {
378 while (!insts[i].empty())
379 insts[i].pop();
380 while (!skidBuffer[i].empty())
381 skidBuffer[i].pop();
382 }
383}
384
385template <class Impl>
386void
387DefaultIEW<Impl>::takeOverFrom()
388{
389 // Reset all state.
390 _status = Active;
391 exeStatus = Running;
392 wbStatus = Idle;
393 switchedOut = false;
394
395 instQueue.takeOverFrom();
396 ldstQueue.takeOverFrom();
397 fuPool->takeOverFrom();
398
399 initStage();
400 cpu->activityThisCycle();
401
402 for (int i=0; i < numThreads; i++) {
403 dispatchStatus[i] = Running;
404 stalls[i].commit = false;
405 fetchRedirect[i] = false;
406 }
407
408 updateLSQNextCycle = false;
409
410 for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
411 issueToExecQueue.advance();
412 }
413}
414
415template<class Impl>
416void
417DefaultIEW<Impl>::squash(unsigned tid)
418{
419 DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
420 tid);
421
422 // Tell the IQ to start squashing.
423 instQueue.squash(tid);
424
425 // Tell the LDSTQ to start squashing.
426#if ISA_HAS_DELAY_SLOT
427 ldstQueue.squash(fromCommit->commitInfo[tid].bdelayDoneSeqNum, tid);
428#else
429 ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
430#endif
431 updatedQueues = true;
432
433 // Clear the skid buffer in case it has any data in it.
434 DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
435 tid, fromCommit->commitInfo[tid].bdelayDoneSeqNum);
436
437 while (!skidBuffer[tid].empty()) {
438#if ISA_HAS_DELAY_SLOT
439 if (skidBuffer[tid].front()->seqNum <=
440 fromCommit->commitInfo[tid].bdelayDoneSeqNum) {
441 DPRINTF(IEW, "[tid:%i]: Cannot remove skidbuffer instructions "
442 "that occur before delay slot [sn:%i].\n",
443 fromCommit->commitInfo[tid].bdelayDoneSeqNum,
444 tid);
445 break;
446 } else {
447 DPRINTF(IEW, "[tid:%i]: Removing instruction [sn:%i] from "
448 "skidBuffer.\n", tid, skidBuffer[tid].front()->seqNum);
449 }
450#endif
451 if (skidBuffer[tid].front()->isLoad() ||
452 skidBuffer[tid].front()->isStore() ) {
453 toRename->iewInfo[tid].dispatchedToLSQ++;
454 }
455
456 toRename->iewInfo[tid].dispatched++;
457
458 skidBuffer[tid].pop();
459 }
460
461 bdelayDoneSeqNum[tid] = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
462
463 emptyRenameInsts(tid);
464}
465
466template<class Impl>
467void
468DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
469{
470 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
471 "[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
472
473 toCommit->squash[tid] = true;
474 toCommit->squashedSeqNum[tid] = inst->seqNum;
475 toCommit->mispredPC[tid] = inst->readPC();
476 toCommit->branchMispredict[tid] = true;
477
478 int instSize = sizeof(TheISA::MachInst);
479#if ISA_HAS_DELAY_SLOT
480 bool branch_taken =
481 !(inst->readNextPC() + instSize == inst->readNextNPC() &&
482 (inst->readNextPC() == inst->readPC() + instSize ||
483 inst->readNextPC() == inst->readPC() + 2 * instSize));
484 DPRINTF(Sparc, "Branch taken = %s [sn:%i]\n",
485 branch_taken ? "true": "false", inst->seqNum);
486
487 toCommit->branchTaken[tid] = branch_taken;
488
489 bool squashDelaySlot = true;
490// (inst->readNextPC() != inst->readPC() + sizeof(TheISA::MachInst));
491 DPRINTF(Sparc, "Squash delay slot = %s [sn:%i]\n",
492 squashDelaySlot ? "true": "false", inst->seqNum);
493 toCommit->squashDelaySlot[tid] = squashDelaySlot;
494 //If we're squashing the delay slot, we need to pick back up at NextPC.
495 //Otherwise, NextPC isn't being squashed, so we should pick back up at
496 //NextNPC.
