iew_impl.hh (3221:669a04468c0d) iew_impl.hh (3732:e84a6e9ebd3d)
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31// @todo: Fix the instantaneous communication among all the stages within
32// iew. There's a clear delay between issue and execute, yet backwards
33// communication happens simultaneously.
34
35#include <queue>
36
37#include "base/timebuf.hh"
38#include "cpu/o3/fu_pool.hh"
39#include "cpu/o3/iew.hh"
40
41template<class Impl>
42DefaultIEW<Impl>::DefaultIEW(Params *params)
43 : issueToExecQueue(params->backComSize, params->forwardComSize),
44 instQueue(params),
45 ldstQueue(params),
46 fuPool(params->fuPool),
47 commitToIEWDelay(params->commitToIEWDelay),
48 renameToIEWDelay(params->renameToIEWDelay),
49 issueToExecuteDelay(params->issueToExecuteDelay),
50 dispatchWidth(params->dispatchWidth),
51 issueWidth(params->issueWidth),
52 wbOutstanding(0),
53 wbWidth(params->wbWidth),
54 numThreads(params->numberOfThreads),
55 switchedOut(false)
56{
57 _status = Active;
58 exeStatus = Running;
59 wbStatus = Idle;
60
61 // Setup wire to read instructions coming from issue.
62 fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
63
64 // Instruction queue needs the queue between issue and execute.
65 instQueue.setIssueToExecuteQueue(&issueToExecQueue);
66
67 instQueue.setIEW(this);
68 ldstQueue.setIEW(this);
69
70 for (int i=0; i < numThreads; i++) {
71 dispatchStatus[i] = Running;
72 stalls[i].commit = false;
73 fetchRedirect[i] = false;
74 bdelayDoneSeqNum[i] = 0;
75 }
76
77 wbMax = wbWidth * params->wbDepth;
78
79 updateLSQNextCycle = false;
80
81 ableToIssue = true;
82
83 skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
84}
85
86template <class Impl>
87std::string
88DefaultIEW<Impl>::name() const
89{
90 return cpu->name() + ".iew";
91}
92
93template <class Impl>
94void
95DefaultIEW<Impl>::regStats()
96{
97 using namespace Stats;
98
99 instQueue.regStats();
100 ldstQueue.regStats();
101
102 iewIdleCycles
103 .name(name() + ".iewIdleCycles")
104 .desc("Number of cycles IEW is idle");
105
106 iewSquashCycles
107 .name(name() + ".iewSquashCycles")
108 .desc("Number of cycles IEW is squashing");
109
110 iewBlockCycles
111 .name(name() + ".iewBlockCycles")
112 .desc("Number of cycles IEW is blocking");
113
114 iewUnblockCycles
115 .name(name() + ".iewUnblockCycles")
116 .desc("Number of cycles IEW is unblocking");
117
118 iewDispatchedInsts
119 .name(name() + ".iewDispatchedInsts")
120 .desc("Number of instructions dispatched to IQ");
121
122 iewDispSquashedInsts
123 .name(name() + ".iewDispSquashedInsts")
124 .desc("Number of squashed instructions skipped by dispatch");
125
126 iewDispLoadInsts
127 .name(name() + ".iewDispLoadInsts")
128 .desc("Number of dispatched load instructions");
129
130 iewDispStoreInsts
131 .name(name() + ".iewDispStoreInsts")
132 .desc("Number of dispatched store instructions");
133
134 iewDispNonSpecInsts
135 .name(name() + ".iewDispNonSpecInsts")
136 .desc("Number of dispatched non-speculative instructions");
137
138 iewIQFullEvents
139 .name(name() + ".iewIQFullEvents")
140 .desc("Number of times the IQ has become full, causing a stall");
141
142 iewLSQFullEvents
143 .name(name() + ".iewLSQFullEvents")
144 .desc("Number of times the LSQ has become full, causing a stall");
145
146 memOrderViolationEvents
147 .name(name() + ".memOrderViolationEvents")
148 .desc("Number of memory order violations");
149
150 predictedTakenIncorrect
151 .name(name() + ".predictedTakenIncorrect")
152 .desc("Number of branches that were predicted taken incorrectly");
153
154 predictedNotTakenIncorrect
155 .name(name() + ".predictedNotTakenIncorrect")
156 .desc("Number of branches that were predicted not taken incorrectly");
157
158 branchMispredicts
159 .name(name() + ".branchMispredicts")
160 .desc("Number of branch mispredicts detected at execute");
161
162 branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
163
164 iewExecutedInsts
165 .name(name() + ".iewExecutedInsts")
166 .desc("Number of executed instructions");
167
168 iewExecLoadInsts
169 .init(cpu->number_of_threads)
170 .name(name() + ".iewExecLoadInsts")
171 .desc("Number of load instructions executed")
172 .flags(total);
173
174 iewExecSquashedInsts
175 .name(name() + ".iewExecSquashedInsts")
176 .desc("Number of squashed instructions skipped in execute");
177
178 iewExecutedSwp
179 .init(cpu->number_of_threads)
180 .name(name() + ".EXEC:swp")
181 .desc("number of swp insts executed")
182 .flags(total);
183
184 iewExecutedNop
185 .init(cpu->number_of_threads)
186 .name(name() + ".EXEC:nop")
187 .desc("number of nop insts executed")
188 .flags(total);
189
190 iewExecutedRefs
191 .init(cpu->number_of_threads)
192 .name(name() + ".EXEC:refs")
193 .desc("number of memory reference insts executed")
194 .flags(total);
195
196 iewExecutedBranches
197 .init(cpu->number_of_threads)
198 .name(name() + ".EXEC:branches")
199 .desc("Number of branches executed")
200 .flags(total);
201
202 iewExecStoreInsts
203 .name(name() + ".EXEC:stores")
204 .desc("Number of stores executed")
205 .flags(total);
206 iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
207
208 iewExecRate
209 .name(name() + ".EXEC:rate")
210 .desc("Inst execution rate")
211 .flags(total);
212
213 iewExecRate = iewExecutedInsts / cpu->numCycles;
214
215 iewInstsToCommit
216 .init(cpu->number_of_threads)
217 .name(name() + ".WB:sent")
218 .desc("cumulative count of insts sent to commit")
219 .flags(total);
220
221 writebackCount
222 .init(cpu->number_of_threads)
223 .name(name() + ".WB:count")
224 .desc("cumulative count of insts written-back")
225 .flags(total);
226
227 producerInst
228 .init(cpu->number_of_threads)
229 .name(name() + ".WB:producers")
230 .desc("num instructions producing a value")
231 .flags(total);
232
233 consumerInst
234 .init(cpu->number_of_threads)
235 .name(name() + ".WB:consumers")
236 .desc("num instructions consuming a value")
237 .flags(total);
238
239 wbPenalized
240 .init(cpu->number_of_threads)
241 .name(name() + ".WB:penalized")
242 .desc("number of instrctions required to write to 'other' IQ")
243 .flags(total);
244
245 wbPenalizedRate
246 .name(name() + ".WB:penalized_rate")
247 .desc ("fraction of instructions written-back that wrote to 'other' IQ")
248 .flags(total);
249
250 wbPenalizedRate = wbPenalized / writebackCount;
251
252 wbFanout
253 .name(name() + ".WB:fanout")
254 .desc("average fanout of values written-back")
255 .flags(total);
256
257 wbFanout = producerInst / consumerInst;
258
259 wbRate
260 .name(name() + ".WB:rate")
261 .desc("insts written-back per cycle")
262 .flags(total);
263 wbRate = writebackCount / cpu->numCycles;
264}
265
266template<class Impl>
267void
268DefaultIEW<Impl>::initStage()
269{
270 for (int tid=0; tid < numThreads; tid++) {
271 toRename->iewInfo[tid].usedIQ = true;
272 toRename->iewInfo[tid].freeIQEntries =
273 instQueue.numFreeEntries(tid);
274
275 toRename->iewInfo[tid].usedLSQ = true;
276 toRename->iewInfo[tid].freeLSQEntries =
277 ldstQueue.numFreeEntries(tid);
278 }
279}
280
281template<class Impl>
282void
283DefaultIEW<Impl>::setCPU(O3CPU *cpu_ptr)
284{
285 DPRINTF(IEW, "Setting CPU pointer.\n");
286 cpu = cpu_ptr;
287
288 instQueue.setCPU(cpu_ptr);
289 ldstQueue.setCPU(cpu_ptr);
290
291 cpu->activateStage(O3CPU::IEWIdx);
292}
293
294template<class Impl>
295void
296DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
297{
298 DPRINTF(IEW, "Setting time buffer pointer.\n");
299 timeBuffer = tb_ptr;
300
301 // Setup wire to read information from time buffer, from commit.
302 fromCommit = timeBuffer->getWire(-commitToIEWDelay);
303
304 // Setup wire to write information back to previous stages.
305 toRename = timeBuffer->getWire(0);
306
307 toFetch = timeBuffer->getWire(0);
308
309 // Instruction queue also needs main time buffer.
310 instQueue.setTimeBuffer(tb_ptr);
311}
312
313template<class Impl>
314void
315DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
316{
317 DPRINTF(IEW, "Setting rename queue pointer.\n");
318 renameQueue = rq_ptr;
319
320 // Setup wire to read information from rename queue.
321 fromRename = renameQueue->getWire(-renameToIEWDelay);
322}
323
324template<class Impl>
325void
326DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
327{
328 DPRINTF(IEW, "Setting IEW queue pointer.\n");
329 iewQueue = iq_ptr;
330
331 // Setup wire to write instructions to commit.
332 toCommit = iewQueue->getWire(0);
333}
334
335template<class Impl>
336void
337DefaultIEW<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
338{
339 DPRINTF(IEW, "Setting active threads list pointer.\n");
340 activeThreads = at_ptr;
341
342 ldstQueue.setActiveThreads(at_ptr);
343 instQueue.setActiveThreads(at_ptr);
344}
345
346template<class Impl>
347void
348DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
349{
350 DPRINTF(IEW, "Setting scoreboard pointer.\n");
351 scoreboard = sb_ptr;
352}
353
354template <class Impl>
355bool
356DefaultIEW<Impl>::drain()
357{
358 // IEW is ready to drain at any time.
359 cpu->signalDrained();
360 return true;
361}
362
363template <class Impl>
364void
365DefaultIEW<Impl>::resume()
366{
367}
368
369template <class Impl>
370void
371DefaultIEW<Impl>::switchOut()
372{
373 // Clear any state.
374 switchedOut = true;
375 assert(insts[0].empty());
376 assert(skidBuffer[0].empty());
377
378 instQueue.switchOut();
379 ldstQueue.switchOut();
380 fuPool->switchOut();
381
382 for (int i = 0; i < numThreads; i++) {
383 while (!insts[i].empty())
384 insts[i].pop();
385 while (!skidBuffer[i].empty())
386 skidBuffer[i].pop();
387 }
388}
389
390template <class Impl>
391void
392DefaultIEW<Impl>::takeOverFrom()
393{
394 // Reset all state.
395 _status = Active;
396 exeStatus = Running;
397 wbStatus = Idle;
398 switchedOut = false;
399
400 instQueue.takeOverFrom();
401 ldstQueue.takeOverFrom();
402 fuPool->takeOverFrom();
403
404 initStage();
405 cpu->activityThisCycle();
406
407 for (int i=0; i < numThreads; i++) {
408 dispatchStatus[i] = Running;
409 stalls[i].commit = false;
410 fetchRedirect[i] = false;
411 }
412
413 updateLSQNextCycle = false;
414
415 for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
416 issueToExecQueue.advance();
417 }
418}
419
420template<class Impl>
421void
422DefaultIEW<Impl>::squash(unsigned tid)
423{
424 DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
425 tid);
426
427 // Tell the IQ to start squashing.
