iew_impl.hh (2980:eab855f06b79) iew_impl.hh (3093:b09c33e66bce)
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31// @todo: Fix the instantaneous communication among all the stages within
32// iew. There's a clear delay between issue and execute, yet backwards
33// communication happens simultaneously.
34
35#include <queue>
36
37#include "base/timebuf.hh"
38#include "cpu/o3/fu_pool.hh"
39#include "cpu/o3/iew.hh"
40
41template<class Impl>
42DefaultIEW<Impl>::DefaultIEW(Params *params)
43 : issueToExecQueue(params->backComSize, params->forwardComSize),
44 instQueue(params),
45 ldstQueue(params),
46 fuPool(params->fuPool),
47 commitToIEWDelay(params->commitToIEWDelay),
48 renameToIEWDelay(params->renameToIEWDelay),
49 issueToExecuteDelay(params->issueToExecuteDelay),
50 dispatchWidth(params->dispatchWidth),
51 issueWidth(params->issueWidth),
52 wbOutstanding(0),
53 wbWidth(params->wbWidth),
54 numThreads(params->numberOfThreads),
55 switchedOut(false)
56{
57 _status = Active;
58 exeStatus = Running;
59 wbStatus = Idle;
60
61 // Setup wire to read instructions coming from issue.
62 fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
63
64 // Instruction queue needs the queue between issue and execute.
65 instQueue.setIssueToExecuteQueue(&issueToExecQueue);
66
67 instQueue.setIEW(this);
68 ldstQueue.setIEW(this);
69
70 for (int i=0; i < numThreads; i++) {
71 dispatchStatus[i] = Running;
72 stalls[i].commit = false;
73 fetchRedirect[i] = false;
74 bdelayDoneSeqNum[i] = 0;
75 }
76
77 wbMax = wbWidth * params->wbDepth;
78
79 updateLSQNextCycle = false;
80
81 ableToIssue = true;
82
83 skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
84}
85
86template <class Impl>
87std::string
88DefaultIEW<Impl>::name() const
89{
90 return cpu->name() + ".iew";
91}
92
93template <class Impl>
94void
95DefaultIEW<Impl>::regStats()
96{
97 using namespace Stats;
98
99 instQueue.regStats();
100 ldstQueue.regStats();
101
102 iewIdleCycles
103 .name(name() + ".iewIdleCycles")
104 .desc("Number of cycles IEW is idle");
105
106 iewSquashCycles
107 .name(name() + ".iewSquashCycles")
108 .desc("Number of cycles IEW is squashing");
109
110 iewBlockCycles
111 .name(name() + ".iewBlockCycles")
112 .desc("Number of cycles IEW is blocking");
113
114 iewUnblockCycles
115 .name(name() + ".iewUnblockCycles")
116 .desc("Number of cycles IEW is unblocking");
117
118 iewDispatchedInsts
119 .name(name() + ".iewDispatchedInsts")
120 .desc("Number of instructions dispatched to IQ");
121
122 iewDispSquashedInsts
123 .name(name() + ".iewDispSquashedInsts")
124 .desc("Number of squashed instructions skipped by dispatch");
125
126 iewDispLoadInsts
127 .name(name() + ".iewDispLoadInsts")
128 .desc("Number of dispatched load instructions");
129
130 iewDispStoreInsts
131 .name(name() + ".iewDispStoreInsts")
132 .desc("Number of dispatched store instructions");
133
134 iewDispNonSpecInsts
135 .name(name() + ".iewDispNonSpecInsts")
136 .desc("Number of dispatched non-speculative instructions");
137
138 iewIQFullEvents
139 .name(name() + ".iewIQFullEvents")
140 .desc("Number of times the IQ has become full, causing a stall");
141
142 iewLSQFullEvents
143 .name(name() + ".iewLSQFullEvents")
144 .desc("Number of times the LSQ has become full, causing a stall");
145
146 memOrderViolationEvents
147 .name(name() + ".memOrderViolationEvents")
148 .desc("Number of memory order violations");
149
150 predictedTakenIncorrect
151 .name(name() + ".predictedTakenIncorrect")
152 .desc("Number of branches that were predicted taken incorrectly");
153
154 predictedNotTakenIncorrect
155 .name(name() + ".predictedNotTakenIncorrect")
156 .desc("Number of branches that were predicted not taken incorrectly");
157
158 branchMispredicts
159 .name(name() + ".branchMispredicts")
160 .desc("Number of branch mispredicts detected at execute");
161
162 branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
163
164 iewExecutedInsts
165 .name(name() + ".EXEC:insts")
166 .desc("Number of executed instructions");
167
168 iewExecLoadInsts
169 .init(cpu->number_of_threads)
170 .name(name() + ".EXEC:loads")
171 .desc("Number of load instructions executed")
172 .flags(total);
173
174 iewExecSquashedInsts
175 .name(name() + ".EXEC:squashedInsts")
176 .desc("Number of squashed instructions skipped in execute");
177
178 iewExecutedSwp
179 .init(cpu->number_of_threads)
180 .name(name() + ".EXEC:swp")
181 .desc("number of swp insts executed")
182 .flags(total);
183
184 iewExecutedNop
185 .init(cpu->number_of_threads)
186 .name(name() + ".EXEC:nop")
187 .desc("number of nop insts executed")
188 .flags(total);
189
190 iewExecutedRefs
191 .init(cpu->number_of_threads)
192 .name(name() + ".EXEC:refs")
193 .desc("number of memory reference insts executed")
194 .flags(total);
195
196 iewExecutedBranches
197 .init(cpu->number_of_threads)
198 .name(name() + ".EXEC:branches")
199 .desc("Number of branches executed")
200 .flags(total);
201
202 iewExecStoreInsts
203 .name(name() + ".EXEC:stores")
204 .desc("Number of stores executed")
205 .flags(total);
206 iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
207
208 iewExecRate
209 .name(name() + ".EXEC:rate")
210 .desc("Inst execution rate")
211 .flags(total);
212
213 iewExecRate = iewExecutedInsts / cpu->numCycles;
214
215 iewInstsToCommit
216 .init(cpu->number_of_threads)
217 .name(name() + ".WB:sent")
218 .desc("cumulative count of insts sent to commit")
219 .flags(total);
220
221 writebackCount
222 .init(cpu->number_of_threads)
223 .name(name() + ".WB:count")
224 .desc("cumulative count of insts written-back")
225 .flags(total);
226
227 producerInst
228 .init(cpu->number_of_threads)
229 .name(name() + ".WB:producers")
230 .desc("num instructions producing a value")
231 .flags(total);
232
233 consumerInst
234 .init(cpu->number_of_threads)
235 .name(name() + ".WB:consumers")
236 .desc("num instructions consuming a value")
237 .flags(total);
238
239 wbPenalized
240 .init(cpu->number_of_threads)
241 .name(name() + ".WB:penalized")
242 .desc("number of instrctions required to write to 'other' IQ")
243 .flags(total);
244
245 wbPenalizedRate
246 .name(name() + ".WB:penalized_rate")
247 .desc ("fraction of instructions written-back that wrote to 'other' IQ")
248 .flags(total);
249
250 wbPenalizedRate = wbPenalized / writebackCount;
251
252 wbFanout
253 .name(name() + ".WB:fanout")
254 .desc("average fanout of values written-back")
255 .flags(total);
256
257 wbFanout = producerInst / consumerInst;
258
259 wbRate
260 .name(name() + ".WB:rate")
261 .desc("insts written-back per cycle")
262 .flags(total);
263 wbRate = writebackCount / cpu->numCycles;
264}
265
266template<class Impl>
267void
268DefaultIEW<Impl>::initStage()
269{
270 for (int tid=0; tid < numThreads; tid++) {
271 toRename->iewInfo[tid].usedIQ = true;
272 toRename->iewInfo[tid].freeIQEntries =
273 instQueue.numFreeEntries(tid);
274
275 toRename->iewInfo[tid].usedLSQ = true;
276 toRename->iewInfo[tid].freeLSQEntries =
277 ldstQueue.numFreeEntries(tid);
278 }
279}
280
281template<class Impl>
282void
283DefaultIEW<Impl>::setCPU(O3CPU *cpu_ptr)
284{
285 DPRINTF(IEW, "Setting CPU pointer.\n");
286 cpu = cpu_ptr;
287
288 instQueue.setCPU(cpu_ptr);
289 ldstQueue.setCPU(cpu_ptr);
290
291 cpu->activateStage(O3CPU::IEWIdx);
292}
293
294template<class Impl>
295void
296DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
297{
298 DPRINTF(IEW, "Setting time buffer pointer.\n");
299 timeBuffer = tb_ptr;
300
301 // Setup wire to read information from time buffer, from commit.
302 fromCommit = timeBuffer->getWire(-commitToIEWDelay);
303
304 // Setup wire to write information back to previous stages.
305 toRename = timeBuffer->getWire(0);
306
307 toFetch = timeBuffer->getWire(0);
308
309 // Instruction queue also needs main time buffer.
310 instQueue.setTimeBuffer(tb_ptr);
311}
312
313template<class Impl>
314void
315DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
316{
317 DPRINTF(IEW, "Setting rename queue pointer.\n");
318 renameQueue = rq_ptr;
319
320 // Setup wire to read information from rename queue.
321 fromRename = renameQueue->getWire(-renameToIEWDelay);
322}
323
324template<class Impl>
325void
326DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
327{
328 DPRINTF(IEW, "Setting IEW queue pointer.\n");
329 iewQueue = iq_ptr;
330
331 // Setup wire to write instructions to commit.
332 toCommit = iewQueue->getWire(0);
333}
334
335template<class Impl>
336void
337DefaultIEW<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
338{
339 DPRINTF(IEW, "Setting active threads list pointer.\n");
340 activeThreads = at_ptr;
341
342 ldstQueue.setActiveThreads(at_ptr);
343 instQueue.setActiveThreads(at_ptr);
344}
345
346template<class Impl>
347void
348DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
349{
350 DPRINTF(IEW, "Setting scoreboard pointer.\n");
351 scoreboard = sb_ptr;
352}
353
354template <class Impl>
355bool
356DefaultIEW<Impl>::drain()
357{
358 // IEW is ready to drain at any time.
359 cpu->signalDrained();
360 return true;
361}
362
363template <class Impl>
364void
365DefaultIEW<Impl>::resume()
366{
367}
368
369template <class Impl>
370void
371DefaultIEW<Impl>::switchOut()
372{
373 // Clear any state.
374 switchedOut = true;
375
376 instQueue.switchOut();
377 ldstQueue.switchOut();
378 fuPool->switchOut();
379
380 for (int i = 0; i < numThreads; i++) {
381 while (!insts[i].empty())
382 insts[i].pop();
383 while (!skidBuffer[i].empty())
384 skidBuffer[i].pop();
385 }
386}
387
388template <class Impl>
389void
390DefaultIEW<Impl>::takeOverFrom()
391{
392 // Reset all state.