497 if (squashDelaySlot) {
498 toCommit->nextPC[tid] = inst->readNextPC();
499 toCommit->nextNPC[tid] = inst->readNextNPC();
500 } else {
501 toCommit->nextPC[tid] = inst->readNextNPC();
502 toCommit->nextNPC[tid] = inst->readNextNPC() + instSize;
503 }
504#else
505 toCommit->branchTaken[tid] = inst->readNextPC() !=
506 (inst->readPC() + sizeof(TheISA::MachInst));
507 toCommit->nextPC[tid] = inst->readNextPC();
508 toCommit->nextNPC[tid] = inst->readNextPC() + instSize;
509#endif
510
511 toCommit->includeSquashInst[tid] = false;
512
513 wroteToTimeBuffer = true;
514}
515
516template<class Impl>
517void
518DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
519{
520 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
521 "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
522
523 toCommit->squash[tid] = true;
524 toCommit->squashedSeqNum[tid] = inst->seqNum;
525 toCommit->nextPC[tid] = inst->readNextPC();
526#if ISA_HAS_DELAY_SLOT
527 toCommit->nextNPC[tid] = inst->readNextNPC();
528#else
529 toCommit->nextNPC[tid] = inst->readNextPC() + sizeof(TheISA::MachInst);
530#endif
531 toCommit->branchMispredict[tid] = false;
532
533 toCommit->includeSquashInst[tid] = false;
534
535 wroteToTimeBuffer = true;
536}
537
538template<class Impl>
539void
540DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
541{
542 DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
543 "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
544
545 toCommit->squash[tid] = true;
546 toCommit->squashedSeqNum[tid] = inst->seqNum;
547 toCommit->nextPC[tid] = inst->readPC();
548#if ISA_HAS_DELAY_SLOT
549 toCommit->nextNPC[tid] = inst->readNextPC();
550#else
551 toCommit->nextNPC[tid] = inst->readPC() + sizeof(TheISA::MachInst);
552#endif
553 toCommit->branchMispredict[tid] = false;
554
555 // Must include the broadcasted SN in the squash.
556 toCommit->includeSquashInst[tid] = true;
557
558 ldstQueue.setLoadBlockedHandled(tid);
559
560 wroteToTimeBuffer = true;
561}
562
563template<class Impl>
564void
565DefaultIEW<Impl>::block(unsigned tid)
566{
567 DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
568
569 if (dispatchStatus[tid] != Blocked &&
570 dispatchStatus[tid] != Unblocking) {
571 toRename->iewBlock[tid] = true;
572 wroteToTimeBuffer = true;
573 }
574
575 // Add the current inputs to the skid buffer so they can be
576 // reprocessed when this stage unblocks.
577 skidInsert(tid);
578
579 dispatchStatus[tid] = Blocked;
580}
581
582template<class Impl>
583void
584DefaultIEW<Impl>::unblock(unsigned tid)
585{
586 DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
587 "buffer %u.\n",tid, tid);
588
589 // If the skid bufffer is empty, signal back to previous stages to unblock.
590 // Also switch status to running.
591 if (skidBuffer[tid].empty()) {
592 toRename->iewUnblock[tid] = true;
593 wroteToTimeBuffer = true;
594 DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
595 dispatchStatus[tid] = Running;
596 }
597}
598
599template<class Impl>
600void
601DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
602{
603 instQueue.wakeDependents(inst);
604}
605
606template<class Impl>
607void
608DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
609{
610 instQueue.rescheduleMemInst(inst);
611}
612
613template<class Impl>
614void
615DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
616{
617 instQueue.replayMemInst(inst);
618}
619
620template<class Impl>
621void
622DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
623{
624 // This function should not be called after writebackInsts in a
625 // single cycle. That will cause problems with an instruction
626 // being added to the queue to commit without being processed by
627 // writebackInsts prior to being sent to commit.
628
629 // First check the time slot that this instruction will write
630 // to. If there are free write ports at the time, then go ahead
631 // and write the instruction to that time. If there are not,
632 // keep looking back to see where's the first time there's a
633 // free slot.
634 while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
635 ++wbNumInst;
636 if (wbNumInst == wbWidth) {
637 ++wbCycle;
638 wbNumInst = 0;
639 }
640
641 assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
642 }
643
644 DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
645 wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
646 // Add finished instruction to queue to commit.
647 (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
648 (*iewQueue)[wbCycle].size++;
649}
650
651template <class Impl>
652unsigned
653DefaultIEW<Impl>::validInstsFromRename()
654{
655 unsigned inst_count = 0;
656
657 for (int i=0; i<fromRename->size; i++) {
658 if (!fromRename->insts[i]->isSquashed())
659 inst_count++;
660 }
661
662 return inst_count;
663}
664
665template<class Impl>
666void
667DefaultIEW<Impl>::skidInsert(unsigned tid)
668{
669 DynInstPtr inst = NULL;
670
671 while (!insts[tid].empty()) {
672 inst = insts[tid].front();
673
674 insts[tid].pop();
675
676 DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
677 "dispatch skidBuffer %i\n",tid, inst->seqNum,
678 inst->readPC(),tid);
679
680 skidBuffer[tid].push(inst);
681 }
682
683 assert(skidBuffer[tid].size() <= skidBufferMax &&
684 "Skidbuffer Exceeded Max Size");
685}
686
687template<class Impl>
688int
689DefaultIEW<Impl>::skidCount()
690{
691 int max=0;
692
693 std::list<unsigned>::iterator threads = activeThreads->begin();
694 std::list<unsigned>::iterator end = activeThreads->end();
695
696 while (threads != end) {
697 unsigned tid = *threads++;
698 unsigned thread_count = skidBuffer[tid].size();
699 if (max < thread_count)
700 max = thread_count;
701 }
702
703 return max;
704}
705
706template<class Impl>
707bool
708DefaultIEW<Impl>::skidsEmpty()
709{
710 std::list<unsigned>::iterator threads = activeThreads->begin();
711 std::list<unsigned>::iterator end = activeThreads->end();
712
713 while (threads != end) {
714 unsigned tid = *threads++;
715
716 if (!skidBuffer[tid].empty())
717 return false;
718 }
719
720 return true;
721}
722
723template <class Impl>
724void
725DefaultIEW<Impl>::updateStatus()
726{
727 bool any_unblocking = false;
728
729 std::list<unsigned>::iterator threads = activeThreads->begin();
730 std::list<unsigned>::iterator end = activeThreads->end();
731
732 while (threads != end) {
733 unsigned tid = *threads++;
734
735 if (dispatchStatus[tid] == Unblocking) {
736 any_unblocking = true;
737 break;
738 }
739 }
740
741 // If there are no ready instructions waiting to be scheduled by the IQ,
742 // and there's no stores waiting to write back, and dispatch is not
743 // unblocking, then there is no internal activity for the IEW stage.