428 instQueue.squash(tid);
429
430 // Tell the LDSTQ to start squashing.
431#if ISA_HAS_DELAY_SLOT
432 ldstQueue.squash(fromCommit->commitInfo[tid].bdelayDoneSeqNum, tid);
433#else
434 ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
435#endif
436 updatedQueues = true;
437
438 // Clear the skid buffer in case it has any data in it.
439 DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
440 tid, fromCommit->commitInfo[tid].bdelayDoneSeqNum);
441
442 while (!skidBuffer[tid].empty()) {
443#if ISA_HAS_DELAY_SLOT
444 if (skidBuffer[tid].front()->seqNum <=
445 fromCommit->commitInfo[tid].bdelayDoneSeqNum) {
446 DPRINTF(IEW, "[tid:%i]: Cannot remove skidbuffer instructions "
447 "that occur before delay slot [sn:%i].\n",
448 fromCommit->commitInfo[tid].bdelayDoneSeqNum,
449 tid);
450 break;
451 } else {
452 DPRINTF(IEW, "[tid:%i]: Removing instruction [sn:%i] from "
453 "skidBuffer.\n", tid, skidBuffer[tid].front()->seqNum);
454 }
455#endif
456 if (skidBuffer[tid].front()->isLoad() ||
457 skidBuffer[tid].front()->isStore() ) {
458 toRename->iewInfo[tid].dispatchedToLSQ++;
459 }
460
461 toRename->iewInfo[tid].dispatched++;
462
463 skidBuffer[tid].pop();
464 }
465
466 bdelayDoneSeqNum[tid] = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
467
468 emptyRenameInsts(tid);
469}
470
471template<class Impl>
472void
473DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
474{
475 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
476 "[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
477
478 toCommit->squash[tid] = true;
479 toCommit->squashedSeqNum[tid] = inst->seqNum;
480 toCommit->mispredPC[tid] = inst->readPC();
481 toCommit->branchMispredict[tid] = true;
482
483#if ISA_HAS_DELAY_SLOT
484 bool branch_taken = inst->readNextNPC() !=
485 (inst->readNextPC() + sizeof(TheISA::MachInst));
486
487 toCommit->branchTaken[tid] = branch_taken;
488
489 toCommit->condDelaySlotBranch[tid] = inst->isCondDelaySlot();
490
491 if (inst->isCondDelaySlot() && branch_taken) {
492 toCommit->nextPC[tid] = inst->readNextPC();
493 } else {
494 toCommit->nextPC[tid] = inst->readNextNPC();
495 }
496#else
497 toCommit->branchTaken[tid] = inst->readNextPC() !=
498 (inst->readPC() + sizeof(TheISA::MachInst));
499 toCommit->nextPC[tid] = inst->readNextPC();
500#endif
501
502 toCommit->includeSquashInst[tid] = false;
503
504 wroteToTimeBuffer = true;
505}
506
507template<class Impl>
508void
509DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
510{
511 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
512 "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
513
514 toCommit->squash[tid] = true;
515 toCommit->squashedSeqNum[tid] = inst->seqNum;
516 toCommit->nextPC[tid] = inst->readNextPC();
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31// @todo: Fix the instantaneous communication among all the stages within
32// iew. There's a clear delay between issue and execute, yet backwards
33// communication happens simultaneously.
34
35#include <queue>
36
37#include "base/timebuf.hh"
38#include "cpu/o3/fu_pool.hh"
39#include "cpu/o3/iew.hh"
40
41template<class Impl>
42DefaultIEW<Impl>::DefaultIEW(Params *params)
43 : issueToExecQueue(params->backComSize, params->forwardComSize),
44 instQueue(params),
45 ldstQueue(params),
46 fuPool(params->fuPool),
47 commitToIEWDelay(params->commitToIEWDelay),
48 renameToIEWDelay(params->renameToIEWDelay),
49 issueToExecuteDelay(params->issueToExecuteDelay),
50 dispatchWidth(params->dispatchWidth),
51 issueWidth(params->issueWidth),
52 wbOutstanding(0),
53 wbWidth(params->wbWidth),
54 numThreads(params->numberOfThreads),
55 switchedOut(false)
56{
57 _status = Active;
58 exeStatus = Running;
59 wbStatus = Idle;
60
61 // Setup wire to read instructions coming from issue.
62 fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
63
64 // Instruction queue needs the queue between issue and execute.
65 instQueue.setIssueToExecuteQueue(&issueToExecQueue);
66
67 instQueue.setIEW(this);
68 ldstQueue.setIEW(this);
69
70 for (int i=0; i < numThreads; i++) {
71 dispatchStatus[i] = Running;
72 stalls[i].commit = false;
73 fetchRedirect[i] = false;
74 bdelayDoneSeqNum[i] = 0;
75 }
76
77 wbMax = wbWidth * params->wbDepth;
78
79 updateLSQNextCycle = false;
80
81 ableToIssue = true;
82
83 skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
84}
85
86template <class Impl>
87std::string
88DefaultIEW<Impl>::name() const
89{
90 return cpu->name() + ".iew";
91}
92
93template <class Impl>
94void
95DefaultIEW<Impl>::regStats()
96{
97 using namespace Stats;
98
99 instQueue.regStats();
100 ldstQueue.regStats();
101
102 iewIdleCycles
103 .name(name() + ".iewIdleCycles")
104 .desc("Number of cycles IEW is idle");
105
106 iewSquashCycles
107 .name(name() + ".iewSquashCycles")
108 .desc("Number of cycles IEW is squashing");
109
110 iewBlockCycles
111 .name(name() + ".iewBlockCycles")
112 .desc("Number of cycles IEW is blocking");
113
114 iewUnblockCycles
115 .name(name() + ".iewUnblockCycles")
116 .desc("Number of cycles IEW is unblocking");
117
118 iewDispatchedInsts
119 .name(name() + ".iewDispatchedInsts")
120 .desc("Number of instructions dispatched to IQ");
121
122 iewDispSquashedInsts
123 .name(name() + ".iewDispSquashedInsts")
124 .desc("Number of squashed instructions skipped by dispatch");
125
126 iewDispLoadInsts
127 .name(name() + ".iewDispLoadInsts")
128 .desc("Number of dispatched load instructions");
129
130 iewDispStoreInsts
131 .name(name() + ".iewDispStoreInsts")
132 .desc("Number of dispatched store instructions");
133
134 iewDispNonSpecInsts
135 .name(name() + ".iewDispNonSpecInsts")
136 .desc("Number of dispatched non-speculative instructions");
137
138 iewIQFullEvents
139 .name(name() + ".iewIQFullEvents")
140 .desc("Number of times the IQ has become full, causing a stall");
141
142 iewLSQFullEvents
143 .name(name() + ".iewLSQFullEvents")
144 .desc("Number of times the LSQ has become full, causing a stall");
145
146 memOrderViolationEvents
147 .name(name() + ".memOrderViolationEvents")
148 .desc("Number of memory order violations");
149
150 predictedTakenIncorrect
151 .name(name() + ".predictedTakenIncorrect")
152 .desc("Number of branches that were predicted taken incorrectly");
153
154 predictedNotTakenIncorrect
155 .name(name() + ".predictedNotTakenIncorrect")
156 .desc("Number of branches that were predicted not taken incorrectly");
157
158 branchMispredicts
159 .name(name() + ".branchMispredicts")
160 .desc("Number of branch mispredicts detected at execute");
161
162 branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
163
164 iewExecutedInsts
165 .name(name() + ".iewExecutedInsts")
166 .desc("Number of executed instructions");
167
168 iewExecLoadInsts
169 .init(cpu->number_of_threads)
170 .name(name() + ".iewExecLoadInsts")
171 .desc("Number of load instructions executed")
172 .flags(total);
173
174 iewExecSquashedInsts
175 .name(name() + ".iewExecSquashedInsts")
176 .desc("Number of squashed instructions skipped in execute");
177
178 iewExecutedSwp
179 .init(cpu->number_of_threads)
180 .name(name() + ".EXEC:swp")
181 .desc("number of swp insts executed")
182 .flags(total);
183
184 iewExecutedNop
185 .init(cpu->number_of_threads)
186 .name(name() + ".EXEC:nop")
187 .desc("number of nop insts executed")
188 .flags(total);
189
190 iewExecutedRefs
191 .init(cpu->number_of_threads)
192 .name(name() + ".EXEC:refs")
193 .desc("number of memory reference insts executed")
194 .flags(total);
195
196 iewExecutedBranches
197 .init(cpu->number_of_threads)
198 .name(name() + ".EXEC:branches")
199 .desc("Number of branches executed")
200 .flags(total);
201
202 iewExecStoreInsts
203 .name(name() + ".EXEC:stores")
204 .desc("Number of stores executed")
205 .flags(total);
206 iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
207
208 iewExecRate
209 .name(name() + ".EXEC:rate")
210 .desc("Inst execution rate")
211 .flags(total);
212
213 iewExecRate = iewExecutedInsts / cpu->numCycles;
214
215 iewInstsToCommit
216 .init(cpu->number_of_threads)
217 .name(name() + ".WB:sent")
218 .desc("cumulative count of insts sent to commit")
219 .flags(total);
220
221 writebackCount
222 .init(cpu->number_of_threads)
223 .name(name() + ".WB:count")
224 .desc("cumulative count of insts written-back")
225 .flags(total);
226
227 producerInst
228 .init(cpu->number_of_threads)
229 .name(name() + ".WB:producers")
230 .desc("num instructions producing a value")
231 .flags(total);
232
233 consumerInst
234 .init(cpu->number_of_threads)
235 .name(name() + ".WB:consumers")
236 .desc("num instructions consuming a value")
237 .flags(total);
238
239 wbPenalized
240 .init(cpu->number_of_threads)
241 .name(name() + ".WB:penalized")
242 .desc("number of instrctions required to write to 'other' IQ")
243 .flags(total);
244
245 wbPenalizedRate
246 .name(name() + ".WB:penalized_rate")
247 .desc ("fraction of instructions written-back that wrote to 'other' IQ")
248 .flags(total);
249
250 wbPenalizedRate = wbPenalized / writebackCount;
251
252 wbFanout
253 .name(name() + ".WB:fanout")
254 .desc("average fanout of values written-back")
255 .flags(total);
256
257 wbFanout = producerInst / consumerInst;
258
259 wbRate
260 .name(name() + ".WB:rate")
261 .desc("insts written-back per cycle")
262 .flags(total);
263 wbRate = writebackCount / cpu->numCycles;
264}
265
266template<class Impl>
267void
268DefaultIEW<Impl>::initStage()
269{
270 for (int tid=0; tid < numThreads; tid++) {
271 toRename->iewInfo[tid].usedIQ = true;
272 toRename->iewInfo[tid].freeIQEntries =
273 instQueue.numFreeEntries(tid);
274
275 toRename->iewInfo[tid].usedLSQ = true;
276 toRename->iewInfo[tid].freeLSQEntries =
277 ldstQueue.numFreeEntries(tid);
278 }
279}
280
281template<class Impl>
282void
283DefaultIEW<Impl>::setCPU(O3CPU *cpu_ptr)
284{
285 DPRINTF(IEW, "Setting CPU pointer.\n");
286 cpu = cpu_ptr;
287
288 instQueue.setCPU(cpu_ptr);
289 ldstQueue.setCPU(cpu_ptr);
290
291 cpu->activateStage(O3CPU::IEWIdx);
292}
293
294template<class Impl>
295void
296DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
297{
298 DPRINTF(IEW, "Setting time buffer pointer.\n");
299 timeBuffer = tb_ptr;
300
301 // Setup wire to read information from time buffer, from commit.