393 _status = Active;
394 exeStatus = Running;
395 wbStatus = Idle;
396 switchedOut = false;
397
398 instQueue.takeOverFrom();
399 ldstQueue.takeOverFrom();
400 fuPool->takeOverFrom();
401
402 initStage();
403 cpu->activityThisCycle();
404
405 for (int i=0; i < numThreads; i++) {
406 dispatchStatus[i] = Running;
407 stalls[i].commit = false;
408 fetchRedirect[i] = false;
409 }
410
411 updateLSQNextCycle = false;
412
413 // @todo: Fix hardcoded number
414 for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
415 issueToExecQueue.advance();
416 }
417}
418
419template<class Impl>
420void
421DefaultIEW<Impl>::squash(unsigned tid)
422{
423 DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
424 tid);
425
426 // Tell the IQ to start squashing.
427 instQueue.squash(tid);
428
429 // Tell the LDSTQ to start squashing.
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31// @todo: Fix the instantaneous communication among all the stages within
32// iew. There's a clear delay between issue and execute, yet backwards
33// communication happens simultaneously.
34
35#include <queue>
36
37#include "base/timebuf.hh"
38#include "cpu/o3/fu_pool.hh"
39#include "cpu/o3/iew.hh"
40
41template<class Impl>
42DefaultIEW<Impl>::DefaultIEW(Params *params)
43 : issueToExecQueue(params->backComSize, params->forwardComSize),
44 instQueue(params),
45 ldstQueue(params),
46 fuPool(params->fuPool),
47 commitToIEWDelay(params->commitToIEWDelay),
48 renameToIEWDelay(params->renameToIEWDelay),
49 issueToExecuteDelay(params->issueToExecuteDelay),
50 dispatchWidth(params->dispatchWidth),
51 issueWidth(params->issueWidth),
52 wbOutstanding(0),
53 wbWidth(params->wbWidth),
54 numThreads(params->numberOfThreads),
55 switchedOut(false)
56{
57 _status = Active;
58 exeStatus = Running;
59 wbStatus = Idle;
60
61 // Setup wire to read instructions coming from issue.
62 fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
63
64 // Instruction queue needs the queue between issue and execute.
65 instQueue.setIssueToExecuteQueue(&issueToExecQueue);
66
67 instQueue.setIEW(this);
68 ldstQueue.setIEW(this);
69
70 for (int i=0; i < numThreads; i++) {
71 dispatchStatus[i] = Running;
72 stalls[i].commit = false;
73 fetchRedirect[i] = false;
74 bdelayDoneSeqNum[i] = 0;
75 }
76
77 wbMax = wbWidth * params->wbDepth;
78
79 updateLSQNextCycle = false;
80
81 ableToIssue = true;
82
83 skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
84}
85
86template <class Impl>
87std::string
88DefaultIEW<Impl>::name() const
89{
90 return cpu->name() + ".iew";
91}
92
93template <class Impl>
94void
95DefaultIEW<Impl>::regStats()
96{
97 using namespace Stats;
98
99 instQueue.regStats();
100 ldstQueue.regStats();
101
102 iewIdleCycles
103 .name(name() + ".iewIdleCycles")
104 .desc("Number of cycles IEW is idle");
105
106 iewSquashCycles
107 .name(name() + ".iewSquashCycles")
108 .desc("Number of cycles IEW is squashing");
109
110 iewBlockCycles
111 .name(name() + ".iewBlockCycles")
112 .desc("Number of cycles IEW is blocking");
113
114 iewUnblockCycles
115 .name(name() + ".iewUnblockCycles")
116 .desc("Number of cycles IEW is unblocking");
117
118 iewDispatchedInsts
119 .name(name() + ".iewDispatchedInsts")
120 .desc("Number of instructions dispatched to IQ");
121
122 iewDispSquashedInsts
123 .name(name() + ".iewDispSquashedInsts")
124 .desc("Number of squashed instructions skipped by dispatch");
125
126 iewDispLoadInsts
127 .name(name() + ".iewDispLoadInsts")
128 .desc("Number of dispatched load instructions");
129
130 iewDispStoreInsts
131 .name(name() + ".iewDispStoreInsts")
132 .desc("Number of dispatched store instructions");
133
134 iewDispNonSpecInsts
135 .name(name() + ".iewDispNonSpecInsts")
136 .desc("Number of dispatched non-speculative instructions");
137
138 iewIQFullEvents
139 .name(name() + ".iewIQFullEvents")
140 .desc("Number of times the IQ has become full, causing a stall");
141
142 iewLSQFullEvents
143 .name(name() + ".iewLSQFullEvents")
144 .desc("Number of times the LSQ has become full, causing a stall");
145
146 memOrderViolationEvents
147 .name(name() + ".memOrderViolationEvents")
148 .desc("Number of memory order violations");
149
150 predictedTakenIncorrect
151 .name(name() + ".predictedTakenIncorrect")
152 .desc("Number of branches that were predicted taken incorrectly");
153
154 predictedNotTakenIncorrect
155 .name(name() + ".predictedNotTakenIncorrect")
156 .desc("Number of branches that were predicted not taken incorrectly");
157
158 branchMispredicts
159 .name(name() + ".branchMispredicts")
160 .desc("Number of branch mispredicts detected at execute");
161
162 branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
163
164 iewExecutedInsts
165 .name(name() + ".EXEC:insts")
166 .desc("Number of executed instructions");
167
168 iewExecLoadInsts
169 .init(cpu->number_of_threads)
170 .name(name() + ".EXEC:loads")
171 .desc("Number of load instructions executed")
172 .flags(total);
173
174 iewExecSquashedInsts
175 .name(name() + ".EXEC:squashedInsts")
176 .desc("Number of squashed instructions skipped in execute");
177
178 iewExecutedSwp
179 .init(cpu->number_of_threads)
180 .name(name() + ".EXEC:swp")
181 .desc("number of swp insts executed")
182 .flags(total);
183
184 iewExecutedNop
185 .init(cpu->number_of_threads)
186 .name(name() + ".EXEC:nop")
187 .desc("number of nop insts executed")
188 .flags(total);
189
190 iewExecutedRefs
191 .init(cpu->number_of_threads)
192 .name(name() + ".EXEC:refs")
193 .desc("number of memory reference insts executed")
194 .flags(total);
195
196 iewExecutedBranches
197 .init(cpu->number_of_threads)
198 .name(name() + ".EXEC:branches")
199 .desc("Number of branches executed")
200 .flags(total);
201
202 iewExecStoreInsts
203 .name(name() + ".EXEC:stores")
204 .desc("Number of stores executed")
205 .flags(total);
206 iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
207
208 iewExecRate
209 .name(name() + ".EXEC:rate")
210 .desc("Inst execution rate")
211 .flags(total);
212
213 iewExecRate = iewExecutedInsts / cpu->numCycles;
214
215 iewInstsToCommit
216 .init(cpu->number_of_threads)
217 .name(name() + ".WB:sent")
218 .desc("cumulative count of insts sent to commit")
219 .flags(total);
220
221 writebackCount
222 .init(cpu->number_of_threads)
223 .name(name() + ".WB:count")
224 .desc("cumulative count of insts written-back")
225 .flags(total);
226
227 producerInst
228 .init(cpu->number_of_threads)
229 .name(name() + ".WB:producers")
230 .desc("num instructions producing a value")
231 .flags(total);
232
233 consumerInst
234 .init(cpu->number_of_threads)
235 .name(name() + ".WB:consumers")
236 .desc("num instructions consuming a value")
237 .flags(total);
238
239 wbPenalized
240 .init(cpu->number_of_threads)
241 .name(name() + ".WB:penalized")
242 .desc("number of instrctions required to write to 'other' IQ")
243 .flags(total);
244
245 wbPenalizedRate
246 .name(name() + ".WB:penalized_rate")
247 .desc ("fraction of instructions written-back that wrote to 'other' IQ")
248 .flags(total);
249
250 wbPenalizedRate = wbPenalized / writebackCount;
251
252 wbFanout
253 .name(name() + ".WB:fanout")
254 .desc("average fanout of values written-back")
255 .flags(total);
256
257 wbFanout = producerInst / consumerInst;
258
259 wbRate
260 .name(name() + ".WB:rate")
261 .desc("insts written-back per cycle")
262 .flags(total);
263 wbRate = writebackCount / cpu->numCycles;
264}
265
266template<class Impl>
267void
268DefaultIEW<Impl>::initStage()
269{
270 for (int tid=0; tid < numThreads; tid++) {
271 toRename->iewInfo[tid].usedIQ = true;
272 toRename->iewInfo[tid].freeIQEntries =
273 instQueue.numFreeEntries(tid);
274
275 toRename->iewInfo[tid].usedLSQ = true;
276 toRename->iewInfo[tid].freeLSQEntries =
277 ldstQueue.numFreeEntries(tid);
278 }
279}
280
281template<class Impl>
282void
283DefaultIEW<Impl>::setCPU(O3CPU *cpu_ptr)
284{
285 DPRINTF(IEW, "Setting CPU pointer.\n");
286 cpu = cpu_ptr;
287
288 instQueue.setCPU(cpu_ptr);
289 ldstQueue.setCPU(cpu_ptr);
290
291 cpu->activateStage(O3CPU::IEWIdx);
292}
293
294template<class Impl>
295void
296DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
297{
298 DPRINTF(IEW, "Setting time buffer pointer.\n");
299 timeBuffer = tb_ptr;
300
301 // Setup wire to read information from time buffer, from commit.
302 fromCommit = timeBuffer->getWire(-commitToIEWDelay);
303
304 // Setup wire to write information back to previous stages.
305 toRename = timeBuffer->getWire(0);
306
307 toFetch = timeBuffer->getWire(0);
308
309 // Instruction queue also needs main time buffer.
310 instQueue.setTimeBuffer(tb_ptr);
311}
312
313template<class Impl>
314void
315DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
316{
317 DPRINTF(IEW, "Setting rename queue pointer.\n");
318 renameQueue = rq_ptr;
319
320 // Setup wire to read information from rename queue.
321 fromRename = renameQueue->getWire(-renameToIEWDelay);
322}
323
324template<class Impl>
325void
326DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
327{
328 DPRINTF(IEW, "Setting IEW queue pointer.\n");
329 iewQueue = iq_ptr;
330
331 // Setup wire to write instructions to commit.
332 toCommit = iewQueue->getWire(0);
333}
334
335template<class Impl>
336void
337DefaultIEW<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
338{
339 DPRINTF(IEW, "Setting active threads list pointer.\n");
340 activeThreads = at_ptr;
341
342 ldstQueue.setActiveThreads(at_ptr);
343 instQueue.setActiveThreads(at_ptr);
344}
345
346template<class Impl>
347void
348DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
349{
350 DPRINTF(IEW, "Setting scoreboard pointer.\n");
351 scoreboard = sb_ptr;
352}
353
354template <class Impl>
355bool
356DefaultIEW<Impl>::drain()
357{
358 // IEW is ready to drain at any time.
359 cpu->signalDrained();
360 return true;
361}
362
363template <class Impl>
364void
365DefaultIEW<Impl>::resume()
366{
367}
368
369template <class Impl>
370void
371DefaultIEW<Impl>::switchOut()
372{
373 // Clear any state.