744 if (_status == Active && !instQueue.hasReadyInsts() &&
745 !ldstQueue.willWB() && !any_unblocking) {
746 DPRINTF(IEW, "IEW switching to idle\n");
747
748 deactivateStage();
749
750 _status = Inactive;
751 } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
752 ldstQueue.willWB() ||
753 any_unblocking)) {
754 // Otherwise there is internal activity. Set to active.
755 DPRINTF(IEW, "IEW switching to active\n");
756
757 activateStage();
758
759 _status = Active;
760 }
761}
762
763template <class Impl>
764void
765DefaultIEW<Impl>::resetEntries()
766{
767 instQueue.resetEntries();
768 ldstQueue.resetEntries();
769}
770
771template <class Impl>
772void
773DefaultIEW<Impl>::readStallSignals(unsigned tid)
774{
775 if (fromCommit->commitBlock[tid]) {
776 stalls[tid].commit = true;
777 }
778
779 if (fromCommit->commitUnblock[tid]) {
780 assert(stalls[tid].commit);
781 stalls[tid].commit = false;
782 }
783}
784
785template <class Impl>
786bool
787DefaultIEW<Impl>::checkStall(unsigned tid)
788{
789 bool ret_val(false);
790
791 if (stalls[tid].commit) {
792 DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
793 ret_val = true;
794 } else if (instQueue.isFull(tid)) {
795 DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid);
796 ret_val = true;
797 } else if (ldstQueue.isFull(tid)) {
798 DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
799
800 if (ldstQueue.numLoads(tid) > 0 ) {
801
802 DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
803 tid,ldstQueue.getLoadHeadSeqNum(tid));
804 }
805
806 if (ldstQueue.numStores(tid) > 0) {
807
808 DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
809 tid,ldstQueue.getStoreHeadSeqNum(tid));
810 }
811
812 ret_val = true;
813 } else if (ldstQueue.isStalled(tid)) {
814 DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
815 ret_val = true;
816 }
817
818 return ret_val;
819}
820
821template <class Impl>
822void
823DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
824{
825 // Check if there's a squash signal, squash if there is
826 // Check stall signals, block if there is.
827 // If status was Blocked
828 // if so then go to unblocking
829 // If status was Squashing
830 // check if squashing is not high. Switch to running this cycle.
831
832 readStallSignals(tid);
833
834 if (fromCommit->commitInfo[tid].squash) {
835 squash(tid);
836
837 if (dispatchStatus[tid] == Blocked ||
838 dispatchStatus[tid] == Unblocking) {
839 toRename->iewUnblock[tid] = true;
840 wroteToTimeBuffer = true;
841 }
842
843 dispatchStatus[tid] = Squashing;
844
845 fetchRedirect[tid] = false;
846 return;
847 }
848
849 if (fromCommit->commitInfo[tid].robSquashing) {
850 DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
851
852 dispatchStatus[tid] = Squashing;
853
854 emptyRenameInsts(tid);
855 wroteToTimeBuffer = true;
856 return;
857 }
858
859 if (checkStall(tid)) {
860 block(tid);
861 dispatchStatus[tid] = Blocked;
862 return;
863 }
864
865 if (dispatchStatus[tid] == Blocked) {
866 // Status from previous cycle was blocked, but there are no more stall
867 // conditions. Switch over to unblocking.
868 DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
869 tid);
870
871 dispatchStatus[tid] = Unblocking;
872
873 unblock(tid);
874
875 return;
876 }
877
878 if (dispatchStatus[tid] == Squashing) {
879 // Switch status to running if rename isn't being told to block or
880 // squash this cycle.