302 fromCommit = timeBuffer->getWire(-commitToIEWDelay);
303
304 // Setup wire to write information back to previous stages.
305 toRename = timeBuffer->getWire(0);
306
307 toFetch = timeBuffer->getWire(0);
308
309 // Instruction queue also needs main time buffer.
310 instQueue.setTimeBuffer(tb_ptr);
311}
312
313template<class Impl>
314void
315DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
316{
317 DPRINTF(IEW, "Setting rename queue pointer.\n");
318 renameQueue = rq_ptr;
319
320 // Setup wire to read information from rename queue.
321 fromRename = renameQueue->getWire(-renameToIEWDelay);
322}
323
324template<class Impl>
325void
326DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
327{
328 DPRINTF(IEW, "Setting IEW queue pointer.\n");
329 iewQueue = iq_ptr;
330
331 // Setup wire to write instructions to commit.
332 toCommit = iewQueue->getWire(0);
333}
334
335template<class Impl>
336void
337DefaultIEW<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
338{
339 DPRINTF(IEW, "Setting active threads list pointer.\n");
340 activeThreads = at_ptr;
341
342 ldstQueue.setActiveThreads(at_ptr);
343 instQueue.setActiveThreads(at_ptr);
344}
345
346template<class Impl>
347void
348DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
349{
350 DPRINTF(IEW, "Setting scoreboard pointer.\n");
351 scoreboard = sb_ptr;
352}
353
354template <class Impl>
355bool
356DefaultIEW<Impl>::drain()
357{
358 // IEW is ready to drain at any time.
359 cpu->signalDrained();
360 return true;
361}
362
363template <class Impl>
364void
365DefaultIEW<Impl>::resume()
366{
367}
368
369template <class Impl>
370void
371DefaultIEW<Impl>::switchOut()
372{
373 // Clear any state.
374 switchedOut = true;
375 assert(insts[0].empty());
376 assert(skidBuffer[0].empty());
377
378 instQueue.switchOut();
379 ldstQueue.switchOut();
380 fuPool->switchOut();
381
382 for (int i = 0; i < numThreads; i++) {
383 while (!insts[i].empty())
384 insts[i].pop();
385 while (!skidBuffer[i].empty())
386 skidBuffer[i].pop();
387 }
388}
389
390template <class Impl>
391void
392DefaultIEW<Impl>::takeOverFrom()
393{
394 // Reset all state.
395 _status = Active;
396 exeStatus = Running;
397 wbStatus = Idle;
398 switchedOut = false;
399
400 instQueue.takeOverFrom();
401 ldstQueue.takeOverFrom();
402 fuPool->takeOverFrom();
403
404 initStage();
405 cpu->activityThisCycle();
406
407 for (int i=0; i < numThreads; i++) {
408 dispatchStatus[i] = Running;
409 stalls[i].commit = false;
410 fetchRedirect[i] = false;
411 }
412
413 updateLSQNextCycle = false;
414
415 for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
416 issueToExecQueue.advance();
417 }
418}
419
420template<class Impl>
421void
422DefaultIEW<Impl>::squash(unsigned tid)
423{
424 DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
425 tid);
426
427 // Tell the IQ to start squashing.
428 instQueue.squash(tid);
429
430 // Tell the LDSTQ to start squashing.
431#if ISA_HAS_DELAY_SLOT
432 ldstQueue.squash(fromCommit->commitInfo[tid].bdelayDoneSeqNum, tid);
433#else
434 ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
435#endif
436 updatedQueues = true;
437
438 // Clear the skid buffer in case it has any data in it.
439 DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
440 tid, fromCommit->commitInfo[tid].bdelayDoneSeqNum);
441
442 while (!skidBuffer[tid].empty()) {
443#if ISA_HAS_DELAY_SLOT
444 if (skidBuffer[tid].front()->seqNum <=
445 fromCommit->commitInfo[tid].bdelayDoneSeqNum) {
446 DPRINTF(IEW, "[tid:%i]: Cannot remove skidbuffer instructions "
447 "that occur before delay slot [sn:%i].\n",
448 fromCommit->commitInfo[tid].bdelayDoneSeqNum,
449 tid);
450 break;
451 } else {
452 DPRINTF(IEW, "[tid:%i]: Removing instruction [sn:%i] from "
453 "skidBuffer.\n", tid, skidBuffer[tid].front()->seqNum);
454 }
455#endif
456 if (skidBuffer[tid].front()->isLoad() ||
457 skidBuffer[tid].front()->isStore() ) {
458 toRename->iewInfo[tid].dispatchedToLSQ++;
459 }
460
461 toRename->iewInfo[tid].dispatched++;
462
463 skidBuffer[tid].pop();
464 }
465
466 bdelayDoneSeqNum[tid] = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
467
468 emptyRenameInsts(tid);
469}
470
471template<class Impl>
472void
473DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
474{
475 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
476 "[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
477
478 toCommit->squash[tid] = true;
479 toCommit->squashedSeqNum[tid] = inst->seqNum;
480 toCommit->mispredPC[tid] = inst->readPC();
481 toCommit->branchMispredict[tid] = true;
482
483#if ISA_HAS_DELAY_SLOT
484 bool branch_taken = inst->readNextNPC() !=
485 (inst->readNextPC() + sizeof(TheISA::MachInst));
486
487 toCommit->branchTaken[tid] = branch_taken;
488
489 toCommit->condDelaySlotBranch[tid] = inst->isCondDelaySlot();
490
491 if (inst->isCondDelaySlot() && branch_taken) {
492 toCommit->nextPC[tid] = inst->readNextPC();
493 } else {
494 toCommit->nextPC[tid] = inst->readNextNPC();
495 }
496#else
497 toCommit->branchTaken[tid] = inst->readNextPC() !=
498 (inst->readPC() + sizeof(TheISA::MachInst));
499 toCommit->nextPC[tid] = inst->readNextPC();
500#endif
501
502 toCommit->includeSquashInst[tid] = false;
503
504 wroteToTimeBuffer = true;
505}
506
507template<class Impl>
508void
509DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
510{
511 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
512 "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
513
514 toCommit->squash[tid] = true;
515 toCommit->squashedSeqNum[tid] = inst->seqNum;
516 toCommit->nextPC[tid] = inst->readNextPC();
517 toCommit->branchMispredict[tid] = false;
517
518 toCommit->includeSquashInst[tid] = false;
519
520 wroteToTimeBuffer = true;
521}
522
523template<class Impl>
524void
525DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
526{
527 DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
528 "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
529
530 toCommit->squash[tid] = true;
531 toCommit->squashedSeqNum[tid] = inst->seqNum;
532 toCommit->nextPC[tid] = inst->readPC();
518
519 toCommit->includeSquashInst[tid] = false;
520
521 wroteToTimeBuffer = true;
522}
523
524template<class Impl>
525void
526DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
527{
528 DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
529 "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
530
531 toCommit->squash[tid] = true;
532 toCommit->squashedSeqNum[tid] = inst->seqNum;
533 toCommit->nextPC[tid] = inst->readPC();
534 toCommit->branchMispredict[tid] = false;
533
534 // Must include the broadcasted SN in the squash.
535 toCommit->includeSquashInst[tid] = true;
536
537 ldstQueue.setLoadBlockedHandled(tid);
538
539 wroteToTimeBuffer = true;
540}
541
542template<class Impl>
543void
544DefaultIEW<Impl>::block(unsigned tid)
545{
546 DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
547
548 if (dispatchStatus[tid] != Blocked &&
549 dispatchStatus[tid] != Unblocking) {
550 toRename->iewBlock[tid] = true;
551 wroteToTimeBuffer = true;
552 }
553
554 // Add the current inputs to the skid buffer so they can be
555 // reprocessed when this stage unblocks.
556 skidInsert(tid);
557
558 dispatchStatus[tid] = Blocked;
559}
560
561template<class Impl>
562void
563DefaultIEW<Impl>::unblock(unsigned tid)
564{
565 DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
566 "buffer %u.\n",tid, tid);
567
568 // If the skid bufffer is empty, signal back to previous stages to unblock.
569 // Also switch status to running.
570 if (skidBuffer[tid].empty()) {
571 toRename->iewUnblock[tid] = true;
572 wroteToTimeBuffer = true;
573 DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
574 dispatchStatus[tid] = Running;
575 }
576}
577
578template<class Impl>
579void
580DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
581{
582 instQueue.wakeDependents(inst);
583}
584
585template<class Impl>
586void
587DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
588{
589 instQueue.rescheduleMemInst(inst);
590}
591
592template<class Impl>
593void
594DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
595{
596 instQueue.replayMemInst(inst);
597}
598
599template<class Impl>
600void
601DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
602{
603 // This function should not be called after writebackInsts in a
604 // single cycle. That will cause problems with an instruction
605 // being added to the queue to commit without being processed by
606 // writebackInsts prior to being sent to commit.
607
608 // First check the time slot that this instruction will write
609 // to. If there are free write ports at the time, then go ahead
610 // and write the instruction to that time. If there are not,
611 // keep looking back to see where's the first time there's a
612 // free slot.
613 while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
614 ++wbNumInst;
615 if (wbNumInst == wbWidth) {
616 ++wbCycle;
617 wbNumInst = 0;
618 }
619
620 assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
621 }
622
623 DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
624 wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
625 // Add finished instruction to queue to commit.
626 (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
627 (*iewQueue)[wbCycle].size++;
628}
629
630template <class Impl>
631unsigned
632DefaultIEW<Impl>::validInstsFromRename()
633{
634 unsigned inst_count = 0;
635
636 for (int i=0; i<fromRename->size; i++) {
637 if (!fromRename->insts[i]->isSquashed())
638 inst_count++;
639 }
640
641 return inst_count;
642}
643
644template<class Impl>
645void
646DefaultIEW<Impl>::skidInsert(unsigned tid)
647{
648 DynInstPtr inst = NULL;
649
650 while (!insts[tid].empty()) {
651 inst = insts[tid].front();
652
653 insts[tid].pop();
654
655 DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
656 "dispatch skidBuffer %i\n",tid, inst->seqNum,
657 inst->readPC(),tid);
658
659 skidBuffer[tid].push(inst);
660 }
661
662 assert(skidBuffer[tid].size() <= skidBufferMax &&
663 "Skidbuffer Exceeded Max Size");
664}
665
666template<class Impl>
667int
668DefaultIEW<Impl>::skidCount()
669{
670 int max=0;
671
672 std::list<unsigned>::iterator threads = (*activeThreads).begin();
673
674 while (threads != (*activeThreads).end()) {
675 unsigned thread_count = skidBuffer[*threads++].size();
676 if (max < thread_count)
677 max = thread_count;
678 }
679
680 return max;
681}
682
683template<class Impl>
684bool
685DefaultIEW<Impl>::skidsEmpty()
686{
687 std::list<unsigned>::iterator threads = (*activeThreads).begin();
688
689 while (threads != (*activeThreads).end()) {
690 if (!skidBuffer[*threads++].empty())
691 return false;
692 }
693
694 return true;
695}
696
697template <class Impl>
698void
699DefaultIEW<Impl>::updateStatus()
700{
701 bool any_unblocking = false;
702
703 std::list<unsigned>::iterator threads = (*activeThreads).begin();
704
705 threads = (*activeThreads).begin();
706
707 while (threads != (*activeThreads).end()) {
708 unsigned tid = *threads++;
709
710 if (dispatchStatus[tid] == Unblocking) {
711 any_unblocking = true;
712 break;
713 }
714 }
715
716 // If there are no ready instructions waiting to be scheduled by the IQ,
717 // and there's no stores waiting to write back, and dispatch is not
718 // unblocking, then there is no internal activity for the IEW stage.