374 switchedOut = true;
375
376 instQueue.switchOut();
377 ldstQueue.switchOut();
378 fuPool->switchOut();
379
380 for (int i = 0; i < numThreads; i++) {
381 while (!insts[i].empty())
382 insts[i].pop();
383 while (!skidBuffer[i].empty())
384 skidBuffer[i].pop();
385 }
386}
387
388template <class Impl>
389void
390DefaultIEW<Impl>::takeOverFrom()
391{
392 // Reset all state.
393 _status = Active;
394 exeStatus = Running;
395 wbStatus = Idle;
396 switchedOut = false;
397
398 instQueue.takeOverFrom();
399 ldstQueue.takeOverFrom();
400 fuPool->takeOverFrom();
401
402 initStage();
403 cpu->activityThisCycle();
404
405 for (int i=0; i < numThreads; i++) {
406 dispatchStatus[i] = Running;
407 stalls[i].commit = false;
408 fetchRedirect[i] = false;
409 }
410
411 updateLSQNextCycle = false;
412
413 // @todo: Fix hardcoded number
414 for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
415 issueToExecQueue.advance();
416 }
417}
418
419template<class Impl>
420void
421DefaultIEW<Impl>::squash(unsigned tid)
422{
423 DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
424 tid);
425
426 // Tell the IQ to start squashing.
427 instQueue.squash(tid);
428
429 // Tell the LDSTQ to start squashing.
430#if THE_ISA == ALPHA_ISA
431 ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
432#else
430#if ISA_HAS_DELAY_SLOT
433 ldstQueue.squash(fromCommit->commitInfo[tid].bdelayDoneSeqNum, tid);
431 ldstQueue.squash(fromCommit->commitInfo[tid].bdelayDoneSeqNum, tid);
432#else
433 ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
434#endif
435 updatedQueues = true;
436
437 // Clear the skid buffer in case it has any data in it.
438 DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
439 tid, fromCommit->commitInfo[tid].bdelayDoneSeqNum);
440
441 while (!skidBuffer[tid].empty()) {
434#endif
435 updatedQueues = true;
436
437 // Clear the skid buffer in case it has any data in it.
438 DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
439 tid, fromCommit->commitInfo[tid].bdelayDoneSeqNum);
440
441 while (!skidBuffer[tid].empty()) {
442#if THE_ISA != ALPHA_ISA
442#if ISA_HAS_DELAY_SLOT
443 if (skidBuffer[tid].front()->seqNum <=
444 fromCommit->commitInfo[tid].bdelayDoneSeqNum) {
445 DPRINTF(IEW, "[tid:%i]: Cannot remove skidbuffer instructions "
446 "that occur before delay slot [sn:%i].\n",
447 fromCommit->commitInfo[tid].bdelayDoneSeqNum,
448 tid);
449 break;
450 } else {
451 DPRINTF(IEW, "[tid:%i]: Removing instruction [sn:%i] from "
452 "skidBuffer.\n", tid, skidBuffer[tid].front()->seqNum);
453 }
454#endif
455 if (skidBuffer[tid].front()->isLoad() ||
456 skidBuffer[tid].front()->isStore() ) {
457 toRename->iewInfo[tid].dispatchedToLSQ++;
458 }
459
460 toRename->iewInfo[tid].dispatched++;
461
462 skidBuffer[tid].pop();
463 }
464
465 bdelayDoneSeqNum[tid] = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
466
467 emptyRenameInsts(tid);
468}
469
470template<class Impl>
471void
472DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
473{
474 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
475 "[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
476
477 toCommit->squash[tid] = true;
478 toCommit->squashedSeqNum[tid] = inst->seqNum;
479 toCommit->mispredPC[tid] = inst->readPC();
480 toCommit->branchMispredict[tid] = true;
481
443 if (skidBuffer[tid].front()->seqNum <=
444 fromCommit->commitInfo[tid].bdelayDoneSeqNum) {
445 DPRINTF(IEW, "[tid:%i]: Cannot remove skidbuffer instructions "
446 "that occur before delay slot [sn:%i].\n",
447 fromCommit->commitInfo[tid].bdelayDoneSeqNum,
448 tid);
449 break;
450 } else {
451 DPRINTF(IEW, "[tid:%i]: Removing instruction [sn:%i] from "
452 "skidBuffer.\n", tid, skidBuffer[tid].front()->seqNum);
453 }
454#endif
455 if (skidBuffer[tid].front()->isLoad() ||
456 skidBuffer[tid].front()->isStore() ) {
457 toRename->iewInfo[tid].dispatchedToLSQ++;
458 }
459
460 toRename->iewInfo[tid].dispatched++;
461
462 skidBuffer[tid].pop();
463 }
464
465 bdelayDoneSeqNum[tid] = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
466
467 emptyRenameInsts(tid);
468}
469
470template<class Impl>
471void
472DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
473{
474 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
475 "[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
476
477 toCommit->squash[tid] = true;
478 toCommit->squashedSeqNum[tid] = inst->seqNum;
479 toCommit->mispredPC[tid] = inst->readPC();
480 toCommit->branchMispredict[tid] = true;
481
482#if THE_ISA == ALPHA_ISA
483 toCommit->branchTaken[tid] = inst->readNextPC() !=
484 (inst->readPC() + sizeof(TheISA::MachInst));
485 toCommit->nextPC[tid] = inst->readNextPC();
486#else
482#if ISA_HAS_DELAY_SLOT
487 bool branch_taken = inst->readNextNPC() !=
488 (inst->readNextPC() + sizeof(TheISA::MachInst));
489
490 toCommit->branchTaken[tid] = branch_taken;
491
492 toCommit->condDelaySlotBranch[tid] = inst->isCondDelaySlot();
493
494 if (inst->isCondDelaySlot() && branch_taken) {
495 toCommit->nextPC[tid] = inst->readNextPC();
496 } else {
497 toCommit->nextPC[tid] = inst->readNextNPC();
498 }
483 bool branch_taken = inst->readNextNPC() !=
484 (inst->readNextPC() + sizeof(TheISA::MachInst));
485
486 toCommit->branchTaken[tid] = branch_taken;
487
488 toCommit->condDelaySlotBranch[tid] = inst->isCondDelaySlot();
489
490 if (inst->isCondDelaySlot() && branch_taken) {
491 toCommit->nextPC[tid] = inst->readNextPC();
492 } else {
493 toCommit->nextPC[tid] = inst->readNextNPC();
494 }
495#else
496 toCommit->branchTaken[tid] = inst->readNextPC() !=
497 (inst->readPC() + sizeof(TheISA::MachInst));
498 toCommit->nextPC[tid] = inst->readNextPC();
499#endif
500
501 toCommit->includeSquashInst[tid] = false;
502
503 wroteToTimeBuffer = true;
504}
505
506template<class Impl>
507void
508DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
509{
510 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
511 "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
512
513 toCommit->squash[tid] = true;
514 toCommit->squashedSeqNum[tid] = inst->seqNum;
515 toCommit->nextPC[tid] = inst->readNextPC();
516
517 toCommit->includeSquashInst[tid] = false;
518
519 wroteToTimeBuffer = true;
520}
521
522template<class Impl>
523void
524DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
525{
526 DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
527 "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
528
529 toCommit->squash[tid] = true;
530 toCommit->squashedSeqNum[tid] = inst->seqNum;
531 toCommit->nextPC[tid] = inst->readPC();
532
533 // Must include the broadcasted SN in the squash.
534 toCommit->includeSquashInst[tid] = true;
535
536 ldstQueue.setLoadBlockedHandled(tid);
537
538 wroteToTimeBuffer = true;
539}
540
541template<class Impl>
542void
543DefaultIEW<Impl>::block(unsigned tid)
544{
545 DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
546
547 if (dispatchStatus[tid] != Blocked &&
548 dispatchStatus[tid] != Unblocking) {
549 toRename->iewBlock[tid] = true;
550 wroteToTimeBuffer = true;
551 }
552
553 // Add the current inputs to the skid buffer so they can be
554 // reprocessed when this stage unblocks.
555 skidInsert(tid);
556
557 dispatchStatus[tid] = Blocked;
558}
559
560template<class Impl>
561void
562DefaultIEW<Impl>::unblock(unsigned tid)
563{
564 DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
565 "buffer %u.\n",tid, tid);
566
567 // If the skid bufffer is empty, signal back to previous stages to unblock.
568 // Also switch status to running.
569 if (skidBuffer[tid].empty()) {
570 toRename->iewUnblock[tid] = true;
571 wroteToTimeBuffer = true;
572 DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
573 dispatchStatus[tid] = Running;
574 }
575}
576
577template<class Impl>
578void
579DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
580{
581 instQueue.wakeDependents(inst);
582}
583
584template<class Impl>
585void
586DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
587{
588 instQueue.rescheduleMemInst(inst);
589}
590
591template<class Impl>
592void
593DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
594{
595 instQueue.replayMemInst(inst);
596}
597
598template<class Impl>
599void
600DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
601{
602 // First check the time slot that this instruction will write
603 // to. If there are free write ports at the time, then go ahead
604 // and write the instruction to that time. If there are not,
605 // keep looking back to see where's the first time there's a
606 // free slot.
607 while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
608 ++wbNumInst;
609 if (wbNumInst == wbWidth) {
610 ++wbCycle;
611 wbNumInst = 0;
612 }
613
614 assert((wbCycle * wbWidth + wbNumInst) < wbMax);
615 }
616
617 // Add finished instruction to queue to commit.
618 (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
619 (*iewQueue)[wbCycle].size++;
620}
621
622template <class Impl>
623unsigned
624DefaultIEW<Impl>::validInstsFromRename()
625{
626 unsigned inst_count = 0;
627
628 for (int i=0; i<fromRename->size; i++) {
629 if (!fromRename->insts[i]->isSquashed())
630 inst_count++;
631 }
632
633 return inst_count;
634}
635
636template<class Impl>
637void
638DefaultIEW<Impl>::skidInsert(unsigned tid)
639{
640 DynInstPtr inst = NULL;
641
642 while (!insts[tid].empty()) {
643 inst = insts[tid].front();
644
645 insts[tid].pop();
646
647 DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
648 "dispatch skidBuffer %i\n",tid, inst->seqNum,
649 inst->readPC(),tid);
650
651 skidBuffer[tid].push(inst);
652 }
653
654 assert(skidBuffer[tid].size() <= skidBufferMax &&
655 "Skidbuffer Exceeded Max Size");
656}
657
658template<class Impl>
659int
660DefaultIEW<Impl>::skidCount()
661{
662 int max=0;
663
664 std::list<unsigned>::iterator threads = (*activeThreads).begin();
665
666 while (threads != (*activeThreads).end()) {
667 unsigned thread_count = skidBuffer[*threads++].size();
668 if (max < thread_count)
669 max = thread_count;
670 }
671
672 return max;
673}
674
675template<class Impl>
676bool
677DefaultIEW<Impl>::skidsEmpty()
678{
679 std::list<unsigned>::iterator threads = (*activeThreads).begin();
680
681 while (threads != (*activeThreads).end()) {
682 if (!skidBuffer[*threads++].empty())
683 return false;
684 }
685
686 return true;
687}
688
689template <class Impl>
690void
691DefaultIEW<Impl>::updateStatus()
692{
693 bool any_unblocking = false;
694
695 std::list<unsigned>::iterator threads = (*activeThreads).begin();
696
697 threads = (*activeThreads).begin();
698
699 while (threads != (*activeThreads).end()) {
700 unsigned tid = *threads++;
701
702 if (dispatchStatus[tid] == Unblocking) {
703 any_unblocking = true;
704 break;
705 }
706 }
707
708 // If there are no ready instructions waiting to be scheduled by the IQ,
709 // and there's no stores waiting to write back, and dispatch is not
710 // unblocking, then there is no internal activity for the IEW stage.