881 DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
882 tid);
883
884 dispatchStatus[tid] = Running;
885
886 return;
887 }
888}
889
890template <class Impl>
891void
892DefaultIEW<Impl>::sortInsts()
893{
894 int insts_from_rename = fromRename->size;
895#ifdef DEBUG
896#if !ISA_HAS_DELAY_SLOT
897 for (int i = 0; i < numThreads; i++)
898 assert(insts[i].empty());
899#endif
900#endif
901 for (int i = 0; i < insts_from_rename; ++i) {
902 insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
903 }
904}
905
906template <class Impl>
907void
908DefaultIEW<Impl>::emptyRenameInsts(unsigned tid)
909{
910 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions until "
911 "[sn:%i].\n", tid, bdelayDoneSeqNum[tid]);
912
913 while (!insts[tid].empty()) {
914#if ISA_HAS_DELAY_SLOT
915 if (insts[tid].front()->seqNum <= bdelayDoneSeqNum[tid]) {
916 DPRINTF(IEW, "[tid:%i]: Done removing, cannot remove instruction"
917 " that occurs at or before delay slot [sn:%i].\n",
918 tid, bdelayDoneSeqNum[tid]);
919 break;
920 } else {
921 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instruction "
922 "[sn:%i].\n", tid, insts[tid].front()->seqNum);
923 }
924#endif
925
926 if (insts[tid].front()->isLoad() ||
927 insts[tid].front()->isStore() ) {
928 toRename->iewInfo[tid].dispatchedToLSQ++;
929 }
930
931 toRename->iewInfo[tid].dispatched++;
932
933 insts[tid].pop();
934 }
935}
936
937template <class Impl>
938void
939DefaultIEW<Impl>::wakeCPU()
940{
941 cpu->wakeCPU();
942}
943
944template <class Impl>
945void
946DefaultIEW<Impl>::activityThisCycle()
947{
948 DPRINTF(Activity, "Activity this cycle.\n");
949 cpu->activityThisCycle();
950}
951
952template <class Impl>
953inline void
954DefaultIEW<Impl>::activateStage()
955{
956 DPRINTF(Activity, "Activating stage.\n");
957 cpu->activateStage(O3CPU::IEWIdx);
958}
959
960template <class Impl>
961inline void
962DefaultIEW<Impl>::deactivateStage()
963{
964 DPRINTF(Activity, "Deactivating stage.\n");
965 cpu->deactivateStage(O3CPU::IEWIdx);
966}
967
968template<class Impl>
969void
970DefaultIEW<Impl>::dispatch(unsigned tid)
971{
972 // If status is Running or idle,
973 // call dispatchInsts()
974 // If status is Unblocking,
975 // buffer any instructions coming from rename
976 // continue trying to empty skid buffer
977 // check if stall conditions have passed
978
979 if (dispatchStatus[tid] == Blocked) {
980 ++iewBlockCycles;
981
982 } else if (dispatchStatus[tid] == Squashing) {
983 ++iewSquashCycles;
984 }
985
986 // Dispatch should try to dispatch as many instructions as its bandwidth
987 // will allow, as long as it is not currently blocked.
988 if (dispatchStatus[tid] == Running ||
989 dispatchStatus[tid] == Idle) {
990 DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
991 "dispatch.\n", tid);
992
993 dispatchInsts(tid);
994 } else if (dispatchStatus[tid] == Unblocking) {
995 // Make sure that the skid buffer has something in it if the
996 // status is unblocking.
997 assert(!skidsEmpty());
998
999 // If the status was unblocking, then instructions from the skid
1000 // buffer were used. Remove those instructions and handle
1001 // the rest of unblocking.
1002 dispatchInsts(tid);
1003
1004 ++iewUnblockCycles;
1005
1006 if (validInstsFromRename() && dispatchedAllInsts) {
1007 // Add the current inputs to the skid buffer so they can be
1008 // reprocessed when this stage unblocks.
1009 skidInsert(tid);
1010 }
1011
1012 unblock(tid);
1013 }
1014}
1015
1016template <class Impl>
1017void
1018DefaultIEW<Impl>::dispatchInsts(unsigned tid)
1019{
1020 dispatchedAllInsts = true;
1021
1022 // Obtain instructions from skid buffer if unblocking, or queue from rename
1023 // otherwise.
1024 std::queue<DynInstPtr> &insts_to_dispatch =
1025 dispatchStatus[tid] == Unblocking ?
1026 skidBuffer[tid] : insts[tid];
1027
1028 int insts_to_add = insts_to_dispatch.size();
1029
1030 DynInstPtr inst;
1031 bool add_to_iq = false;
1032 int dis_num_inst = 0;
1033
1034 // Loop through the instructions, putting them in the instruction
1035 // queue.
1036 for ( ; dis_num_inst < insts_to_add &&
1037 dis_num_inst < dispatchWidth;
1038 ++dis_num_inst)
1039 {
1040 inst = insts_to_dispatch.front();
1041
1042 if (dispatchStatus[tid] == Unblocking) {
1043 DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
1044 "buffer\n", tid);
1045 }
1046
1047 // Make sure there's a valid instruction there.