719 if (_status == Active && !instQueue.hasReadyInsts() &&
720 !ldstQueue.willWB() && !any_unblocking) {
721 DPRINTF(IEW, "IEW switching to idle\n");
722
723 deactivateStage();
724
725 _status = Inactive;
726 } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
727 ldstQueue.willWB() ||
728 any_unblocking)) {
729 // Otherwise there is internal activity. Set to active.
730 DPRINTF(IEW, "IEW switching to active\n");
731
732 activateStage();
733
734 _status = Active;
735 }
736}
737
738template <class Impl>
739void
740DefaultIEW<Impl>::resetEntries()
741{
742 instQueue.resetEntries();
743 ldstQueue.resetEntries();
744}
745
746template <class Impl>
747void
748DefaultIEW<Impl>::readStallSignals(unsigned tid)
749{
750 if (fromCommit->commitBlock[tid]) {
751 stalls[tid].commit = true;
752 }
753
754 if (fromCommit->commitUnblock[tid]) {
755 assert(stalls[tid].commit);
756 stalls[tid].commit = false;
757 }
758}
759
760template <class Impl>
761bool
762DefaultIEW<Impl>::checkStall(unsigned tid)
763{
764 bool ret_val(false);
765
766 if (stalls[tid].commit) {
767 DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
768 ret_val = true;
769 } else if (instQueue.isFull(tid)) {
770 DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid);
771 ret_val = true;
772 } else if (ldstQueue.isFull(tid)) {
773 DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
774
775 if (ldstQueue.numLoads(tid) > 0 ) {
776
777 DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
778 tid,ldstQueue.getLoadHeadSeqNum(tid));
779 }
780
781 if (ldstQueue.numStores(tid) > 0) {
782
783 DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
784 tid,ldstQueue.getStoreHeadSeqNum(tid));
785 }
786
787 ret_val = true;
788 } else if (ldstQueue.isStalled(tid)) {
789 DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
790 ret_val = true;
791 }
792
793 return ret_val;
794}
795
796template <class Impl>
797void
798DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
799{
800 // Check if there's a squash signal, squash if there is
801 // Check stall signals, block if there is.
802 // If status was Blocked
803 // if so then go to unblocking
804 // If status was Squashing
805 // check if squashing is not high. Switch to running this cycle.
806
807 readStallSignals(tid);
808
809 if (fromCommit->commitInfo[tid].squash) {
810 squash(tid);
811
812 if (dispatchStatus[tid] == Blocked ||
813 dispatchStatus[tid] == Unblocking) {
814 toRename->iewUnblock[tid] = true;
815 wroteToTimeBuffer = true;
816 }
817
818 dispatchStatus[tid] = Squashing;
819
820 fetchRedirect[tid] = false;
821 return;
822 }
823
824 if (fromCommit->commitInfo[tid].robSquashing) {
825 DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
826
827 dispatchStatus[tid] = Squashing;
828
829 emptyRenameInsts(tid);
830 wroteToTimeBuffer = true;
831 return;
832 }
833
834 if (checkStall(tid)) {
835 block(tid);
836 dispatchStatus[tid] = Blocked;
837 return;
838 }
839
840 if (dispatchStatus[tid] == Blocked) {
841 // Status from previous cycle was blocked, but there are no more stall
842 // conditions. Switch over to unblocking.
843 DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
844 tid);
845
846 dispatchStatus[tid] = Unblocking;
847
848 unblock(tid);
849
850 return;
851 }
852
853 if (dispatchStatus[tid] == Squashing) {
854 // Switch status to running if rename isn't being told to block or
855 // squash this cycle.
856 DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
857 tid);
858
859 dispatchStatus[tid] = Running;
860
861 return;
862 }
863}
864
865template <class Impl>
866void
867DefaultIEW<Impl>::sortInsts()
868{
869 int insts_from_rename = fromRename->size;
870#ifdef DEBUG
871#if !ISA_HAS_DELAY_SLOT
872 for (int i = 0; i < numThreads; i++)
873 assert(insts[i].empty());
874#endif
875#endif
876 for (int i = 0; i < insts_from_rename; ++i) {
877 insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
878 }
879}
880
881template <class Impl>
882void
883DefaultIEW<Impl>::emptyRenameInsts(unsigned tid)
884{
885 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions until "
886 "[sn:%i].\n", tid, bdelayDoneSeqNum[tid]);
887
888 while (!insts[tid].empty()) {
889#if ISA_HAS_DELAY_SLOT
890 if (insts[tid].front()->seqNum <= bdelayDoneSeqNum[tid]) {
891 DPRINTF(IEW, "[tid:%i]: Done removing, cannot remove instruction"
892 " that occurs at or before delay slot [sn:%i].\n",
893 tid, bdelayDoneSeqNum[tid]);
894 break;
895 } else {
896 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instruction "
897 "[sn:%i].\n", tid, insts[tid].front()->seqNum);
898 }
899#endif
900
901 if (insts[tid].front()->isLoad() ||
902 insts[tid].front()->isStore() ) {
903 toRename->iewInfo[tid].dispatchedToLSQ++;
904 }
905
906 toRename->iewInfo[tid].dispatched++;
907
908 insts[tid].pop();
909 }
910}
911
912template <class Impl>
913void
914DefaultIEW<Impl>::wakeCPU()
915{
916 cpu->wakeCPU();
917}
918
919template <class Impl>
920void
921DefaultIEW<Impl>::activityThisCycle()
922{
923 DPRINTF(Activity, "Activity this cycle.\n");
924 cpu->activityThisCycle();
925}
926
927template <class Impl>
928inline void
929DefaultIEW<Impl>::activateStage()
930{
931 DPRINTF(Activity, "Activating stage.\n");
932 cpu->activateStage(O3CPU::IEWIdx);
933}
934
935template <class Impl>
936inline void
937DefaultIEW<Impl>::deactivateStage()
938{
939 DPRINTF(Activity, "Deactivating stage.\n");
940 cpu->deactivateStage(O3CPU::IEWIdx);
941}
942
943template<class Impl>
944void
945DefaultIEW<Impl>::dispatch(unsigned tid)
946{
947 // If status is Running or idle,
948 // call dispatchInsts()
949 // If status is Unblocking,
950 // buffer any instructions coming from rename
951 // continue trying to empty skid buffer
952 // check if stall conditions have passed
953
954 if (dispatchStatus[tid] == Blocked) {
955 ++iewBlockCycles;
956
957 } else if (dispatchStatus[tid] == Squashing) {
958 ++iewSquashCycles;
959 }
960
961 // Dispatch should try to dispatch as many instructions as its bandwidth
962 // will allow, as long as it is not currently blocked.
963 if (dispatchStatus[tid] == Running ||
964 dispatchStatus[tid] == Idle) {
965 DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
966 "dispatch.\n", tid);
967
968 dispatchInsts(tid);
969 } else if (dispatchStatus[tid] == Unblocking) {
970 // Make sure that the skid buffer has something in it if the
971 // status is unblocking.
972 assert(!skidsEmpty());
973
974 // If the status was unblocking, then instructions from the skid
975 // buffer were used. Remove those instructions and handle
976 // the rest of unblocking.
977 dispatchInsts(tid);
978
979 ++iewUnblockCycles;
980
981 if (validInstsFromRename() && dispatchedAllInsts) {
982 // Add the current inputs to the skid buffer so they can be
983 // reprocessed when this stage unblocks.
984 skidInsert(tid);
985 }
986
987 unblock(tid);
988 }
989}
990
991template <class Impl>
992void
993DefaultIEW<Impl>::dispatchInsts(unsigned tid)
994{
995 dispatchedAllInsts = true;
996
997 // Obtain instructions from skid buffer if unblocking, or queue from rename
998 // otherwise.
999 std::queue<DynInstPtr> &insts_to_dispatch =
1000 dispatchStatus[tid] == Unblocking ?
1001 skidBuffer[tid] : insts[tid];
1002
1003 int insts_to_add = insts_to_dispatch.size();
1004
1005 DynInstPtr inst;
1006 bool add_to_iq = false;
1007 int dis_num_inst = 0;
1008
1009 // Loop through the instructions, putting them in the instruction
1010 // queue.
1011 for ( ; dis_num_inst < insts_to_add &&
1012 dis_num_inst < dispatchWidth;
1013 ++dis_num_inst)
1014 {
1015 inst = insts_to_dispatch.front();
1016
1017 if (dispatchStatus[tid] == Unblocking) {
1018 DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
1019 "buffer\n", tid);
1020 }
1021
1022 // Make sure there's a valid instruction there.
1023 assert(inst);
1024
1025 DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
1026 "IQ.\n",
1027 tid, inst->readPC(), inst->seqNum, inst->threadNumber);
1028
1029 // Be sure to mark these instructions as ready so that the
1030 // commit stage can go ahead and execute them, and mark
1031 // them as issued so the IQ doesn't reprocess them.
1032
1033 // Check for squashed instructions.
1034 if (inst->isSquashed()) {
1035 DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
1036 "not adding to IQ.\n", tid);
1037
1038 ++iewDispSquashedInsts;
1039
1040 insts_to_dispatch.pop();
1041
1042 //Tell Rename That An Instruction has been processed
1043 if (inst->isLoad() || inst->isStore()) {
1044 toRename->iewInfo[tid].dispatchedToLSQ++;
1045 }
1046 toRename->iewInfo[tid].dispatched++;
1047
1048 continue;
1049 }
1050
1051 // Check for full conditions.
1052 if (instQueue.isFull(tid)) {
1053 DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1054
1055 // Call function to start blocking.
1056 block(tid);
1057
1058 // Set unblock to false. Special case where we are using
1059 // skidbuffer (unblocking) instructions but then we still
1060 // get full in the IQ.
1061 toRename->iewUnblock[tid] = false;
1062
1063 dispatchedAllInsts = false;
1064
1065 ++iewIQFullEvents;
1066 break;
1067 } else if (ldstQueue.isFull(tid)) {
1068 DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1069
1070 // Call function to start blocking.
1071 block(tid);
1072
1073 // Set unblock to false. Special case where we are using
1074 // skidbuffer (unblocking) instructions but then we still
1075 // get full in the IQ.
1076 toRename->iewUnblock[tid] = false;
1077
1078 dispatchedAllInsts = false;
1079
1080 ++iewLSQFullEvents;
1081 break;
1082 }
1083
1084 // Otherwise issue the instruction just fine.
1085 if (inst->isLoad()) {
1086 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1087 "encountered, adding to LSQ.\n", tid);
1088
1089 // Reserve a spot in the load store queue for this
1090 // memory access.
1091 ldstQueue.insertLoad(inst);
1092
1093 ++iewDispLoadInsts;
1094
1095 add_to_iq = true;
1096
1097 toRename->iewInfo[tid].dispatchedToLSQ++;
1098 } else if (inst->isStore()) {
1099 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1100 "encountered, adding to LSQ.\n", tid);
1101
1102 ldstQueue.insertStore(inst);
1103
1104 ++iewDispStoreInsts;
1105
1106 if (inst->isStoreConditional()) {
1107 // Store conditionals need to be set as "canCommit()"
1108 // so that commit can process them when they reach the
1109 // head of commit.