711 if (_status == Active && !instQueue.hasReadyInsts() &&
712 !ldstQueue.willWB() && !any_unblocking) {
713 DPRINTF(IEW, "IEW switching to idle\n");
714
715 deactivateStage();
716
717 _status = Inactive;
718 } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
719 ldstQueue.willWB() ||
720 any_unblocking)) {
721 // Otherwise there is internal activity. Set to active.
722 DPRINTF(IEW, "IEW switching to active\n");
723
724 activateStage();
725
726 _status = Active;
727 }
728}
729
730template <class Impl>
731void
732DefaultIEW<Impl>::resetEntries()
733{
734 instQueue.resetEntries();
735 ldstQueue.resetEntries();
736}
737
738template <class Impl>
739void
740DefaultIEW<Impl>::readStallSignals(unsigned tid)
741{
742 if (fromCommit->commitBlock[tid]) {
743 stalls[tid].commit = true;
744 }
745
746 if (fromCommit->commitUnblock[tid]) {
747 assert(stalls[tid].commit);
748 stalls[tid].commit = false;
749 }
750}
751
752template <class Impl>
753bool
754DefaultIEW<Impl>::checkStall(unsigned tid)
755{
756 bool ret_val(false);
757
758 if (stalls[tid].commit) {
759 DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
760 ret_val = true;
761 } else if (instQueue.isFull(tid)) {
762 DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid);
763 ret_val = true;
764 } else if (ldstQueue.isFull(tid)) {
765 DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
766
767 if (ldstQueue.numLoads(tid) > 0 ) {
768
769 DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
770 tid,ldstQueue.getLoadHeadSeqNum(tid));
771 }
772
773 if (ldstQueue.numStores(tid) > 0) {
774
775 DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
776 tid,ldstQueue.getStoreHeadSeqNum(tid));
777 }
778
779 ret_val = true;
780 } else if (ldstQueue.isStalled(tid)) {
781 DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
782 ret_val = true;
783 }
784
785 return ret_val;
786}
787
788template <class Impl>
789void
790DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
791{
792 // Check if there's a squash signal, squash if there is
793 // Check stall signals, block if there is.
794 // If status was Blocked
795 // if so then go to unblocking
796 // If status was Squashing
797 // check if squashing is not high. Switch to running this cycle.
798
799 readStallSignals(tid);
800
801 if (fromCommit->commitInfo[tid].squash) {
802 squash(tid);
803
804 if (dispatchStatus[tid] == Blocked ||
805 dispatchStatus[tid] == Unblocking) {
806 toRename->iewUnblock[tid] = true;
807 wroteToTimeBuffer = true;
808 }
809
810 dispatchStatus[tid] = Squashing;
811
812 fetchRedirect[tid] = false;
813 return;
814 }
815
816 if (fromCommit->commitInfo[tid].robSquashing) {
817 DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
818
819 dispatchStatus[tid] = Squashing;
820
821 emptyRenameInsts(tid);
822 wroteToTimeBuffer = true;
823 return;
824 }
825
826 if (checkStall(tid)) {
827 block(tid);
828 dispatchStatus[tid] = Blocked;
829 return;
830 }
831
832 if (dispatchStatus[tid] == Blocked) {
833 // Status from previous cycle was blocked, but there are no more stall
834 // conditions. Switch over to unblocking.
835 DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
836 tid);
837
838 dispatchStatus[tid] = Unblocking;
839
840 unblock(tid);
841
842 return;
843 }
844
845 if (dispatchStatus[tid] == Squashing) {
846 // Switch status to running if rename isn't being told to block or
847 // squash this cycle.
848 DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
849 tid);
850
851 dispatchStatus[tid] = Running;
852
853 return;
854 }
855}
856
857template <class Impl>
858void
859DefaultIEW<Impl>::sortInsts()
860{
861 int insts_from_rename = fromRename->size;
862#ifdef DEBUG
499#endif
500
501 toCommit->includeSquashInst[tid] = false;
502
503 wroteToTimeBuffer = true;
504}
505
506template<class Impl>
507void
508DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
509{
510 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
511 "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
512
513 toCommit->squash[tid] = true;
514 toCommit->squashedSeqNum[tid] = inst->seqNum;
515 toCommit->nextPC[tid] = inst->readNextPC();
516
517 toCommit->includeSquashInst[tid] = false;
518
519 wroteToTimeBuffer = true;
520}
521
522template<class Impl>
523void
524DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
525{
526 DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
527 "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
528
529 toCommit->squash[tid] = true;
530 toCommit->squashedSeqNum[tid] = inst->seqNum;
531 toCommit->nextPC[tid] = inst->readPC();
532
533 // Must include the broadcasted SN in the squash.
534 toCommit->includeSquashInst[tid] = true;
535
536 ldstQueue.setLoadBlockedHandled(tid);
537
538 wroteToTimeBuffer = true;
539}
540
541template<class Impl>
542void
543DefaultIEW<Impl>::block(unsigned tid)
544{
545 DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
546
547 if (dispatchStatus[tid] != Blocked &&
548 dispatchStatus[tid] != Unblocking) {
549 toRename->iewBlock[tid] = true;
550 wroteToTimeBuffer = true;
551 }
552
553 // Add the current inputs to the skid buffer so they can be
554 // reprocessed when this stage unblocks.
555 skidInsert(tid);
556
557 dispatchStatus[tid] = Blocked;
558}
559
560template<class Impl>
561void
562DefaultIEW<Impl>::unblock(unsigned tid)
563{
564 DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
565 "buffer %u.\n",tid, tid);
566
567 // If the skid bufffer is empty, signal back to previous stages to unblock.
568 // Also switch status to running.
569 if (skidBuffer[tid].empty()) {
570 toRename->iewUnblock[tid] = true;
571 wroteToTimeBuffer = true;
572 DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
573 dispatchStatus[tid] = Running;
574 }
575}
576
577template<class Impl>
578void
579DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
580{
581 instQueue.wakeDependents(inst);
582}
583
584template<class Impl>
585void
586DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
587{
588 instQueue.rescheduleMemInst(inst);
589}
590
591template<class Impl>
592void
593DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
594{
595 instQueue.replayMemInst(inst);
596}
597
598template<class Impl>
599void
600DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
601{
602 // First check the time slot that this instruction will write
603 // to. If there are free write ports at the time, then go ahead
604 // and write the instruction to that time. If there are not,
605 // keep looking back to see where's the first time there's a
606 // free slot.
607 while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
608 ++wbNumInst;
609 if (wbNumInst == wbWidth) {
610 ++wbCycle;
611 wbNumInst = 0;
612 }
613
614 assert((wbCycle * wbWidth + wbNumInst) < wbMax);
615 }
616
617 // Add finished instruction to queue to commit.
618 (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
619 (*iewQueue)[wbCycle].size++;
620}
621
622template <class Impl>
623unsigned
624DefaultIEW<Impl>::validInstsFromRename()
625{
626 unsigned inst_count = 0;
627
628 for (int i=0; i<fromRename->size; i++) {
629 if (!fromRename->insts[i]->isSquashed())
630 inst_count++;
631 }
632
633 return inst_count;
634}
635
636template<class Impl>
637void
638DefaultIEW<Impl>::skidInsert(unsigned tid)
639{
640 DynInstPtr inst = NULL;
641
642 while (!insts[tid].empty()) {
643 inst = insts[tid].front();
644
645 insts[tid].pop();
646
647 DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
648 "dispatch skidBuffer %i\n",tid, inst->seqNum,
649 inst->readPC(),tid);
650
651 skidBuffer[tid].push(inst);
652 }
653
654 assert(skidBuffer[tid].size() <= skidBufferMax &&
655 "Skidbuffer Exceeded Max Size");
656}
657
658template<class Impl>
659int
660DefaultIEW<Impl>::skidCount()
661{
662 int max=0;
663
664 std::list<unsigned>::iterator threads = (*activeThreads).begin();
665
666 while (threads != (*activeThreads).end()) {
667 unsigned thread_count = skidBuffer[*threads++].size();
668 if (max < thread_count)
669 max = thread_count;
670 }
671
672 return max;
673}
674
675template<class Impl>
676bool
677DefaultIEW<Impl>::skidsEmpty()
678{
679 std::list<unsigned>::iterator threads = (*activeThreads).begin();
680
681 while (threads != (*activeThreads).end()) {
682 if (!skidBuffer[*threads++].empty())
683 return false;
684 }
685
686 return true;
687}
688
689template <class Impl>
690void
691DefaultIEW<Impl>::updateStatus()
692{
693 bool any_unblocking = false;
694
695 std::list<unsigned>::iterator threads = (*activeThreads).begin();
696
697 threads = (*activeThreads).begin();
698
699 while (threads != (*activeThreads).end()) {
700 unsigned tid = *threads++;
701
702 if (dispatchStatus[tid] == Unblocking) {
703 any_unblocking = true;
704 break;
705 }
706 }
707
708 // If there are no ready instructions waiting to be scheduled by the IQ,
709 // and there's no stores waiting to write back, and dispatch is not
710 // unblocking, then there is no internal activity for the IEW stage.
711 if (_status == Active && !instQueue.hasReadyInsts() &&
712 !ldstQueue.willWB() && !any_unblocking) {
713 DPRINTF(IEW, "IEW switching to idle\n");
714
715 deactivateStage();
716
717 _status = Inactive;
718 } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
719 ldstQueue.willWB() ||
720 any_unblocking)) {
721 // Otherwise there is internal activity. Set to active.
722 DPRINTF(IEW, "IEW switching to active\n");
723
724 activateStage();
725
726 _status = Active;
727 }
728}
729
730template <class Impl>
731void
732DefaultIEW<Impl>::resetEntries()
733{
734 instQueue.resetEntries();
735 ldstQueue.resetEntries();
736}
737
738template <class Impl>
739void
740DefaultIEW<Impl>::readStallSignals(unsigned tid)
741{
742 if (fromCommit->commitBlock[tid]) {
743 stalls[tid].commit = true;
744 }
745
746 if (fromCommit->commitUnblock[tid]) {
747 assert(stalls[tid].commit);
748 stalls[tid].commit = false;
749 }
750}
751
752template <class Impl>
753bool
754DefaultIEW<Impl>::checkStall(unsigned tid)
755{
756 bool ret_val(false);
757
758 if (stalls[tid].commit) {
759 DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
760 ret_val = true;
761 } else if (instQueue.isFull(tid)) {
762 DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid);
763 ret_val = true;
764 } else if (ldstQueue.isFull(tid)) {
765 DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
766
767 if (ldstQueue.numLoads(tid) > 0 ) {
768
769 DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
770 tid,ldstQueue.getLoadHeadSeqNum(tid));
771 }
772
773 if (ldstQueue.numStores(tid) > 0) {
774
775 DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
776 tid,ldstQueue.getStoreHeadSeqNum(tid));
777 }
778
779 ret_val = true;
780 } else if (ldstQueue.isStalled(tid)) {
781 DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
782 ret_val = true;
783 }
784
785 return ret_val;
786}
787
788template <class Impl>
789void
790DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
791{
792 // Check if there's a squash signal, squash if there is
793 // Check stall signals, block if there is.