1048 assert(inst);
1049
1050 DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
1051 "IQ.\n",
1052 tid, inst->readPC(), inst->seqNum, inst->threadNumber);
1053
1054 // Be sure to mark these instructions as ready so that the
1055 // commit stage can go ahead and execute them, and mark
1056 // them as issued so the IQ doesn't reprocess them.
1057
1058 // Check for squashed instructions.
1059 if (inst->isSquashed()) {
1060 DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
1061 "not adding to IQ.\n", tid);
1062
1063 ++iewDispSquashedInsts;
1064
1065 insts_to_dispatch.pop();
1066
1067 //Tell Rename That An Instruction has been processed
1068 if (inst->isLoad() || inst->isStore()) {
1069 toRename->iewInfo[tid].dispatchedToLSQ++;
1070 }
1071 toRename->iewInfo[tid].dispatched++;
1072
1073 continue;
1074 }
1075
1076 // Check for full conditions.
1077 if (instQueue.isFull(tid)) {
1078 DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1079
1080 // Call function to start blocking.
1081 block(tid);
1082
1083 // Set unblock to false. Special case where we are using
1084 // skidbuffer (unblocking) instructions but then we still
1085 // get full in the IQ.
1086 toRename->iewUnblock[tid] = false;
1087
1088 dispatchedAllInsts = false;
1089
1090 ++iewIQFullEvents;
1091 break;
1092 } else if (ldstQueue.isFull(tid)) {
1093 DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1094
1095 // Call function to start blocking.
1096 block(tid);
1097
1098 // Set unblock to false. Special case where we are using
1099 // skidbuffer (unblocking) instructions but then we still
1100 // get full in the IQ.
1101 toRename->iewUnblock[tid] = false;
1102
1103 dispatchedAllInsts = false;
1104
1105 ++iewLSQFullEvents;
1106 break;
1107 }
1108
1109 // Otherwise issue the instruction just fine.
1110 if (inst->isLoad()) {
1111 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1112 "encountered, adding to LSQ.\n", tid);
1113
1114 // Reserve a spot in the load store queue for this
1115 // memory access.
1116 ldstQueue.insertLoad(inst);
1117
1118 ++iewDispLoadInsts;
1119
1120 add_to_iq = true;
1121
1122 toRename->iewInfo[tid].dispatchedToLSQ++;
1123 } else if (inst->isStore()) {
1124 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1125 "encountered, adding to LSQ.\n", tid);
1126
1127 ldstQueue.insertStore(inst);
1128
1129 ++iewDispStoreInsts;
1130
1131 if (inst->isStoreConditional()) {
1132 // Store conditionals need to be set as "canCommit()"
1133 // so that commit can process them when they reach the
1134 // head of commit.
1135 // @todo: This is somewhat specific to Alpha.
1136 inst->setCanCommit();
1137 instQueue.insertNonSpec(inst);
1138 add_to_iq = false;
1139
1140 ++iewDispNonSpecInsts;
1141 } else {
1142 add_to_iq = true;
1143 }
1144
1145 toRename->iewInfo[tid].dispatchedToLSQ++;
1146 } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1147 // Same as non-speculative stores.
1148 inst->setCanCommit();
1149 instQueue.insertBarrier(inst);
1150 add_to_iq = false;
1151 } else if (inst->isNop()) {
1152 DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1153 "skipping.\n", tid);
1154
1155 inst->setIssued();
1156 inst->setExecuted();
1157 inst->setCanCommit();
1158
1159 instQueue.recordProducer(inst);
1160
1161 iewExecutedNop[tid]++;
1162
1163 add_to_iq = false;
1164 } else if (inst->isExecuted()) {
1165 assert(0 && "Instruction shouldn't be executed.\n");
1166 DPRINTF(IEW, "Issue: Executed branch encountered, "
1167 "skipping.\n");
1168
1169 inst->setIssued();
1170 inst->setCanCommit();
1171
1172 instQueue.recordProducer(inst);
1173
1174 add_to_iq = false;
1175 } else {
1176 add_to_iq = true;
1177 }
1178 if (inst->isNonSpeculative()) {
1179 DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1180 "encountered, skipping.\n", tid);
1181
1182 // Same as non-speculative stores.
1183 inst->setCanCommit();
1184
1185 // Specifically insert it as nonspeculative.
1186 instQueue.insertNonSpec(inst);
1187
1188 ++iewDispNonSpecInsts;
1189
1190 add_to_iq = false;
1191 }
1192
1193 // If the instruction queue is not full, then add the
1194 // instruction.