1110 // @todo: This is somewhat specific to Alpha.
1111 inst->setCanCommit();
1112 instQueue.insertNonSpec(inst);
1113 add_to_iq = false;
1114
1115 ++iewDispNonSpecInsts;
1116 } else {
1117 add_to_iq = true;
1118 }
1119
1120 toRename->iewInfo[tid].dispatchedToLSQ++;
1121#if FULL_SYSTEM
1122 } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1123 // Same as non-speculative stores.
1124 inst->setCanCommit();
1125 instQueue.insertBarrier(inst);
1126 add_to_iq = false;
1127#endif
1128 } else if (inst->isNonSpeculative()) {
1129 DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1130 "encountered, skipping.\n", tid);
1131
1132 // Same as non-speculative stores.
1133 inst->setCanCommit();
1134
1135 // Specifically insert it as nonspeculative.
1136 instQueue.insertNonSpec(inst);
1137
1138 ++iewDispNonSpecInsts;
1139
1140 add_to_iq = false;
1141 } else if (inst->isNop()) {
1142 DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1143 "skipping.\n", tid);
1144
1145 inst->setIssued();
1146 inst->setExecuted();
1147 inst->setCanCommit();
1148
1149 instQueue.recordProducer(inst);
1150
1151 iewExecutedNop[tid]++;
1152
1153 add_to_iq = false;
1154 } else if (inst->isExecuted()) {
1155 assert(0 && "Instruction shouldn't be executed.\n");
1156 DPRINTF(IEW, "Issue: Executed branch encountered, "
1157 "skipping.\n");
1158
1159 inst->setIssued();
1160 inst->setCanCommit();
1161
1162 instQueue.recordProducer(inst);
1163
1164 add_to_iq = false;
1165 } else {
1166 add_to_iq = true;
1167 }
1168
1169 // If the instruction queue is not full, then add the
1170 // instruction.
1171 if (add_to_iq) {
1172 instQueue.insert(inst);
1173 }
1174
1175 insts_to_dispatch.pop();
1176
1177 toRename->iewInfo[tid].dispatched++;
1178
1179 ++iewDispatchedInsts;
1180 }
1181
1182 if (!insts_to_dispatch.empty()) {
1183 DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1184 block(tid);
1185 toRename->iewUnblock[tid] = false;
1186 }
1187
1188 if (dispatchStatus[tid] == Idle && dis_num_inst) {
1189 dispatchStatus[tid] = Running;
1190
1191 updatedQueues = true;
1192 }
1193
1194 dis_num_inst = 0;
1195}
1196
1197template <class Impl>
1198void
1199DefaultIEW<Impl>::printAvailableInsts()
1200{
1201 int inst = 0;
1202
1203 std::cout << "Available Instructions: ";
1204
1205 while (fromIssue->insts[inst]) {
1206
1207 if (inst%3==0) std::cout << "\n\t";
1208
1209 std::cout << "PC: " << fromIssue->insts[inst]->readPC()
1210 << " TN: " << fromIssue->insts[inst]->threadNumber
1211 << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1212
1213 inst++;
1214
1215 }
1216
1217 std::cout << "\n";
1218}
1219
1220template <class Impl>
1221void
1222DefaultIEW<Impl>::executeInsts()
1223{
1224 wbNumInst = 0;
1225 wbCycle = 0;
1226
1227 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1228
1229 while (threads != (*activeThreads).end()) {
1230 unsigned tid = *threads++;
1231 fetchRedirect[tid] = false;
1232 }
1233
1234 // Uncomment this if you want to see all available instructions.
1235// printAvailableInsts();
1236
1237 // Execute/writeback any instructions that are available.
1238 int insts_to_execute = fromIssue->size;
1239 int inst_num = 0;
1240 for (; inst_num < insts_to_execute;
1241 ++inst_num) {
1242
1243 DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1244
1245 DynInstPtr inst = instQueue.getInstToExecute();
1246
1247 DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
1248 inst->readPC(), inst->threadNumber,inst->seqNum);
1249
1250 // Check if the instruction is squashed; if so then skip it
1251 if (inst->isSquashed()) {
1252 DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1253
1254 // Consider this instruction executed so that commit can go
1255 // ahead and retire the instruction.
1256 inst->setExecuted();
1257
1258 // Not sure if I should set this here or just let commit try to
1259 // commit any squashed instructions. I like the latter a bit more.
1260 inst->setCanCommit();
1261
1262 ++iewExecSquashedInsts;
1263
1264 decrWb(inst->seqNum);
1265 continue;
1266 }
1267
1268 Fault fault = NoFault;
1269
1270 // Execute instruction.
1271 // Note that if the instruction faults, it will be handled
1272 // at the commit stage.
1273 if (inst->isMemRef() &&
1274 (!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
1275 DPRINTF(IEW, "Execute: Calculating address for memory "
1276 "reference.\n");
1277
1278 // Tell the LDSTQ to execute this instruction (if it is a load).
1279 if (inst->isLoad()) {
1280 // Loads will mark themselves as executed, and their writeback
1281 // event adds the instruction to the queue to commit
1282 fault = ldstQueue.executeLoad(inst);
1283 } else if (inst->isStore()) {
1284 fault = ldstQueue.executeStore(inst);
1285
1286 // If the store had a fault then it may not have a mem req
1287 if (!inst->isStoreConditional() && fault == NoFault) {
1288 inst->setExecuted();
1289
1290 instToCommit(inst);
1291 } else if (fault != NoFault) {
1292 // If the instruction faulted, then we need to send it along to commit
1293 // without the instruction completing.
535
536 // Must include the broadcasted SN in the squash.
537 toCommit->includeSquashInst[tid] = true;
538
539 ldstQueue.setLoadBlockedHandled(tid);
540
541 wroteToTimeBuffer = true;
542}
543
544template<class Impl>
545void
546DefaultIEW<Impl>::block(unsigned tid)
547{
548 DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
549
550 if (dispatchStatus[tid] != Blocked &&
551 dispatchStatus[tid] != Unblocking) {
552 toRename->iewBlock[tid] = true;
553 wroteToTimeBuffer = true;
554 }
555
556 // Add the current inputs to the skid buffer so they can be
557 // reprocessed when this stage unblocks.
558 skidInsert(tid);
559
560 dispatchStatus[tid] = Blocked;
561}
562
563template<class Impl>
564void
565DefaultIEW<Impl>::unblock(unsigned tid)
566{
567 DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
568 "buffer %u.\n",tid, tid);
569
570 // If the skid bufffer is empty, signal back to previous stages to unblock.
571 // Also switch status to running.
572 if (skidBuffer[tid].empty()) {
573 toRename->iewUnblock[tid] = true;
574 wroteToTimeBuffer = true;
575 DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
576 dispatchStatus[tid] = Running;
577 }
578}
579
580template<class Impl>
581void
582DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
583{
584 instQueue.wakeDependents(inst);
585}
586
587template<class Impl>
588void
589DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
590{
591 instQueue.rescheduleMemInst(inst);
592}
593
594template<class Impl>
595void
596DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
597{
598 instQueue.replayMemInst(inst);
599}
600
601template<class Impl>
602void
603DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
604{
605 // This function should not be called after writebackInsts in a
606 // single cycle. That will cause problems with an instruction
607 // being added to the queue to commit without being processed by
608 // writebackInsts prior to being sent to commit.
609
610 // First check the time slot that this instruction will write
611 // to. If there are free write ports at the time, then go ahead
612 // and write the instruction to that time. If there are not,
613 // keep looking back to see where's the first time there's a
614 // free slot.
615 while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
616 ++wbNumInst;
617 if (wbNumInst == wbWidth) {
618 ++wbCycle;
619 wbNumInst = 0;
620 }
621
622 assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
623 }
624
625 DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
626 wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
627 // Add finished instruction to queue to commit.
628 (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
629 (*iewQueue)[wbCycle].size++;
630}
631
632template <class Impl>
633unsigned
634DefaultIEW<Impl>::validInstsFromRename()
635{
636 unsigned inst_count = 0;
637
638 for (int i=0; i<fromRename->size; i++) {
639 if (!fromRename->insts[i]->isSquashed())
640 inst_count++;
641 }
642
643 return inst_count;
644}
645
646template<class Impl>
647void
648DefaultIEW<Impl>::skidInsert(unsigned tid)
649{
650 DynInstPtr inst = NULL;
651
652 while (!insts[tid].empty()) {
653 inst = insts[tid].front();
654
655 insts[tid].pop();
656
657 DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
658 "dispatch skidBuffer %i\n",tid, inst->seqNum,
659 inst->readPC(),tid);
660
661 skidBuffer[tid].push(inst);
662 }
663
664 assert(skidBuffer[tid].size() <= skidBufferMax &&
665 "Skidbuffer Exceeded Max Size");
666}
667
668template<class Impl>
669int
670DefaultIEW<Impl>::skidCount()
671{
672 int max=0;
673
674 std::list<unsigned>::iterator threads = (*activeThreads).begin();
675
676 while (threads != (*activeThreads).end()) {
677 unsigned thread_count = skidBuffer[*threads++].size();
678 if (max < thread_count)
679 max = thread_count;
680 }
681
682 return max;
683}
684
685template<class Impl>
686bool
687DefaultIEW<Impl>::skidsEmpty()
688{
689 std::list<unsigned>::iterator threads = (*activeThreads).begin();
690
691 while (threads != (*activeThreads).end()) {
692 if (!skidBuffer[*threads++].empty())
693 return false;
694 }
695
696 return true;
697}
698
699template <class Impl>
700void
701DefaultIEW<Impl>::updateStatus()
702{
703 bool any_unblocking = false;
704
705 std::list<unsigned>::iterator threads = (*activeThreads).begin();
706
707 threads = (*activeThreads).begin();
708
709 while (threads != (*activeThreads).end()) {
710 unsigned tid = *threads++;
711
712 if (dispatchStatus[tid] == Unblocking) {
713 any_unblocking = true;
714 break;
715 }
716 }
717
718 // If there are no ready instructions waiting to be scheduled by the IQ,
719 // and there's no stores waiting to write back, and dispatch is not
720 // unblocking, then there is no internal activity for the IEW stage.
721 if (_status == Active && !instQueue.hasReadyInsts() &&
722 !ldstQueue.willWB() && !any_unblocking) {
723 DPRINTF(IEW, "IEW switching to idle\n");
724
725 deactivateStage();
726
727 _status = Inactive;
728 } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
729 ldstQueue.willWB() ||
730 any_unblocking)) {
731 // Otherwise there is internal activity. Set to active.
732 DPRINTF(IEW, "IEW switching to active\n");
733
734 activateStage();
735
736 _status = Active;
737 }
738}
739
740template <class Impl>
741void
742DefaultIEW<Impl>::resetEntries()
743{
744 instQueue.resetEntries();
745 ldstQueue.resetEntries();
746}
747
748template <class Impl>
749void
750DefaultIEW<Impl>::readStallSignals(unsigned tid)
751{
752 if (fromCommit->commitBlock[tid]) {
753 stalls[tid].commit = true;
754 }
755
756 if (fromCommit->commitUnblock[tid]) {
757 assert(stalls[tid].commit);
758 stalls[tid].commit = false;
759 }
760}
761
762template <class Impl>
763bool
764DefaultIEW<Impl>::checkStall(unsigned tid)
765{
766 bool ret_val(false);
767
768 if (stalls[tid].commit) {
769 DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
770 ret_val = true;
771 } else if (instQueue.isFull(tid)) {
772 DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid);
773 ret_val = true;
774 } else if (ldstQueue.isFull(tid)) {
775 DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
776
777 if (ldstQueue.numLoads(tid) > 0 ) {
778
779 DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
780 tid,ldstQueue.getLoadHeadSeqNum(tid));
781 }
782
783 if (ldstQueue.numStores(tid) > 0) {
784
785 DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
786 tid,ldstQueue.getStoreHeadSeqNum(tid));
787 }
788
789 ret_val = true;
790 } else if (ldstQueue.isStalled(tid)) {
791 DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
792 ret_val = true;
793 }
794
795 return ret_val;
796}
797
798template <class Impl>
799void
800DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
801{
802 // Check if there's a squash signal, squash if there is
803 // Check stall signals, block if there is.