794 // If status was Blocked
795 // if so then go to unblocking
796 // If status was Squashing
797 // check if squashing is not high. Switch to running this cycle.
798
799 readStallSignals(tid);
800
801 if (fromCommit->commitInfo[tid].squash) {
802 squash(tid);
803
804 if (dispatchStatus[tid] == Blocked ||
805 dispatchStatus[tid] == Unblocking) {
806 toRename->iewUnblock[tid] = true;
807 wroteToTimeBuffer = true;
808 }
809
810 dispatchStatus[tid] = Squashing;
811
812 fetchRedirect[tid] = false;
813 return;
814 }
815
816 if (fromCommit->commitInfo[tid].robSquashing) {
817 DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
818
819 dispatchStatus[tid] = Squashing;
820
821 emptyRenameInsts(tid);
822 wroteToTimeBuffer = true;
823 return;
824 }
825
826 if (checkStall(tid)) {
827 block(tid);
828 dispatchStatus[tid] = Blocked;
829 return;
830 }
831
832 if (dispatchStatus[tid] == Blocked) {
833 // Status from previous cycle was blocked, but there are no more stall
834 // conditions. Switch over to unblocking.
835 DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
836 tid);
837
838 dispatchStatus[tid] = Unblocking;
839
840 unblock(tid);
841
842 return;
843 }
844
845 if (dispatchStatus[tid] == Squashing) {
846 // Switch status to running if rename isn't being told to block or
847 // squash this cycle.
848 DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
849 tid);
850
851 dispatchStatus[tid] = Running;
852
853 return;
854 }
855}
856
857template <class Impl>
858void
859DefaultIEW<Impl>::sortInsts()
860{
861 int insts_from_rename = fromRename->size;
862#ifdef DEBUG
863#if THE_ISA == ALPHA_ISA
863#if !ISA_HAS_DELAY_SLOT
864 for (int i = 0; i < numThreads; i++)
865 assert(insts[i].empty());
866#endif
867#endif
868 for (int i = 0; i < insts_from_rename; ++i) {
869 insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
870 }
871}
872
873template <class Impl>
874void
875DefaultIEW<Impl>::emptyRenameInsts(unsigned tid)
876{
877 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions until "
878 "[sn:%i].\n", tid, bdelayDoneSeqNum[tid]);
879
880 while (!insts[tid].empty()) {
864 for (int i = 0; i < numThreads; i++)
865 assert(insts[i].empty());
866#endif
867#endif
868 for (int i = 0; i < insts_from_rename; ++i) {
869 insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
870 }
871}
872
873template <class Impl>
874void
875DefaultIEW<Impl>::emptyRenameInsts(unsigned tid)
876{
877 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions until "
878 "[sn:%i].\n", tid, bdelayDoneSeqNum[tid]);
879
880 while (!insts[tid].empty()) {
881
882#if THE_ISA != ALPHA_ISA
881#if ISA_HAS_DELAY_SLOT
883 if (insts[tid].front()->seqNum <= bdelayDoneSeqNum[tid]) {
884 DPRINTF(IEW, "[tid:%i]: Done removing, cannot remove instruction"
885 " that occurs at or before delay slot [sn:%i].\n",
886 tid, bdelayDoneSeqNum[tid]);
887 break;
888 } else {
889 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instruction "
890 "[sn:%i].\n", tid, insts[tid].front()->seqNum);
891 }
892#endif
893
894 if (insts[tid].front()->isLoad() ||
895 insts[tid].front()->isStore() ) {
896 toRename->iewInfo[tid].dispatchedToLSQ++;
897 }
898
899 toRename->iewInfo[tid].dispatched++;
900
901 insts[tid].pop();
902 }
903}
904
905template <class Impl>
906void
907DefaultIEW<Impl>::wakeCPU()
908{
909 cpu->wakeCPU();
910}
911
912template <class Impl>
913void
914DefaultIEW<Impl>::activityThisCycle()
915{
916 DPRINTF(Activity, "Activity this cycle.\n");
917 cpu->activityThisCycle();
918}
919
920template <class Impl>
921inline void
922DefaultIEW<Impl>::activateStage()
923{
924 DPRINTF(Activity, "Activating stage.\n");
925 cpu->activateStage(O3CPU::IEWIdx);
926}
927
928template <class Impl>
929inline void
930DefaultIEW<Impl>::deactivateStage()
931{
932 DPRINTF(Activity, "Deactivating stage.\n");
933 cpu->deactivateStage(O3CPU::IEWIdx);
934}
935
936template<class Impl>
937void
938DefaultIEW<Impl>::dispatch(unsigned tid)
939{
940 // If status is Running or idle,
941 // call dispatchInsts()
942 // If status is Unblocking,
943 // buffer any instructions coming from rename
944 // continue trying to empty skid buffer
945 // check if stall conditions have passed
946
947 if (dispatchStatus[tid] == Blocked) {
948 ++iewBlockCycles;
949
950 } else if (dispatchStatus[tid] == Squashing) {
951 ++iewSquashCycles;
952 }
953
954 // Dispatch should try to dispatch as many instructions as its bandwidth
955 // will allow, as long as it is not currently blocked.
956 if (dispatchStatus[tid] == Running ||
957 dispatchStatus[tid] == Idle) {
958 DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
959 "dispatch.\n", tid);
960
961 dispatchInsts(tid);
962 } else if (dispatchStatus[tid] == Unblocking) {
963 // Make sure that the skid buffer has something in it if the
964 // status is unblocking.
965 assert(!skidsEmpty());
966
967 // If the status was unblocking, then instructions from the skid
968 // buffer were used. Remove those instructions and handle
969 // the rest of unblocking.
970 dispatchInsts(tid);
971
972 ++iewUnblockCycles;
973
974 if (validInstsFromRename() && dispatchedAllInsts) {
975 // Add the current inputs to the skid buffer so they can be
976 // reprocessed when this stage unblocks.
977 skidInsert(tid);
978 }
979
980 unblock(tid);
981 }
982}
983
984template <class Impl>
985void
986DefaultIEW<Impl>::dispatchInsts(unsigned tid)
987{
988 dispatchedAllInsts = true;
989
990 // Obtain instructions from skid buffer if unblocking, or queue from rename
991 // otherwise.
992 std::queue<DynInstPtr> &insts_to_dispatch =
993 dispatchStatus[tid] == Unblocking ?
994 skidBuffer[tid] : insts[tid];
995
996 int insts_to_add = insts_to_dispatch.size();
997
998 DynInstPtr inst;
999 bool add_to_iq = false;
1000 int dis_num_inst = 0;
1001
1002 // Loop through the instructions, putting them in the instruction
1003 // queue.
1004 for ( ; dis_num_inst < insts_to_add &&
1005 dis_num_inst < dispatchWidth;
1006 ++dis_num_inst)
1007 {
1008 inst = insts_to_dispatch.front();
1009
1010 if (dispatchStatus[tid] == Unblocking) {
1011 DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
1012 "buffer\n", tid);
1013 }
1014
1015 // Make sure there's a valid instruction there.
1016 assert(inst);
1017
1018 DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
1019 "IQ.\n",
1020 tid, inst->readPC(), inst->seqNum, inst->threadNumber);
1021
1022 // Be sure to mark these instructions as ready so that the
1023 // commit stage can go ahead and execute them, and mark
1024 // them as issued so the IQ doesn't reprocess them.
1025
1026 // Check for squashed instructions.
1027 if (inst->isSquashed()) {
1028 DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
1029 "not adding to IQ.\n", tid);
1030
1031 ++iewDispSquashedInsts;
1032
1033 insts_to_dispatch.pop();
1034
1035 //Tell Rename That An Instruction has been processed
1036 if (inst->isLoad() || inst->isStore()) {
1037 toRename->iewInfo[tid].dispatchedToLSQ++;
1038 }
1039 toRename->iewInfo[tid].dispatched++;
1040
1041 continue;
1042 }
1043
1044 // Check for full conditions.
1045 if (instQueue.isFull(tid)) {
1046 DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1047
1048 // Call function to start blocking.
1049 block(tid);
1050
1051 // Set unblock to false. Special case where we are using
1052 // skidbuffer (unblocking) instructions but then we still
1053 // get full in the IQ.
1054 toRename->iewUnblock[tid] = false;
1055
1056 dispatchedAllInsts = false;
1057
1058 ++iewIQFullEvents;
1059 break;
1060 } else if (ldstQueue.isFull(tid)) {
1061 DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1062
1063 // Call function to start blocking.
1064 block(tid);
1065
1066 // Set unblock to false. Special case where we are using
1067 // skidbuffer (unblocking) instructions but then we still
1068 // get full in the IQ.
1069 toRename->iewUnblock[tid] = false;
1070
1071 dispatchedAllInsts = false;
1072
1073 ++iewLSQFullEvents;
1074 break;
1075 }
1076
1077 // Otherwise issue the instruction just fine.
1078 if (inst->isLoad()) {
1079 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1080 "encountered, adding to LSQ.\n", tid);
1081
1082 // Reserve a spot in the load store queue for this
1083 // memory access.
1084 ldstQueue.insertLoad(inst);
1085
1086 ++iewDispLoadInsts;
1087
1088 add_to_iq = true;
1089
1090 toRename->iewInfo[tid].dispatchedToLSQ++;
1091 } else if (inst->isStore()) {
1092 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1093 "encountered, adding to LSQ.\n", tid);
1094
1095 ldstQueue.insertStore(inst);
1096
1097 ++iewDispStoreInsts;
1098
1099 if (inst->isStoreConditional()) {
1100 // Store conditionals need to be set as "canCommit()"
1101 // so that commit can process them when they reach the
1102 // head of commit.
1103 // @todo: This is somewhat specific to Alpha.
1104 inst->setCanCommit();
1105 instQueue.insertNonSpec(inst);
1106 add_to_iq = false;
1107
1108 ++iewDispNonSpecInsts;
1109 } else {
1110 add_to_iq = true;
1111 }
1112
1113 toRename->iewInfo[tid].dispatchedToLSQ++;
1114#if FULL_SYSTEM
1115 } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1116 // Same as non-speculative stores.
1117 inst->setCanCommit();
1118 instQueue.insertBarrier(inst);
1119 add_to_iq = false;
1120#endif
1121 } else if (inst->isNonSpeculative()) {
1122 DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1123 "encountered, skipping.\n", tid);
1124
1125 // Same as non-speculative stores.
1126 inst->setCanCommit();
1127
1128 // Specifically insert it as nonspeculative.