1195 if (add_to_iq) {
1196 instQueue.insert(inst);
1197 }
1198
1199 insts_to_dispatch.pop();
1200
1201 toRename->iewInfo[tid].dispatched++;
1202
1203 ++iewDispatchedInsts;
1204 }
1205
1206 if (!insts_to_dispatch.empty()) {
1207 DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1208 block(tid);
1209 toRename->iewUnblock[tid] = false;
1210 }
1211
1212 if (dispatchStatus[tid] == Idle && dis_num_inst) {
1213 dispatchStatus[tid] = Running;
1214
1215 updatedQueues = true;
1216 }
1217
1218 dis_num_inst = 0;
1219}
1220
1221template <class Impl>
1222void
1223DefaultIEW<Impl>::printAvailableInsts()
1224{
1225 int inst = 0;
1226
1227 std::cout << "Available Instructions: ";
1228
1229 while (fromIssue->insts[inst]) {
1230
1231 if (inst%3==0) std::cout << "\n\t";
1232
1233 std::cout << "PC: " << fromIssue->insts[inst]->readPC()
1234 << " TN: " << fromIssue->insts[inst]->threadNumber
1235 << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1236
1237 inst++;
1238
1239 }
1240
1241 std::cout << "\n";
1242}
1243
1244template <class Impl>
1245void
1246DefaultIEW<Impl>::executeInsts()
1247{
1248 wbNumInst = 0;
1249 wbCycle = 0;
1250
1251 std::list<unsigned>::iterator threads = activeThreads->begin();
1252 std::list<unsigned>::iterator end = activeThreads->end();
1253
1254 while (threads != end) {
1255 unsigned tid = *threads++;
1256 fetchRedirect[tid] = false;
1257 }
1258
1259 // Uncomment this if you want to see all available instructions.
1260// printAvailableInsts();
1261
1262 // Execute/writeback any instructions that are available.
1263 int insts_to_execute = fromIssue->size;
1264 int inst_num = 0;
1265 for (; inst_num < insts_to_execute;
1266 ++inst_num) {
1267
1268 DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1269
1270 DynInstPtr inst = instQueue.getInstToExecute();
1271
1272 DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
1273 inst->readPC(), inst->threadNumber,inst->seqNum);
1274
1275 // Check if the instruction is squashed; if so then skip it
1276 if (inst->isSquashed()) {
1277 DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1278
1279 // Consider this instruction executed so that commit can go
1280 // ahead and retire the instruction.
1281 inst->setExecuted();
1282
1283 // Not sure if I should set this here or just let commit try to
1284 // commit any squashed instructions. I like the latter a bit more.
1285 inst->setCanCommit();
1286
1287 ++iewExecSquashedInsts;
1288
1289 decrWb(inst->seqNum);
1290 continue;
1291 }
1292
1293 Fault fault = NoFault;
1294
1295 // Execute instruction.
1296 // Note that if the instruction faults, it will be handled
1297 // at the commit stage.
1298 if (inst->isMemRef() &&
1299 (!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
1300 DPRINTF(IEW, "Execute: Calculating address for memory "
1301 "reference.\n");
1302
1303 // Tell the LDSTQ to execute this instruction (if it is a load).
1304 if (inst->isLoad()) {
1305 // Loads will mark themselves as executed, and their writeback
1306 // event adds the instruction to the queue to commit
1307 fault = ldstQueue.executeLoad(inst);
1308 } else if (inst->isStore()) {
1309 fault = ldstQueue.executeStore(inst);
1310
1311 // If the store had a fault then it may not have a mem req
1312 if (!inst->isStoreConditional() && fault == NoFault) {
1313 inst->setExecuted();
1314
1315 instToCommit(inst);
1316 } else if (fault != NoFault) {
1317 // If the instruction faulted, then we need to send it along to commit
1318 // without the instruction completing.
1319 DPRINTF(IEW, "Store has fault %s! [sn:%lli]\n",
1320 fault->name(), inst->seqNum);
1321
1322 // Send this instruction to commit, also make sure iew stage
1323 // realizes there is activity.
1324 inst->setExecuted();
1325
1326 instToCommit(inst);
1327 activityThisCycle();
1328 }
1329
1330 // Store conditionals will mark themselves as
1331 // executed, and their writeback event will add the
1332 // instruction to the queue to commit.
1333 } else {
1334 panic("Unexpected memory type!\n");
1335 }
1336
1337 } else {
1338 inst->execute();
1339
1340 inst->setExecuted();
1341
1342 instToCommit(inst);
1343 }
1344
1345 updateExeInstStats(inst);
1346
1347 // Check if branch prediction was correct, if not then we need
1348 // to tell commit to squash in flight instructions. Only
1349 // handle this if there hasn't already been something that
1350 // redirects fetch in this group of instructions.
1351
1352 // This probably needs to prioritize the redirects if a different
1353 // scheduler is used. Currently the scheduler schedules the oldest
1354 // instruction first, so the branch resolution order will be correct.
1355 unsigned tid = inst->threadNumber;
1356
1357 if (!fetchRedirect[tid] ||
1358 toCommit->squashedSeqNum[tid] > inst->seqNum) {
1359
1360 if (inst->mispredicted()) {
1361 fetchRedirect[tid] = true;
1362
1363 DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1364 DPRINTF(IEW, "Predicted target was %#x, %#x.\n",
1365 inst->readPredPC(), inst->readPredNPC());
1366 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x,"
1367 " NPC: %#x.\n", inst->readNextPC(),
1368 inst->readNextNPC());
1369 // If incorrect, then signal the ROB that it must be squashed.