804 // If status was Blocked
805 // if so then go to unblocking
806 // If status was Squashing
807 // check if squashing is not high. Switch to running this cycle.
808
809 readStallSignals(tid);
810
811 if (fromCommit->commitInfo[tid].squash) {
812 squash(tid);
813
814 if (dispatchStatus[tid] == Blocked ||
815 dispatchStatus[tid] == Unblocking) {
816 toRename->iewUnblock[tid] = true;
817 wroteToTimeBuffer = true;
818 }
819
820 dispatchStatus[tid] = Squashing;
821
822 fetchRedirect[tid] = false;
823 return;
824 }
825
826 if (fromCommit->commitInfo[tid].robSquashing) {
827 DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
828
829 dispatchStatus[tid] = Squashing;
830
831 emptyRenameInsts(tid);
832 wroteToTimeBuffer = true;
833 return;
834 }
835
836 if (checkStall(tid)) {
837 block(tid);
838 dispatchStatus[tid] = Blocked;
839 return;
840 }
841
842 if (dispatchStatus[tid] == Blocked) {
843 // Status from previous cycle was blocked, but there are no more stall
844 // conditions. Switch over to unblocking.
845 DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
846 tid);
847
848 dispatchStatus[tid] = Unblocking;
849
850 unblock(tid);
851
852 return;
853 }
854
855 if (dispatchStatus[tid] == Squashing) {
856 // Switch status to running if rename isn't being told to block or
857 // squash this cycle.
858 DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
859 tid);
860
861 dispatchStatus[tid] = Running;
862
863 return;
864 }
865}
866
867template <class Impl>
868void
869DefaultIEW<Impl>::sortInsts()
870{
871 int insts_from_rename = fromRename->size;
872#ifdef DEBUG
873#if !ISA_HAS_DELAY_SLOT
874 for (int i = 0; i < numThreads; i++)
875 assert(insts[i].empty());
876#endif
877#endif
878 for (int i = 0; i < insts_from_rename; ++i) {
879 insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
880 }
881}
882
883template <class Impl>
884void
885DefaultIEW<Impl>::emptyRenameInsts(unsigned tid)
886{
887 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions until "
888 "[sn:%i].\n", tid, bdelayDoneSeqNum[tid]);
889
890 while (!insts[tid].empty()) {
891#if ISA_HAS_DELAY_SLOT
892 if (insts[tid].front()->seqNum <= bdelayDoneSeqNum[tid]) {
893 DPRINTF(IEW, "[tid:%i]: Done removing, cannot remove instruction"
894 " that occurs at or before delay slot [sn:%i].\n",
895 tid, bdelayDoneSeqNum[tid]);
896 break;
897 } else {
898 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instruction "
899 "[sn:%i].\n", tid, insts[tid].front()->seqNum);
900 }
901#endif
902
903 if (insts[tid].front()->isLoad() ||
904 insts[tid].front()->isStore() ) {
905 toRename->iewInfo[tid].dispatchedToLSQ++;
906 }
907
908 toRename->iewInfo[tid].dispatched++;
909
910 insts[tid].pop();
911 }
912}
913
914template <class Impl>
915void
916DefaultIEW<Impl>::wakeCPU()
917{
918 cpu->wakeCPU();
919}
920
921template <class Impl>
922void
923DefaultIEW<Impl>::activityThisCycle()
924{
925 DPRINTF(Activity, "Activity this cycle.\n");
926 cpu->activityThisCycle();
927}
928
929template <class Impl>
930inline void
931DefaultIEW<Impl>::activateStage()
932{
933 DPRINTF(Activity, "Activating stage.\n");
934 cpu->activateStage(O3CPU::IEWIdx);
935}
936
937template <class Impl>
938inline void
939DefaultIEW<Impl>::deactivateStage()
940{
941 DPRINTF(Activity, "Deactivating stage.\n");
942 cpu->deactivateStage(O3CPU::IEWIdx);
943}
944
945template<class Impl>
946void
947DefaultIEW<Impl>::dispatch(unsigned tid)
948{
949 // If status is Running or idle,
950 // call dispatchInsts()
951 // If status is Unblocking,
952 // buffer any instructions coming from rename
953 // continue trying to empty skid buffer
954 // check if stall conditions have passed
955
956 if (dispatchStatus[tid] == Blocked) {
957 ++iewBlockCycles;
958
959 } else if (dispatchStatus[tid] == Squashing) {
960 ++iewSquashCycles;
961 }
962
963 // Dispatch should try to dispatch as many instructions as its bandwidth
964 // will allow, as long as it is not currently blocked.
965 if (dispatchStatus[tid] == Running ||
966 dispatchStatus[tid] == Idle) {
967 DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
968 "dispatch.\n", tid);
969
970 dispatchInsts(tid);
971 } else if (dispatchStatus[tid] == Unblocking) {
972 // Make sure that the skid buffer has something in it if the
973 // status is unblocking.
974 assert(!skidsEmpty());
975
976 // If the status was unblocking, then instructions from the skid
977 // buffer were used. Remove those instructions and handle
978 // the rest of unblocking.
979 dispatchInsts(tid);
980
981 ++iewUnblockCycles;
982
983 if (validInstsFromRename() && dispatchedAllInsts) {
984 // Add the current inputs to the skid buffer so they can be
985 // reprocessed when this stage unblocks.
986 skidInsert(tid);
987 }
988
989 unblock(tid);
990 }
991}
992
993template <class Impl>
994void
995DefaultIEW<Impl>::dispatchInsts(unsigned tid)
996{
997 dispatchedAllInsts = true;
998
999 // Obtain instructions from skid buffer if unblocking, or queue from rename
1000 // otherwise.
1001 std::queue<DynInstPtr> &insts_to_dispatch =
1002 dispatchStatus[tid] == Unblocking ?
1003 skidBuffer[tid] : insts[tid];
1004
1005 int insts_to_add = insts_to_dispatch.size();
1006
1007 DynInstPtr inst;
1008 bool add_to_iq = false;
1009 int dis_num_inst = 0;
1010
1011 // Loop through the instructions, putting them in the instruction
1012 // queue.
1013 for ( ; dis_num_inst < insts_to_add &&
1014 dis_num_inst < dispatchWidth;
1015 ++dis_num_inst)
1016 {
1017 inst = insts_to_dispatch.front();
1018
1019 if (dispatchStatus[tid] == Unblocking) {
1020 DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
1021 "buffer\n", tid);
1022 }
1023
1024 // Make sure there's a valid instruction there.
1025 assert(inst);
1026
1027 DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
1028 "IQ.\n",
1029 tid, inst->readPC(), inst->seqNum, inst->threadNumber);
1030
1031 // Be sure to mark these instructions as ready so that the
1032 // commit stage can go ahead and execute them, and mark
1033 // them as issued so the IQ doesn't reprocess them.
1034
1035 // Check for squashed instructions.
1036 if (inst->isSquashed()) {
1037 DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
1038 "not adding to IQ.\n", tid);
1039
1040 ++iewDispSquashedInsts;
1041
1042 insts_to_dispatch.pop();
1043
1044 //Tell Rename That An Instruction has been processed
1045 if (inst->isLoad() || inst->isStore()) {
1046 toRename->iewInfo[tid].dispatchedToLSQ++;
1047 }
1048 toRename->iewInfo[tid].dispatched++;
1049
1050 continue;
1051 }
1052
1053 // Check for full conditions.
1054 if (instQueue.isFull(tid)) {
1055 DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1056
1057 // Call function to start blocking.
1058 block(tid);
1059
1060 // Set unblock to false. Special case where we are using
1061 // skidbuffer (unblocking) instructions but then we still
1062 // get full in the IQ.
1063 toRename->iewUnblock[tid] = false;
1064
1065 dispatchedAllInsts = false;
1066
1067 ++iewIQFullEvents;
1068 break;
1069 } else if (ldstQueue.isFull(tid)) {
1070 DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1071
1072 // Call function to start blocking.
1073 block(tid);
1074
1075 // Set unblock to false. Special case where we are using
1076 // skidbuffer (unblocking) instructions but then we still
1077 // get full in the IQ.
1078 toRename->iewUnblock[tid] = false;
1079
1080 dispatchedAllInsts = false;
1081
1082 ++iewLSQFullEvents;
1083 break;
1084 }
1085
1086 // Otherwise issue the instruction just fine.
1087 if (inst->isLoad()) {
1088 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1089 "encountered, adding to LSQ.\n", tid);
1090
1091 // Reserve a spot in the load store queue for this
1092 // memory access.
1093 ldstQueue.insertLoad(inst);
1094
1095 ++iewDispLoadInsts;
1096
1097 add_to_iq = true;
1098
1099 toRename->iewInfo[tid].dispatchedToLSQ++;
1100 } else if (inst->isStore()) {
1101 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1102 "encountered, adding to LSQ.\n", tid);
1103
1104 ldstQueue.insertStore(inst);
1105
1106 ++iewDispStoreInsts;
1107
1108 if (inst->isStoreConditional()) {
1109 // Store conditionals need to be set as "canCommit()"
1110 // so that commit can process them when they reach the
1111 // head of commit.
1112 // @todo: This is somewhat specific to Alpha.
1113 inst->setCanCommit();
1114 instQueue.insertNonSpec(inst);
1115 add_to_iq = false;
1116
1117 ++iewDispNonSpecInsts;
1118 } else {
1119 add_to_iq = true;
1120 }
1121
1122 toRename->iewInfo[tid].dispatchedToLSQ++;
1123#if FULL_SYSTEM
1124 } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1125 // Same as non-speculative stores.
1126 inst->setCanCommit();
1127 instQueue.insertBarrier(inst);
1128 add_to_iq = false;
1129#endif
1130 } else if (inst->isNonSpeculative()) {
1131 DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1132 "encountered, skipping.\n", tid);
1133
1134 // Same as non-speculative stores.
1135 inst->setCanCommit();
1136
1137 // Specifically insert it as nonspeculative.
1138 instQueue.insertNonSpec(inst);
1139
1140 ++iewDispNonSpecInsts;
1141
1142 add_to_iq = false;
1143 } else if (inst->isNop()) {
1144 DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1145 "skipping.\n", tid);
1146
1147 inst->setIssued();
1148 inst->setExecuted();
1149 inst->setCanCommit();
1150
1151 instQueue.recordProducer(inst);
1152
1153 iewExecutedNop[tid]++;
1154
1155 add_to_iq = false;
1156 } else if (inst->isExecuted()) {
1157 assert(0 && "Instruction shouldn't be executed.\n");
1158 DPRINTF(IEW, "Issue: Executed branch encountered, "
1159 "skipping.\n");
1160
1161 inst->setIssued();
1162 inst->setCanCommit();
1163
1164 instQueue.recordProducer(inst);
1165
1166 add_to_iq = false;
1167 } else {
1168 add_to_iq = true;
1169 }
1170
1171 // If the instruction queue is not full, then add the
1172 // instruction.