1129 instQueue.insertNonSpec(inst);
1130
1131 ++iewDispNonSpecInsts;
1132
1133 add_to_iq = false;
1134 } else if (inst->isNop()) {
1135 DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1136 "skipping.\n", tid);
1137
1138 inst->setIssued();
1139 inst->setExecuted();
1140 inst->setCanCommit();
1141
1142 instQueue.recordProducer(inst);
1143
1144 iewExecutedNop[tid]++;
1145
1146 add_to_iq = false;
1147 } else if (inst->isExecuted()) {
1148 assert(0 && "Instruction shouldn't be executed.\n");
1149 DPRINTF(IEW, "Issue: Executed branch encountered, "
1150 "skipping.\n");
1151
1152 inst->setIssued();
1153 inst->setCanCommit();
1154
1155 instQueue.recordProducer(inst);
1156
1157 add_to_iq = false;
1158 } else {
1159 add_to_iq = true;
1160 }
1161
1162 // If the instruction queue is not full, then add the
1163 // instruction.
1164 if (add_to_iq) {
1165 instQueue.insert(inst);
1166 }
1167
1168 insts_to_dispatch.pop();
1169
1170 toRename->iewInfo[tid].dispatched++;
1171
1172 ++iewDispatchedInsts;
1173 }
1174
1175 if (!insts_to_dispatch.empty()) {
1176 DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1177 block(tid);
1178 toRename->iewUnblock[tid] = false;
1179 }
1180
1181 if (dispatchStatus[tid] == Idle && dis_num_inst) {
1182 dispatchStatus[tid] = Running;
1183
1184 updatedQueues = true;
1185 }
1186
1187 dis_num_inst = 0;
1188}
1189
1190template <class Impl>
1191void
1192DefaultIEW<Impl>::printAvailableInsts()
1193{
1194 int inst = 0;
1195
1196 std::cout << "Available Instructions: ";
1197
1198 while (fromIssue->insts[inst]) {
1199
1200 if (inst%3==0) std::cout << "\n\t";
1201
1202 std::cout << "PC: " << fromIssue->insts[inst]->readPC()
1203 << " TN: " << fromIssue->insts[inst]->threadNumber
1204 << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1205
1206 inst++;
1207
1208 }
1209
1210 std::cout << "\n";
1211}
1212
1213template <class Impl>
1214void
1215DefaultIEW<Impl>::executeInsts()
1216{
1217 wbNumInst = 0;
1218 wbCycle = 0;
1219
1220 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1221
1222 while (threads != (*activeThreads).end()) {
1223 unsigned tid = *threads++;
1224 fetchRedirect[tid] = false;
1225 }
1226
1227 // Uncomment this if you want to see all available instructions.
1228// printAvailableInsts();
1229
1230 // Execute/writeback any instructions that are available.
1231 int insts_to_execute = fromIssue->size;
1232 int inst_num = 0;
1233 for (; inst_num < insts_to_execute;
1234 ++inst_num) {
1235
1236 DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1237
1238 DynInstPtr inst = instQueue.getInstToExecute();
1239
1240 DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
1241 inst->readPC(), inst->threadNumber,inst->seqNum);
1242
1243 // Check if the instruction is squashed; if so then skip it
1244 if (inst->isSquashed()) {
1245 DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1246
1247 // Consider this instruction executed so that commit can go
1248 // ahead and retire the instruction.
1249 inst->setExecuted();
1250
1251 // Not sure if I should set this here or just let commit try to
1252 // commit any squashed instructions. I like the latter a bit more.
1253 inst->setCanCommit();
1254
1255 ++iewExecSquashedInsts;
1256
1257 decrWb(inst->seqNum);
1258 continue;
1259 }
1260
1261 Fault fault = NoFault;
1262
1263 // Execute instruction.
1264 // Note that if the instruction faults, it will be handled
1265 // at the commit stage.
1266 if (inst->isMemRef() &&
1267 (!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
1268 DPRINTF(IEW, "Execute: Calculating address for memory "
1269 "reference.\n");
1270
1271 // Tell the LDSTQ to execute this instruction (if it is a load).
1272 if (inst->isLoad()) {
1273 // Loads will mark themselves as executed, and their writeback
1274 // event adds the instruction to the queue to commit
1275 fault = ldstQueue.executeLoad(inst);
1276 } else if (inst->isStore()) {
1277 ldstQueue.executeStore(inst);
1278
1279 // If the store had a fault then it may not have a mem req
1280 if (inst->req && !(inst->req->getFlags() & LOCKED)) {
1281 inst->setExecuted();
1282
1283 instToCommit(inst);
1284 }
1285
1286 // Store conditionals will mark themselves as
1287 // executed, and their writeback event will add the
1288 // instruction to the queue to commit.
1289 } else {
1290 panic("Unexpected memory type!\n");
1291 }
1292
1293 } else {
1294 inst->execute();
1295
1296 inst->setExecuted();
1297
1298 instToCommit(inst);
1299 }
1300
1301 updateExeInstStats(inst);
1302
1303 // Check if branch prediction was correct, if not then we need
1304 // to tell commit to squash in flight instructions. Only
1305 // handle this if there hasn't already been something that
1306 // redirects fetch in this group of instructions.
1307
1308 // This probably needs to prioritize the redirects if a different
1309 // scheduler is used. Currently the scheduler schedules the oldest
1310 // instruction first, so the branch resolution order will be correct.
1311 unsigned tid = inst->threadNumber;
1312
1313 if (!fetchRedirect[tid]) {
1314
1315 if (inst->mispredicted()) {
1316 fetchRedirect[tid] = true;
1317
1318 DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
882 if (insts[tid].front()->seqNum <= bdelayDoneSeqNum[tid]) {
883 DPRINTF(IEW, "[tid:%i]: Done removing, cannot remove instruction"
884 " that occurs at or before delay slot [sn:%i].\n",
885 tid, bdelayDoneSeqNum[tid]);
886 break;
887 } else {
888 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instruction "
889 "[sn:%i].\n", tid, insts[tid].front()->seqNum);
890 }
891#endif
892
893 if (insts[tid].front()->isLoad() ||
894 insts[tid].front()->isStore() ) {
895 toRename->iewInfo[tid].dispatchedToLSQ++;
896 }
897
898 toRename->iewInfo[tid].dispatched++;
899
900 insts[tid].pop();
901 }
902}
903
904template <class Impl>
905void
906DefaultIEW<Impl>::wakeCPU()
907{
908 cpu->wakeCPU();
909}
910
911template <class Impl>
912void
913DefaultIEW<Impl>::activityThisCycle()
914{
915 DPRINTF(Activity, "Activity this cycle.\n");
916 cpu->activityThisCycle();
917}
918
919template <class Impl>
920inline void
921DefaultIEW<Impl>::activateStage()
922{
923 DPRINTF(Activity, "Activating stage.\n");
924 cpu->activateStage(O3CPU::IEWIdx);
925}
926
927template <class Impl>
928inline void
929DefaultIEW<Impl>::deactivateStage()
930{
931 DPRINTF(Activity, "Deactivating stage.\n");
932 cpu->deactivateStage(O3CPU::IEWIdx);
933}
934
935template<class Impl>
936void
937DefaultIEW<Impl>::dispatch(unsigned tid)
938{
939 // If status is Running or idle,
940 // call dispatchInsts()
941 // If status is Unblocking,
942 // buffer any instructions coming from rename
943 // continue trying to empty skid buffer
944 // check if stall conditions have passed
945
946 if (dispatchStatus[tid] == Blocked) {
947 ++iewBlockCycles;
948
949 } else if (dispatchStatus[tid] == Squashing) {
950 ++iewSquashCycles;
951 }
952
953 // Dispatch should try to dispatch as many instructions as its bandwidth
954 // will allow, as long as it is not currently blocked.
955 if (dispatchStatus[tid] == Running ||
956 dispatchStatus[tid] == Idle) {
957 DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
958 "dispatch.\n", tid);
959
960 dispatchInsts(tid);
961 } else if (dispatchStatus[tid] == Unblocking) {
962 // Make sure that the skid buffer has something in it if the
963 // status is unblocking.
964 assert(!skidsEmpty());
965
966 // If the status was unblocking, then instructions from the skid
967 // buffer were used. Remove those instructions and handle
968 // the rest of unblocking.
969 dispatchInsts(tid);
970
971 ++iewUnblockCycles;
972
973 if (validInstsFromRename() && dispatchedAllInsts) {
974 // Add the current inputs to the skid buffer so they can be
975 // reprocessed when this stage unblocks.
976 skidInsert(tid);
977 }
978
979 unblock(tid);
980 }
981}
982
983template <class Impl>
984void
985DefaultIEW<Impl>::dispatchInsts(unsigned tid)
986{
987 dispatchedAllInsts = true;
988
989 // Obtain instructions from skid buffer if unblocking, or queue from rename
990 // otherwise.
991 std::queue<DynInstPtr> &insts_to_dispatch =
992 dispatchStatus[tid] == Unblocking ?
993 skidBuffer[tid] : insts[tid];
994
995 int insts_to_add = insts_to_dispatch.size();
996
997 DynInstPtr inst;
998 bool add_to_iq = false;
999 int dis_num_inst = 0;
1000
1001 // Loop through the instructions, putting them in the instruction
1002 // queue.
1003 for ( ; dis_num_inst < insts_to_add &&
1004 dis_num_inst < dispatchWidth;
1005 ++dis_num_inst)
1006 {
1007 inst = insts_to_dispatch.front();
1008
1009 if (dispatchStatus[tid] == Unblocking) {
1010 DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
1011 "buffer\n", tid);
1012 }
1013
1014 // Make sure there's a valid instruction there.
1015 assert(inst);
1016
1017 DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
1018 "IQ.\n",
1019 tid, inst->readPC(), inst->seqNum, inst->threadNumber);
1020
1021 // Be sure to mark these instructions as ready so that the
1022 // commit stage can go ahead and execute them, and mark
1023 // them as issued so the IQ doesn't reprocess them.
1024
1025 // Check for squashed instructions.
1026 if (inst->isSquashed()) {
1027 DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
1028 "not adding to IQ.\n", tid);
1029
1030 ++iewDispSquashedInsts;
1031
1032 insts_to_dispatch.pop();
1033
1034 //Tell Rename That An Instruction has been processed
1035 if (inst->isLoad() || inst->isStore()) {
1036 toRename->iewInfo[tid].dispatchedToLSQ++;
1037 }
1038 toRename->iewInfo[tid].dispatched++;
1039
1040 continue;
1041 }
1042
1043 // Check for full conditions.
1044 if (instQueue.isFull(tid)) {
1045 DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1046
1047 // Call function to start blocking.
1048 block(tid);
1049
1050 // Set unblock to false. Special case where we are using
1051 // skidbuffer (unblocking) instructions but then we still
1052 // get full in the IQ.
1053 toRename->iewUnblock[tid] = false;
1054
1055 dispatchedAllInsts = false;
1056
1057 ++iewIQFullEvents;
1058 break;
1059 } else if (ldstQueue.isFull(tid)) {
1060 DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1061
1062 // Call function to start blocking.
1063 block(tid);
1064
1065 // Set unblock to false. Special case where we are using
1066 // skidbuffer (unblocking) instructions but then we still
1067 // get full in the IQ.