1370 squashDueToBranch(inst, tid);
1371
1372 if (inst->readPredTaken()) {
1373 predictedTakenIncorrect++;
1374 } else {
1375 predictedNotTakenIncorrect++;
1376 }
1377 } else if (ldstQueue.violation(tid)) {
1378 assert(inst->isMemRef());
1379 // If there was an ordering violation, then get the
1380 // DynInst that caused the violation. Note that this
1381 // clears the violation signal.
1382 DynInstPtr violator;
1383 violator = ldstQueue.getMemDepViolator(tid);
1384
1385 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
1386 "%#x, inst PC: %#x. Addr is: %#x.\n",
1387 violator->readPC(), inst->readPC(), inst->physEffAddr);
1388
1389 // Ensure the violating instruction is older than
1390 // current squash
1391/* if (fetchRedirect[tid] &&
1392 violator->seqNum >= toCommit->squashedSeqNum[tid] + 1)
1393 continue;
1394*/
1395 fetchRedirect[tid] = true;
1396
1397 // Tell the instruction queue that a violation has occured.
1398 instQueue.violation(inst, violator);
1399
1400 // Squash.
1401 squashDueToMemOrder(inst,tid);
1402
1403 ++memOrderViolationEvents;
1404 } else if (ldstQueue.loadBlocked(tid) &&
1405 !ldstQueue.isLoadBlockedHandled(tid)) {
1406 fetchRedirect[tid] = true;
1407
1408 DPRINTF(IEW, "Load operation couldn't execute because the "
1409 "memory system is blocked. PC: %#x [sn:%lli]\n",
1410 inst->readPC(), inst->seqNum);
1411
1412 squashDueToMemBlocked(inst, tid);
1413 }
1414 } else {
1415 // Reset any state associated with redirects that will not
1416 // be used.
1417 if (ldstQueue.violation(tid)) {
1418 assert(inst->isMemRef());
1419
1420 DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1421
1422 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
1423 "%#x, inst PC: %#x. Addr is: %#x.\n",
1424 violator->readPC(), inst->readPC(), inst->physEffAddr);
1425 DPRINTF(IEW, "Violation will not be handled because "
1426 "already squashing\n");
1427
1428 ++memOrderViolationEvents;
1429 }
1430 if (ldstQueue.loadBlocked(tid) &&
1431 !ldstQueue.isLoadBlockedHandled(tid)) {
1432 DPRINTF(IEW, "Load operation couldn't execute because the "
1433 "memory system is blocked. PC: %#x [sn:%lli]\n",
1434 inst->readPC(), inst->seqNum);
1435 DPRINTF(IEW, "Blocked load will not be handled because "
1436 "already squashing\n");
1437
1438 ldstQueue.setLoadBlockedHandled(tid);
1439 }
1440
1441 }
1442 }
1443
1444 // Update and record activity if we processed any instructions.
1445 if (inst_num) {
1446 if (exeStatus == Idle) {
1447 exeStatus = Running;
1448 }
1449
1450 updatedQueues = true;
1451
1452 cpu->activityThisCycle();
1453 }
1454
1455 // Need to reset this in case a writeback event needs to write into the
1456 // iew queue. That way the writeback event will write into the correct
1457 // spot in the queue.
1458 wbNumInst = 0;
1459}
1460
1461template <class Impl>
1462void
1463DefaultIEW<Impl>::writebackInsts()
1464{
1465 // Loop through the head of the time buffer and wake any
1466 // dependents. These instructions are about to write back. Also
1467 // mark scoreboard that this instruction is finally complete.
1468 // Either have IEW have direct access to scoreboard, or have this
1469 // as part of backwards communication.
1470 for (int inst_num = 0; inst_num < wbWidth &&
1471 toCommit->insts[inst_num]; inst_num++) {
1472 DynInstPtr inst = toCommit->insts[inst_num];
1473 int tid = inst->threadNumber;
1474
1475 DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %#x.\n",
1476 inst->seqNum, inst->readPC());
1477
1478 iewInstsToCommit[tid]++;
1479
1480 // Some instructions will be sent to commit without having
1481 // executed because they need commit to handle them.
1482 // E.g. Uncached loads have not actually executed when they
1483 // are first sent to commit. Instead commit must tell the LSQ
1484 // when it's ready to execute the uncached load.