1173 if (add_to_iq) {
1174 instQueue.insert(inst);
1175 }
1176
1177 insts_to_dispatch.pop();
1178
1179 toRename->iewInfo[tid].dispatched++;
1180
1181 ++iewDispatchedInsts;
1182 }
1183
1184 if (!insts_to_dispatch.empty()) {
1185 DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1186 block(tid);
1187 toRename->iewUnblock[tid] = false;
1188 }
1189
1190 if (dispatchStatus[tid] == Idle && dis_num_inst) {
1191 dispatchStatus[tid] = Running;
1192
1193 updatedQueues = true;
1194 }
1195
1196 dis_num_inst = 0;
1197}
1198
1199template <class Impl>
1200void
1201DefaultIEW<Impl>::printAvailableInsts()
1202{
1203 int inst = 0;
1204
1205 std::cout << "Available Instructions: ";
1206
1207 while (fromIssue->insts[inst]) {
1208
1209 if (inst%3==0) std::cout << "\n\t";
1210
1211 std::cout << "PC: " << fromIssue->insts[inst]->readPC()
1212 << " TN: " << fromIssue->insts[inst]->threadNumber
1213 << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1214
1215 inst++;
1216
1217 }
1218
1219 std::cout << "\n";
1220}
1221
1222template <class Impl>
1223void
1224DefaultIEW<Impl>::executeInsts()
1225{
1226 wbNumInst = 0;
1227 wbCycle = 0;
1228
1229 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1230
1231 while (threads != (*activeThreads).end()) {
1232 unsigned tid = *threads++;
1233 fetchRedirect[tid] = false;
1234 }
1235
1236 // Uncomment this if you want to see all available instructions.
1237// printAvailableInsts();
1238
1239 // Execute/writeback any instructions that are available.
1240 int insts_to_execute = fromIssue->size;
1241 int inst_num = 0;
1242 for (; inst_num < insts_to_execute;
1243 ++inst_num) {
1244
1245 DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1246
1247 DynInstPtr inst = instQueue.getInstToExecute();
1248
1249 DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
1250 inst->readPC(), inst->threadNumber,inst->seqNum);
1251
1252 // Check if the instruction is squashed; if so then skip it
1253 if (inst->isSquashed()) {
1254 DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1255
1256 // Consider this instruction executed so that commit can go
1257 // ahead and retire the instruction.
1258 inst->setExecuted();
1259
1260 // Not sure if I should set this here or just let commit try to
1261 // commit any squashed instructions. I like the latter a bit more.
1262 inst->setCanCommit();
1263
1264 ++iewExecSquashedInsts;
1265
1266 decrWb(inst->seqNum);
1267 continue;
1268 }
1269
1270 Fault fault = NoFault;
1271
1272 // Execute instruction.
1273 // Note that if the instruction faults, it will be handled
1274 // at the commit stage.
1275 if (inst->isMemRef() &&
1276 (!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
1277 DPRINTF(IEW, "Execute: Calculating address for memory "
1278 "reference.\n");
1279
1280 // Tell the LDSTQ to execute this instruction (if it is a load).
1281 if (inst->isLoad()) {
1282 // Loads will mark themselves as executed, and their writeback
1283 // event adds the instruction to the queue to commit
1284 fault = ldstQueue.executeLoad(inst);
1285 } else if (inst->isStore()) {
1286 fault = ldstQueue.executeStore(inst);
1287
1288 // If the store had a fault then it may not have a mem req
1289 if (!inst->isStoreConditional() && fault == NoFault) {
1290 inst->setExecuted();
1291
1292 instToCommit(inst);
1293 } else if (fault != NoFault) {
1294 // If the instruction faulted, then we need to send it along to commit
1295 // without the instruction completing.
1294 DPRINTF(IEW, "Store has fault! [sn:%lli]\n", inst->seqNum);
1296 DPRINTF(IEW, "Store has fault %s! [sn:%lli]\n",
1297 fault->name(), inst->seqNum);
1295
1296 // Send this instruction to commit, also make sure iew stage
1297 // realizes there is activity.
1298 inst->setExecuted();
1299
1300 instToCommit(inst);
1301 activityThisCycle();
1302 }
1303
1304 // Store conditionals will mark themselves as
1305 // executed, and their writeback event will add the
1306 // instruction to the queue to commit.
1307 } else {
1308 panic("Unexpected memory type!\n");
1309 }
1310
1311 } else {
1312 inst->execute();
1313
1314 inst->setExecuted();
1315
1316 instToCommit(inst);
1317 }
1318
1319 updateExeInstStats(inst);
1320
1321 // Check if branch prediction was correct, if not then we need
1322 // to tell commit to squash in flight instructions. Only
1323 // handle this if there hasn't already been something that
1324 // redirects fetch in this group of instructions.
1325
1326 // This probably needs to prioritize the redirects if a different
1327 // scheduler is used. Currently the scheduler schedules the oldest
1328 // instruction first, so the branch resolution order will be correct.
1329 unsigned tid = inst->threadNumber;
1330
1298
1299 // Send this instruction to commit, also make sure iew stage
1300 // realizes there is activity.
1301 inst->setExecuted();
1302
1303 instToCommit(inst);
1304 activityThisCycle();
1305 }
1306
1307 // Store conditionals will mark themselves as
1308 // executed, and their writeback event will add the
1309 // instruction to the queue to commit.
1310 } else {
1311 panic("Unexpected memory type!\n");
1312 }
1313
1314 } else {
1315 inst->execute();
1316
1317 inst->setExecuted();
1318
1319 instToCommit(inst);
1320 }
1321
1322 updateExeInstStats(inst);
1323
1324 // Check if branch prediction was correct, if not then we need
1325 // to tell commit to squash in flight instructions. Only
1326 // handle this if there hasn't already been something that
1327 // redirects fetch in this group of instructions.
1328
1329 // This probably needs to prioritize the redirects if a different
1330 // scheduler is used. Currently the scheduler schedules the oldest
1331 // instruction first, so the branch resolution order will be correct.
1332 unsigned tid = inst->threadNumber;
1333
1331 if (!fetchRedirect[tid]) {
1334 if (!fetchRedirect[tid] ||
1335 toCommit->squashedSeqNum[tid] > inst->seqNum) {
1332
1333 if (inst->mispredicted()) {
1334 fetchRedirect[tid] = true;
1335
1336 DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1337#if ISA_HAS_DELAY_SLOT
1338 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1339 inst->nextNPC);
1340#else
1341 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1342 inst->nextPC);
1343#endif
1344 // If incorrect, then signal the ROB that it must be squashed.
1345 squashDueToBranch(inst, tid);
1346
1347 if (inst->predTaken()) {
1348 predictedTakenIncorrect++;
1349 } else {
1350 predictedNotTakenIncorrect++;
1351 }
1352 } else if (ldstQueue.violation(tid)) {
1336
1337 if (inst->mispredicted()) {
1338 fetchRedirect[tid] = true;
1339
1340 DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1341#if ISA_HAS_DELAY_SLOT
1342 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1343 inst->nextNPC);
1344#else
1345 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1346 inst->nextPC);
1347#endif
1348 // If incorrect, then signal the ROB that it must be squashed.
1349 squashDueToBranch(inst, tid);
1350
1351 if (inst->predTaken()) {
1352 predictedTakenIncorrect++;
1353 } else {
1354 predictedNotTakenIncorrect++;
1355 }
1356 } else if (ldstQueue.violation(tid)) {
1353 fetchRedirect[tid] = true;
1354
1355 // If there was an ordering violation, then get the
1356 // DynInst that caused the violation. Note that this
1357 // clears the violation signal.
1358 DynInstPtr violator;
1359 violator = ldstQueue.getMemDepViolator(tid);
1360
1361 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
1362 "%#x, inst PC: %#x. Addr is: %#x.\n",
1363 violator->readPC(), inst->readPC(), inst->physEffAddr);
1364
1357 // If there was an ordering violation, then get the
1358 // DynInst that caused the violation. Note that this
1359 // clears the violation signal.
1360 DynInstPtr violator;
1361 violator = ldstQueue.getMemDepViolator(tid);
1362
1363 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
1364 "%#x, inst PC: %#x. Addr is: %#x.\n",
1365 violator->readPC(), inst->readPC(), inst->physEffAddr);
1366
1367 // Ensure the violating instruction is older than
1368 // current squash
1369 if (fetchRedirect[tid] &&
1370 violator->seqNum >= toCommit->squashedSeqNum[tid])
1371 continue;
1372
1373 fetchRedirect[tid] = true;
1374
1365 // Tell the instruction queue that a violation has occured.
1366 instQueue.violation(inst, violator);
1367
1368 // Squash.
1369 squashDueToMemOrder(inst,tid);
1370
1371 ++memOrderViolationEvents;
1372 } else if (ldstQueue.loadBlocked(tid) &&
1373 !ldstQueue.isLoadBlockedHandled(tid)) {
1374 fetchRedirect[tid] = true;
1375
1376 DPRINTF(IEW, "Load operation couldn't execute because the "
1377 "memory system is blocked. PC: %#x [sn:%lli]\n",
1378 inst->readPC(), inst->seqNum);
1379
1380 squashDueToMemBlocked(inst, tid);
1381 }
1382 }
1383 }
1384
1385 // Update and record activity if we processed any instructions.
1386 if (inst_num) {
1387 if (exeStatus == Idle) {
1388 exeStatus = Running;
1389 }
1390
1391 updatedQueues = true;
1392
1393 cpu->activityThisCycle();
1394 }
1395
1396 // Need to reset this in case a writeback event needs to write into the
1397 // iew queue. That way the writeback event will write into the correct
1398 // spot in the queue.
1399 wbNumInst = 0;
1400}
1401
1402template <class Impl>
1403void
1404DefaultIEW<Impl>::writebackInsts()
1405{
1406 // Loop through the head of the time buffer and wake any
1407 // dependents. These instructions are about to write back. Also
1408 // mark scoreboard that this instruction is finally complete.
1409 // Either have IEW have direct access to scoreboard, or have this
1410 // as part of backwards communication.
1411 for (int inst_num = 0; inst_num < issueWidth &&
1412 toCommit->insts[inst_num]; inst_num++) {
1413 DynInstPtr inst = toCommit->insts[inst_num];
1414 int tid = inst->threadNumber;
1415
1416 DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %#x.\n",
1417 inst->seqNum, inst->readPC());
1418
1419 iewInstsToCommit[tid]++;
1420
1421 // Some instructions will be sent to commit without having
1422 // executed because they need commit to handle them.
1423 // E.g. Uncached loads have not actually executed when they
1424 // are first sent to commit. Instead commit must tell the LSQ
1425 // when it's ready to execute the uncached load.
1426 if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1427 int dependents = instQueue.wakeDependents(inst);
1428
1429 for (int i = 0; i < inst->numDestRegs(); i++) {
1430 //mark as Ready
1431 DPRINTF(IEW,"Setting Destination Register %i\n",
1432 inst->renamedDestRegIdx(i));
1433 scoreboard->setReg(inst->renamedDestRegIdx(i));
1434 }
1435
1436 if (dependents) {
1437 producerInst[tid]++;
1438 consumerInst[tid]+= dependents;
1439 }
1440 writebackCount[tid]++;
1441 }
1442
1443 decrWb(inst->seqNum);
1444 }
1445}
1446
1447template<class Impl>
1448void
1449DefaultIEW<Impl>::tick()
1450{
1451 wbNumInst = 0;
1452 wbCycle = 0;
1453
1454 wroteToTimeBuffer = false;
1455 updatedQueues = false;
1456
1457 sortInsts();
1458
1459 // Free function units marked as being freed this cycle.