1068 toRename->iewUnblock[tid] = false;
1069
1070 dispatchedAllInsts = false;
1071
1072 ++iewLSQFullEvents;
1073 break;
1074 }
1075
1076 // Otherwise issue the instruction just fine.
1077 if (inst->isLoad()) {
1078 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1079 "encountered, adding to LSQ.\n", tid);
1080
1081 // Reserve a spot in the load store queue for this
1082 // memory access.
1083 ldstQueue.insertLoad(inst);
1084
1085 ++iewDispLoadInsts;
1086
1087 add_to_iq = true;
1088
1089 toRename->iewInfo[tid].dispatchedToLSQ++;
1090 } else if (inst->isStore()) {
1091 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1092 "encountered, adding to LSQ.\n", tid);
1093
1094 ldstQueue.insertStore(inst);
1095
1096 ++iewDispStoreInsts;
1097
1098 if (inst->isStoreConditional()) {
1099 // Store conditionals need to be set as "canCommit()"
1100 // so that commit can process them when they reach the
1101 // head of commit.
1102 // @todo: This is somewhat specific to Alpha.
1103 inst->setCanCommit();
1104 instQueue.insertNonSpec(inst);
1105 add_to_iq = false;
1106
1107 ++iewDispNonSpecInsts;
1108 } else {
1109 add_to_iq = true;
1110 }
1111
1112 toRename->iewInfo[tid].dispatchedToLSQ++;
1113#if FULL_SYSTEM
1114 } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1115 // Same as non-speculative stores.
1116 inst->setCanCommit();
1117 instQueue.insertBarrier(inst);
1118 add_to_iq = false;
1119#endif
1120 } else if (inst->isNonSpeculative()) {
1121 DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1122 "encountered, skipping.\n", tid);
1123
1124 // Same as non-speculative stores.
1125 inst->setCanCommit();
1126
1127 // Specifically insert it as nonspeculative.
1128 instQueue.insertNonSpec(inst);
1129
1130 ++iewDispNonSpecInsts;
1131
1132 add_to_iq = false;
1133 } else if (inst->isNop()) {
1134 DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1135 "skipping.\n", tid);
1136
1137 inst->setIssued();
1138 inst->setExecuted();
1139 inst->setCanCommit();
1140
1141 instQueue.recordProducer(inst);
1142
1143 iewExecutedNop[tid]++;
1144
1145 add_to_iq = false;
1146 } else if (inst->isExecuted()) {
1147 assert(0 && "Instruction shouldn't be executed.\n");
1148 DPRINTF(IEW, "Issue: Executed branch encountered, "
1149 "skipping.\n");
1150
1151 inst->setIssued();
1152 inst->setCanCommit();
1153
1154 instQueue.recordProducer(inst);
1155
1156 add_to_iq = false;
1157 } else {
1158 add_to_iq = true;
1159 }
1160
1161 // If the instruction queue is not full, then add the
1162 // instruction.
1163 if (add_to_iq) {
1164 instQueue.insert(inst);
1165 }
1166
1167 insts_to_dispatch.pop();
1168
1169 toRename->iewInfo[tid].dispatched++;
1170
1171 ++iewDispatchedInsts;
1172 }
1173
1174 if (!insts_to_dispatch.empty()) {
1175 DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1176 block(tid);
1177 toRename->iewUnblock[tid] = false;
1178 }
1179
1180 if (dispatchStatus[tid] == Idle && dis_num_inst) {
1181 dispatchStatus[tid] = Running;
1182
1183 updatedQueues = true;
1184 }
1185
1186 dis_num_inst = 0;
1187}
1188
1189template <class Impl>
1190void
1191DefaultIEW<Impl>::printAvailableInsts()
1192{
1193 int inst = 0;
1194
1195 std::cout << "Available Instructions: ";
1196
1197 while (fromIssue->insts[inst]) {
1198
1199 if (inst%3==0) std::cout << "\n\t";
1200
1201 std::cout << "PC: " << fromIssue->insts[inst]->readPC()
1202 << " TN: " << fromIssue->insts[inst]->threadNumber
1203 << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1204
1205 inst++;
1206
1207 }
1208
1209 std::cout << "\n";
1210}
1211
1212template <class Impl>
1213void
1214DefaultIEW<Impl>::executeInsts()
1215{
1216 wbNumInst = 0;
1217 wbCycle = 0;
1218
1219 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1220
1221 while (threads != (*activeThreads).end()) {
1222 unsigned tid = *threads++;
1223 fetchRedirect[tid] = false;
1224 }
1225
1226 // Uncomment this if you want to see all available instructions.
1227// printAvailableInsts();
1228
1229 // Execute/writeback any instructions that are available.
1230 int insts_to_execute = fromIssue->size;
1231 int inst_num = 0;
1232 for (; inst_num < insts_to_execute;
1233 ++inst_num) {
1234
1235 DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1236
1237 DynInstPtr inst = instQueue.getInstToExecute();
1238
1239 DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
1240 inst->readPC(), inst->threadNumber,inst->seqNum);
1241
1242 // Check if the instruction is squashed; if so then skip it
1243 if (inst->isSquashed()) {
1244 DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1245
1246 // Consider this instruction executed so that commit can go
1247 // ahead and retire the instruction.
1248 inst->setExecuted();
1249
1250 // Not sure if I should set this here or just let commit try to
1251 // commit any squashed instructions. I like the latter a bit more.
1252 inst->setCanCommit();
1253
1254 ++iewExecSquashedInsts;
1255
1256 decrWb(inst->seqNum);
1257 continue;
1258 }
1259
1260 Fault fault = NoFault;
1261
1262 // Execute instruction.
1263 // Note that if the instruction faults, it will be handled
1264 // at the commit stage.
1265 if (inst->isMemRef() &&
1266 (!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
1267 DPRINTF(IEW, "Execute: Calculating address for memory "
1268 "reference.\n");
1269
1270 // Tell the LDSTQ to execute this instruction (if it is a load).
1271 if (inst->isLoad()) {
1272 // Loads will mark themselves as executed, and their writeback
1273 // event adds the instruction to the queue to commit
1274 fault = ldstQueue.executeLoad(inst);
1275 } else if (inst->isStore()) {
1276 ldstQueue.executeStore(inst);
1277
1278 // If the store had a fault then it may not have a mem req
1279 if (inst->req && !(inst->req->getFlags() & LOCKED)) {
1280 inst->setExecuted();
1281
1282 instToCommit(inst);
1283 }
1284
1285 // Store conditionals will mark themselves as
1286 // executed, and their writeback event will add the
1287 // instruction to the queue to commit.
1288 } else {
1289 panic("Unexpected memory type!\n");
1290 }
1291
1292 } else {
1293 inst->execute();
1294
1295 inst->setExecuted();
1296
1297 instToCommit(inst);
1298 }
1299
1300 updateExeInstStats(inst);
1301
1302 // Check if branch prediction was correct, if not then we need
1303 // to tell commit to squash in flight instructions. Only
1304 // handle this if there hasn't already been something that
1305 // redirects fetch in this group of instructions.
1306
1307 // This probably needs to prioritize the redirects if a different
1308 // scheduler is used. Currently the scheduler schedules the oldest
1309 // instruction first, so the branch resolution order will be correct.
1310 unsigned tid = inst->threadNumber;
1311
1312 if (!fetchRedirect[tid]) {
1313
1314 if (inst->mispredicted()) {
1315 fetchRedirect[tid] = true;
1316
1317 DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1319#if THE_ISA == ALPHA_ISA
1318#if ISA_HAS_DELAY_SLOT
1320 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1319 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1321 inst->nextPC);
1320 inst->nextNPC);
1322#else
1323 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1321#else
1322 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1324 inst->nextNPC);
1323 inst->nextPC);
1325#endif
1326 // If incorrect, then signal the ROB that it must be squashed.
1327 squashDueToBranch(inst, tid);
1328
1329 if (inst->predTaken()) {
1330 predictedTakenIncorrect++;
1331 } else {
1332 predictedNotTakenIncorrect++;
1333 }
1334 } else if (ldstQueue.violation(tid)) {
1335 fetchRedirect[tid] = true;
1336
1337 // If there was an ordering violation, then get the
1338 // DynInst that caused the violation. Note that this
1339 // clears the violation signal.
1340 DynInstPtr violator;
1341 violator = ldstQueue.getMemDepViolator(tid);
1342
1343 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
1344 "%#x, inst PC: %#x. Addr is: %#x.\n",
1345 violator->readPC(), inst->readPC(), inst->physEffAddr);
1346
1347 // Tell the instruction queue that a violation has occured.
1348 instQueue.violation(inst, violator);
1349
1350 // Squash.
1351 squashDueToMemOrder(inst,tid);
1352
1353 ++memOrderViolationEvents;
1354 } else if (ldstQueue.loadBlocked(tid) &&
1355 !ldstQueue.isLoadBlockedHandled(tid)) {
1356 fetchRedirect[tid] = true;
1357
1358 DPRINTF(IEW, "Load operation couldn't execute because the "
1359 "memory system is blocked. PC: %#x [sn:%lli]\n",
1360 inst->readPC(), inst->seqNum);
1361
1362 squashDueToMemBlocked(inst, tid);
1363 }
1364 }
1365 }
1366
1367 // Update and record activity if we processed any instructions.
1368 if (inst_num) {
1369 if (exeStatus == Idle) {
1370 exeStatus = Running;
1371 }
1372
1373 updatedQueues = true;
1374
1375 cpu->activityThisCycle();
1376 }
1377
1378 // Need to reset this in case a writeback event needs to write into the
1379 // iew queue. That way the writeback event will write into the correct
1380 // spot in the queue.
1381 wbNumInst = 0;
1382}
1383
1384template <class Impl>
1385void
1386DefaultIEW<Impl>::writebackInsts()
1387{
1388 // Loop through the head of the time buffer and wake any
1389 // dependents. These instructions are about to write back. Also
1390 // mark scoreboard that this instruction is finally complete.
1391 // Either have IEW have direct access to scoreboard, or have this
1392 // as part of backwards communication.
1393 for (int inst_num = 0; inst_num < issueWidth &&
1394 toCommit->insts[inst_num]; inst_num++) {
1395 DynInstPtr inst = toCommit->insts[inst_num];
1396 int tid = inst->threadNumber;
1397
1398 DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %#x.\n",
1399 inst->seqNum, inst->readPC());
1400
1401 iewInstsToCommit[tid]++;
1402
1403 // Some instructions will be sent to commit without having
1404 // executed because they need commit to handle them.
1405 // E.g. Uncached loads have not actually executed when they
1406 // are first sent to commit. Instead commit must tell the LSQ
1407 // when it's ready to execute the uncached load.