1485 if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1486 int dependents = instQueue.wakeDependents(inst);
1487
1488 for (int i = 0; i < inst->numDestRegs(); i++) {
1489 //mark as Ready
1490 DPRINTF(IEW,"Setting Destination Register %i\n",
1491 inst->renamedDestRegIdx(i));
1492 scoreboard->setReg(inst->renamedDestRegIdx(i));
1493 }
1494
1495 if (dependents) {
1496 producerInst[tid]++;
1497 consumerInst[tid]+= dependents;
1498 }
1499 writebackCount[tid]++;
1500 }
1501
1502 decrWb(inst->seqNum);
1503 }
1504}
1505
1506template<class Impl>
1507void
1508DefaultIEW<Impl>::tick()
1509{
1510 wbNumInst = 0;
1511 wbCycle = 0;
1512
1513 wroteToTimeBuffer = false;
1514 updatedQueues = false;
1515
1516 sortInsts();
1517
1518 // Free function units marked as being freed this cycle.
1519 fuPool->processFreeUnits();
1520
1521 std::list<unsigned>::iterator threads = activeThreads->begin();
1522 std::list<unsigned>::iterator end = activeThreads->end();
1523
1524 // Check stall and squash signals, dispatch any instructions.
1525 while (threads != end) {
1526 unsigned tid = *threads++;
1527
1528 DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1529
1530 checkSignalsAndUpdate(tid);
1531 dispatch(tid);
1532 }
1533
1534 if (exeStatus != Squashing) {
1535 executeInsts();
1536
1537 writebackInsts();
1538
1539 // Have the instruction queue try to schedule any ready instructions.
1540 // (In actuality, this scheduling is for instructions that will
1541 // be executed next cycle.)
1542 instQueue.scheduleReadyInsts();
1543
1544 // Also should advance its own time buffers if the stage ran.
1545 // Not the best place for it, but this works (hopefully).
1546 issueToExecQueue.advance();
1547 }
1548
1549 bool broadcast_free_entries = false;
1550
1551 if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1552 exeStatus = Idle;
1553 updateLSQNextCycle = false;
1554
1555 broadcast_free_entries = true;
1556 }
1557
1558 // Writeback any stores using any leftover bandwidth.
1559 ldstQueue.writebackStores();
1560
1561 // Check the committed load/store signals to see if there's a load
1562 // or store to commit. Also check if it's being told to execute a
1563 // nonspeculative instruction.
1564 // This is pretty inefficient...
1565
1566 threads = activeThreads->begin();
1567 while (threads != end) {
1568 unsigned tid = (*threads++);
1569
1570 DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1571
1572 // Update structures based on instructions committed.
1573 if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1574 !fromCommit->commitInfo[tid].squash &&
1575 !fromCommit->commitInfo[tid].robSquashing) {
1576
1577 ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1578
1579 ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1580
1581 updateLSQNextCycle = true;
1582 instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1583 }
1584
1585 if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1586
1587 //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1588 if (fromCommit->commitInfo[tid].uncached) {
1589 instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1590 fromCommit->commitInfo[tid].uncachedLoad->setAtCommit();
1591 } else {
1592 instQueue.scheduleNonSpec(
1593 fromCommit->commitInfo[tid].nonSpecSeqNum);
1594 }
1595 }
1596
1597 if (broadcast_free_entries) {
1598 toFetch->iewInfo[tid].iqCount =
1599 instQueue.getCount(tid);
1600 toFetch->iewInfo[tid].ldstqCount =
1601 ldstQueue.getCount(tid);
1602
1603 toRename->iewInfo[tid].usedIQ = true;
1604 toRename->iewInfo[tid].freeIQEntries =
1605 instQueue.numFreeEntries();
1606 toRename->iewInfo[tid].usedLSQ = true;
1607 toRename->iewInfo[tid].freeLSQEntries =
1608 ldstQueue.numFreeEntries(tid);
1609
1610 wroteToTimeBuffer = true;
1611 }
1612
1613 DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1614 tid, toRename->iewInfo[tid].dispatched);
1615 }
1616
1617 DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). "
1618 "LSQ has %i free entries.\n",
1619 instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1620 ldstQueue.numFreeEntries());
1621
1622 updateStatus();
1623
1624 if (wroteToTimeBuffer) {
1625 DPRINTF(Activity, "Activity this cycle.\n");
1626 cpu->activityThisCycle();
1627 }
1628}
1629
1630template <class Impl>
1631void
1632DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1633{
1634 int thread_number = inst->threadNumber;
1635
1636 //
1637 // Pick off the software prefetches
1638 //
1639#ifdef TARGET_ALPHA
1640 if (inst->isDataPrefetch())
1641 iewExecutedSwp[thread_number]++;
1642 else
1643 iewIewExecutedcutedInsts++;
1644#else
1645 iewExecutedInsts++;
1646#endif
1647
1648 //
1649 // Control operations
1650 //
1651 if (inst->isControl())
1652 iewExecutedBranches[thread_number]++;
1653
1654 //
1655 // Memory operations
1656 //
1657 if (inst->isMemRef()) {
1658 iewExecutedRefs[thread_number]++;
1659
1660 if (inst->isLoad()) {
1661 iewExecLoadInsts[thread_number]++;
1662 }
1663 }
1664}