1460 fuPool->processFreeUnits();
1461
1462 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1463
1464 // Check stall and squash signals, dispatch any instructions.
1465 while (threads != (*activeThreads).end()) {
1466 unsigned tid = *threads++;
1467
1468 DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1469
1470 checkSignalsAndUpdate(tid);
1471 dispatch(tid);
1472 }
1473
1474 if (exeStatus != Squashing) {
1475 executeInsts();
1476
1477 writebackInsts();
1478
1479 // Have the instruction queue try to schedule any ready instructions.
1480 // (In actuality, this scheduling is for instructions that will
1481 // be executed next cycle.)
1482 instQueue.scheduleReadyInsts();
1483
1484 // Also should advance its own time buffers if the stage ran.
1485 // Not the best place for it, but this works (hopefully).
1486 issueToExecQueue.advance();
1487 }
1488
1489 bool broadcast_free_entries = false;
1490
1491 if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1492 exeStatus = Idle;
1493 updateLSQNextCycle = false;
1494
1495 broadcast_free_entries = true;
1496 }
1497
1498 // Writeback any stores using any leftover bandwidth.
1499 ldstQueue.writebackStores();
1500
1501 // Check the committed load/store signals to see if there's a load
1502 // or store to commit. Also check if it's being told to execute a
1503 // nonspeculative instruction.
1504 // This is pretty inefficient...
1505
1506 threads = (*activeThreads).begin();
1507 while (threads != (*activeThreads).end()) {
1508 unsigned tid = (*threads++);
1509
1510 DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1511
1512 // Update structures based on instructions committed.
1513 if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1514 !fromCommit->commitInfo[tid].squash &&
1515 !fromCommit->commitInfo[tid].robSquashing) {
1516
1517 ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1518
1519 ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1520
1521 updateLSQNextCycle = true;
1522 instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1523 }
1524
1525 if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1526
1527 //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1528 if (fromCommit->commitInfo[tid].uncached) {
1529 instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1530 } else {
1531 instQueue.scheduleNonSpec(
1532 fromCommit->commitInfo[tid].nonSpecSeqNum);
1533 }
1534 }
1535
1536 if (broadcast_free_entries) {
1537 toFetch->iewInfo[tid].iqCount =
1538 instQueue.getCount(tid);
1539 toFetch->iewInfo[tid].ldstqCount =
1540 ldstQueue.getCount(tid);
1541
1542 toRename->iewInfo[tid].usedIQ = true;
1543 toRename->iewInfo[tid].freeIQEntries =
1544 instQueue.numFreeEntries();
1545 toRename->iewInfo[tid].usedLSQ = true;
1546 toRename->iewInfo[tid].freeLSQEntries =
1547 ldstQueue.numFreeEntries(tid);
1548
1549 wroteToTimeBuffer = true;
1550 }
1551
1552 DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1553 tid, toRename->iewInfo[tid].dispatched);
1554 }
1555
1556 DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). "
1557 "LSQ has %i free entries.\n",
1558 instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1559 ldstQueue.numFreeEntries());
1560
1561 updateStatus();
1562
1563 if (wroteToTimeBuffer) {
1564 DPRINTF(Activity, "Activity this cycle.\n");
1565 cpu->activityThisCycle();
1566 }
1567}
1568
1569template <class Impl>
1570void
1571DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1572{
1573 int thread_number = inst->threadNumber;
1574
1575 //
1576 // Pick off the software prefetches
1577 //
1578#ifdef TARGET_ALPHA
1579 if (inst->isDataPrefetch())
1580 iewExecutedSwp[thread_number]++;
1581 else
1582 iewIewExecutedcutedInsts++;
1583#else
1584 iewExecutedInsts++;
1585#endif
1586
1587 //
1588 // Control operations
1589 //
1590 if (inst->isControl())
1591 iewExecutedBranches[thread_number]++;
1592
1593 //
1594 // Memory operations
1595 //
1596 if (inst->isMemRef()) {
1597 iewExecutedRefs[thread_number]++;
1598
1599 if (inst->isLoad()) {
1600 iewExecLoadInsts[thread_number]++;
1601 }
1602 }
1603}
1375 // Tell the instruction queue that a violation has occured.
1376 instQueue.violation(inst, violator);
1377
1378 // Squash.
1379 squashDueToMemOrder(inst,tid);
1380
1381 ++memOrderViolationEvents;
1382 } else if (ldstQueue.loadBlocked(tid) &&
1383 !ldstQueue.isLoadBlockedHandled(tid)) {
1384 fetchRedirect[tid] = true;
1385
1386 DPRINTF(IEW, "Load operation couldn't execute because the "
1387 "memory system is blocked. PC: %#x [sn:%lli]\n",
1388 inst->readPC(), inst->seqNum);
1389
1390 squashDueToMemBlocked(inst, tid);
1391 }
1392 }
1393 }
1394
1395 // Update and record activity if we processed any instructions.
1396 if (inst_num) {
1397 if (exeStatus == Idle) {
1398 exeStatus = Running;
1399 }
1400
1401 updatedQueues = true;
1402
1403 cpu->activityThisCycle();
1404 }
1405
1406 // Need to reset this in case a writeback event needs to write into the
1407 // iew queue. That way the writeback event will write into the correct
1408 // spot in the queue.
1409 wbNumInst = 0;
1410}
1411
1412template <class Impl>
1413void
1414DefaultIEW<Impl>::writebackInsts()
1415{
1416 // Loop through the head of the time buffer and wake any
1417 // dependents. These instructions are about to write back. Also
1418 // mark scoreboard that this instruction is finally complete.
1419 // Either have IEW have direct access to scoreboard, or have this
1420 // as part of backwards communication.
1421 for (int inst_num = 0; inst_num < issueWidth &&
1422 toCommit->insts[inst_num]; inst_num++) {
1423 DynInstPtr inst = toCommit->insts[inst_num];
1424 int tid = inst->threadNumber;
1425
1426 DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %#x.\n",
1427 inst->seqNum, inst->readPC());
1428
1429 iewInstsToCommit[tid]++;
1430
1431 // Some instructions will be sent to commit without having
1432 // executed because they need commit to handle them.
1433 // E.g. Uncached loads have not actually executed when they
1434 // are first sent to commit. Instead commit must tell the LSQ
1435 // when it's ready to execute the uncached load.
1436 if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1437 int dependents = instQueue.wakeDependents(inst);
1438
1439 for (int i = 0; i < inst->numDestRegs(); i++) {
1440 //mark as Ready
1441 DPRINTF(IEW,"Setting Destination Register %i\n",
1442 inst->renamedDestRegIdx(i));
1443 scoreboard->setReg(inst->renamedDestRegIdx(i));
1444 }
1445
1446 if (dependents) {
1447 producerInst[tid]++;
1448 consumerInst[tid]+= dependents;
1449 }
1450 writebackCount[tid]++;
1451 }
1452
1453 decrWb(inst->seqNum);
1454 }
1455}
1456
1457template<class Impl>
1458void
1459DefaultIEW<Impl>::tick()
1460{
1461 wbNumInst = 0;
1462 wbCycle = 0;
1463
1464 wroteToTimeBuffer = false;
1465 updatedQueues = false;
1466
1467 sortInsts();
1468
1469 // Free function units marked as being freed this cycle.
1470 fuPool->processFreeUnits();
1471
1472 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1473
1474 // Check stall and squash signals, dispatch any instructions.
1475 while (threads != (*activeThreads).end()) {
1476 unsigned tid = *threads++;
1477
1478 DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1479
1480 checkSignalsAndUpdate(tid);
1481 dispatch(tid);
1482 }
1483
1484 if (exeStatus != Squashing) {
1485 executeInsts();
1486
1487 writebackInsts();
1488
1489 // Have the instruction queue try to schedule any ready instructions.
1490 // (In actuality, this scheduling is for instructions that will
1491 // be executed next cycle.)
1492 instQueue.scheduleReadyInsts();
1493
1494 // Also should advance its own time buffers if the stage ran.
1495 // Not the best place for it, but this works (hopefully).
1496 issueToExecQueue.advance();
1497 }
1498
1499 bool broadcast_free_entries = false;
1500
1501 if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1502 exeStatus = Idle;
1503 updateLSQNextCycle = false;
1504
1505 broadcast_free_entries = true;
1506 }
1507
1508 // Writeback any stores using any leftover bandwidth.
1509 ldstQueue.writebackStores();
1510
1511 // Check the committed load/store signals to see if there's a load
1512 // or store to commit. Also check if it's being told to execute a
1513 // nonspeculative instruction.
1514 // This is pretty inefficient...
1515
1516 threads = (*activeThreads).begin();
1517 while (threads != (*activeThreads).end()) {
1518 unsigned tid = (*threads++);
1519
1520 DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1521
1522 // Update structures based on instructions committed.
1523 if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1524 !fromCommit->commitInfo[tid].squash &&
1525 !fromCommit->commitInfo[tid].robSquashing) {
1526
1527 ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1528
1529 ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1530
1531 updateLSQNextCycle = true;
1532 instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1533 }
1534
1535 if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1536
1537 //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1538 if (fromCommit->commitInfo[tid].uncached) {
1539 instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1540 } else {
1541 instQueue.scheduleNonSpec(
1542 fromCommit->commitInfo[tid].nonSpecSeqNum);
1543 }
1544 }
1545
1546 if (broadcast_free_entries) {
1547 toFetch->iewInfo[tid].iqCount =
1548 instQueue.getCount(tid);
1549 toFetch->iewInfo[tid].ldstqCount =
1550 ldstQueue.getCount(tid);
1551
1552 toRename->iewInfo[tid].usedIQ = true;
1553 toRename->iewInfo[tid].freeIQEntries =
1554 instQueue.numFreeEntries();
1555 toRename->iewInfo[tid].usedLSQ = true;
1556 toRename->iewInfo[tid].freeLSQEntries =
1557 ldstQueue.numFreeEntries(tid);
1558
1559 wroteToTimeBuffer = true;
1560 }
1561
1562 DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1563 tid, toRename->iewInfo[tid].dispatched);
1564 }
1565
1566 DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). "
1567 "LSQ has %i free entries.\n",
1568 instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1569 ldstQueue.numFreeEntries());
1570
1571 updateStatus();
1572
1573 if (wroteToTimeBuffer) {
1574 DPRINTF(Activity, "Activity this cycle.\n");
1575 cpu->activityThisCycle();
1576 }
1577}
1578
1579template <class Impl>
1580void
1581DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1582{
1583 int thread_number = inst->threadNumber;
1584
1585 //
1586 // Pick off the software prefetches
1587 //
1588#ifdef TARGET_ALPHA
1589 if (inst->isDataPrefetch())
1590 iewExecutedSwp[thread_number]++;
1591 else
1592 iewIewExecutedcutedInsts++;
1593#else
1594 iewExecutedInsts++;
1595#endif
1596
1597 //
1598 // Control operations
1599 //
1600 if (inst->isControl())
1601 iewExecutedBranches[thread_number]++;
1602
1603 //
1604 // Memory operations
1605 //
1606 if (inst->isMemRef()) {
1607 iewExecutedRefs[thread_number]++;
1608
1609 if (inst->isLoad()) {
1610 iewExecLoadInsts[thread_number]++;
1611 }
1612 }
1613}