1408 if (!inst->isSquashed() && inst->isExecuted()) {
1409 int dependents = instQueue.wakeDependents(inst);
1410
1411 for (int i = 0; i < inst->numDestRegs(); i++) {
1412 //mark as Ready
1413 DPRINTF(IEW,"Setting Destination Register %i\n",
1414 inst->renamedDestRegIdx(i));
1415 scoreboard->setReg(inst->renamedDestRegIdx(i));
1416 }
1417
1418 if (dependents) {
1419 producerInst[tid]++;
1420 consumerInst[tid]+= dependents;
1421 }
1422 writebackCount[tid]++;
1423 }
1424
1425 decrWb(inst->seqNum);
1426 }
1427}
1428
1429template<class Impl>
1430void
1431DefaultIEW<Impl>::tick()
1432{
1433 wbNumInst = 0;
1434 wbCycle = 0;
1435
1436 wroteToTimeBuffer = false;
1437 updatedQueues = false;
1438
1439 sortInsts();
1440
1441 // Free function units marked as being freed this cycle.
1442 fuPool->processFreeUnits();
1443
1444 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1445
1446 // Check stall and squash signals, dispatch any instructions.
1447 while (threads != (*activeThreads).end()) {
1448 unsigned tid = *threads++;
1449
1450 DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1451
1452 checkSignalsAndUpdate(tid);
1453 dispatch(tid);
1454 }
1455
1456 if (exeStatus != Squashing) {
1457 executeInsts();
1458
1459 writebackInsts();
1460
1461 // Have the instruction queue try to schedule any ready instructions.
1462 // (In actuality, this scheduling is for instructions that will
1463 // be executed next cycle.)
1464 instQueue.scheduleReadyInsts();
1465
1466 // Also should advance its own time buffers if the stage ran.
1467 // Not the best place for it, but this works (hopefully).
1468 issueToExecQueue.advance();
1469 }
1470
1471 bool broadcast_free_entries = false;
1472
1473 if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1474 exeStatus = Idle;
1475 updateLSQNextCycle = false;
1476
1477 broadcast_free_entries = true;
1478 }
1479
1480 // Writeback any stores using any leftover bandwidth.
1481 ldstQueue.writebackStores();
1482
1483 // Check the committed load/store signals to see if there's a load
1484 // or store to commit. Also check if it's being told to execute a
1485 // nonspeculative instruction.
1486 // This is pretty inefficient...
1487
1488 threads = (*activeThreads).begin();
1489 while (threads != (*activeThreads).end()) {
1490 unsigned tid = (*threads++);
1491
1492 DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1493
1494 // Update structures based on instructions committed.
1495 if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1496 !fromCommit->commitInfo[tid].squash &&
1497 !fromCommit->commitInfo[tid].robSquashing) {
1498
1499 ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1500
1501 ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1502
1503 updateLSQNextCycle = true;
1504 instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1505 }
1506
1507 if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1508
1509 //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1510 if (fromCommit->commitInfo[tid].uncached) {
1511 instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1512 } else {
1513 instQueue.scheduleNonSpec(
1514 fromCommit->commitInfo[tid].nonSpecSeqNum);
1515 }
1516 }
1517
1518 if (broadcast_free_entries) {
1519 toFetch->iewInfo[tid].iqCount =
1520 instQueue.getCount(tid);
1521 toFetch->iewInfo[tid].ldstqCount =
1522 ldstQueue.getCount(tid);
1523
1524 toRename->iewInfo[tid].usedIQ = true;
1525 toRename->iewInfo[tid].freeIQEntries =
1526 instQueue.numFreeEntries();
1527 toRename->iewInfo[tid].usedLSQ = true;
1528 toRename->iewInfo[tid].freeLSQEntries =
1529 ldstQueue.numFreeEntries(tid);
1530
1531 wroteToTimeBuffer = true;
1532 }
1533
1534 DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1535 tid, toRename->iewInfo[tid].dispatched);
1536 }
1537
1538 DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). "
1539 "LSQ has %i free entries.\n",
1540 instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1541 ldstQueue.numFreeEntries());
1542
1543 updateStatus();
1544
1545 if (wroteToTimeBuffer) {
1546 DPRINTF(Activity, "Activity this cycle.\n");
1547 cpu->activityThisCycle();
1548 }
1549}
1550
1551template <class Impl>
1552void
1553DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1554{
1555 int thread_number = inst->threadNumber;
1556
1557 //
1558 // Pick off the software prefetches
1559 //
1560#ifdef TARGET_ALPHA
1561 if (inst->isDataPrefetch())
1562 iewExecutedSwp[thread_number]++;
1563 else
1564 iewIewExecutedcutedInsts++;
1565#else
1566 iewExecutedInsts++;
1567#endif
1568
1569 //
1570 // Control operations
1571 //
1572 if (inst->isControl())
1573 iewExecutedBranches[thread_number]++;
1574
1575 //
1576 // Memory operations
1577 //
1578 if (inst->isMemRef()) {
1579 iewExecutedRefs[thread_number]++;
1580
1581 if (inst->isLoad()) {
1582 iewExecLoadInsts[thread_number]++;
1583 }
1584 }
1585}
1324#endif
1325 // If incorrect, then signal the ROB that it must be squashed.
1326 squashDueToBranch(inst, tid);
1327
1328 if (inst->predTaken()) {
1329 predictedTakenIncorrect++;
1330 } else {
1331 predictedNotTakenIncorrect++;
1332 }
1333 } else if (ldstQueue.violation(tid)) {
1334 fetchRedirect[tid] = true;
1335
1336 // If there was an ordering violation, then get the
1337 // DynInst that caused the violation. Note that this
1338 // clears the violation signal.
1339 DynInstPtr violator;
1340 violator = ldstQueue.getMemDepViolator(tid);
1341
1342 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
1343 "%#x, inst PC: %#x. Addr is: %#x.\n",
1344 violator->readPC(), inst->readPC(), inst->physEffAddr);
1345
1346 // Tell the instruction queue that a violation has occured.
1347 instQueue.violation(inst, violator);
1348
1349 // Squash.
1350 squashDueToMemOrder(inst,tid);
1351
1352 ++memOrderViolationEvents;
1353 } else if (ldstQueue.loadBlocked(tid) &&
1354 !ldstQueue.isLoadBlockedHandled(tid)) {
1355 fetchRedirect[tid] = true;
1356
1357 DPRINTF(IEW, "Load operation couldn't execute because the "
1358 "memory system is blocked. PC: %#x [sn:%lli]\n",
1359 inst->readPC(), inst->seqNum);
1360
1361 squashDueToMemBlocked(inst, tid);
1362 }
1363 }
1364 }
1365
1366 // Update and record activity if we processed any instructions.
1367 if (inst_num) {
1368 if (exeStatus == Idle) {
1369 exeStatus = Running;
1370 }
1371
1372 updatedQueues = true;
1373
1374 cpu->activityThisCycle();
1375 }
1376
1377 // Need to reset this in case a writeback event needs to write into the
1378 // iew queue. That way the writeback event will write into the correct
1379 // spot in the queue.
1380 wbNumInst = 0;
1381}
1382
1383template <class Impl>
1384void
1385DefaultIEW<Impl>::writebackInsts()
1386{
1387 // Loop through the head of the time buffer and wake any
1388 // dependents. These instructions are about to write back. Also
1389 // mark scoreboard that this instruction is finally complete.
1390 // Either have IEW have direct access to scoreboard, or have this
1391 // as part of backwards communication.
1392 for (int inst_num = 0; inst_num < issueWidth &&
1393 toCommit->insts[inst_num]; inst_num++) {
1394 DynInstPtr inst = toCommit->insts[inst_num];
1395 int tid = inst->threadNumber;
1396
1397 DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %#x.\n",
1398 inst->seqNum, inst->readPC());
1399
1400 iewInstsToCommit[tid]++;
1401
1402 // Some instructions will be sent to commit without having
1403 // executed because they need commit to handle them.
1404 // E.g. Uncached loads have not actually executed when they
1405 // are first sent to commit. Instead commit must tell the LSQ
1406 // when it's ready to execute the uncached load.
1407 if (!inst->isSquashed() && inst->isExecuted()) {
1408 int dependents = instQueue.wakeDependents(inst);
1409
1410 for (int i = 0; i < inst->numDestRegs(); i++) {
1411 //mark as Ready
1412 DPRINTF(IEW,"Setting Destination Register %i\n",
1413 inst->renamedDestRegIdx(i));
1414 scoreboard->setReg(inst->renamedDestRegIdx(i));
1415 }
1416
1417 if (dependents) {
1418 producerInst[tid]++;
1419 consumerInst[tid]+= dependents;
1420 }
1421 writebackCount[tid]++;
1422 }
1423
1424 decrWb(inst->seqNum);
1425 }
1426}
1427
1428template<class Impl>
1429void
1430DefaultIEW<Impl>::tick()
1431{
1432 wbNumInst = 0;
1433 wbCycle = 0;
1434
1435 wroteToTimeBuffer = false;
1436 updatedQueues = false;
1437
1438 sortInsts();
1439
1440 // Free function units marked as being freed this cycle.
1441 fuPool->processFreeUnits();
1442
1443 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1444
1445 // Check stall and squash signals, dispatch any instructions.
1446 while (threads != (*activeThreads).end()) {
1447 unsigned tid = *threads++;
1448
1449 DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1450
1451 checkSignalsAndUpdate(tid);
1452 dispatch(tid);
1453 }
1454
1455 if (exeStatus != Squashing) {
1456 executeInsts();
1457
1458 writebackInsts();
1459
1460 // Have the instruction queue try to schedule any ready instructions.
1461 // (In actuality, this scheduling is for instructions that will
1462 // be executed next cycle.)
1463 instQueue.scheduleReadyInsts();
1464
1465 // Also should advance its own time buffers if the stage ran.
1466 // Not the best place for it, but this works (hopefully).
1467 issueToExecQueue.advance();
1468 }
1469
1470 bool broadcast_free_entries = false;
1471
1472 if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1473 exeStatus = Idle;
1474 updateLSQNextCycle = false;
1475
1476 broadcast_free_entries = true;
1477 }
1478
1479 // Writeback any stores using any leftover bandwidth.
1480 ldstQueue.writebackStores();
1481
1482 // Check the committed load/store signals to see if there's a load
1483 // or store to commit. Also check if it's being told to execute a
1484 // nonspeculative instruction.
1485 // This is pretty inefficient...
1486
1487 threads = (*activeThreads).begin();
1488 while (threads != (*activeThreads).end()) {
1489 unsigned tid = (*threads++);
1490
1491 DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1492
1493 // Update structures based on instructions committed.
1494 if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1495 !fromCommit->commitInfo[tid].squash &&
1496 !fromCommit->commitInfo[tid].robSquashing) {
1497
1498 ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1499
1500 ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1501
1502 updateLSQNextCycle = true;
1503 instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1504 }
1505
1506 if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1507
1508 //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1509 if (fromCommit->commitInfo[tid].uncached) {
1510 instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1511 } else {
1512 instQueue.scheduleNonSpec(
1513 fromCommit->commitInfo[tid].nonSpecSeqNum);
1514 }
1515 }
1516
1517 if (broadcast_free_entries) {
1518 toFetch->iewInfo[tid].iqCount =
1519 instQueue.getCount(tid);
1520 toFetch->iewInfo[tid].ldstqCount =
1521 ldstQueue.getCount(tid);
1522
1523 toRename->iewInfo[tid].usedIQ = true;
1524 toRename->iewInfo[tid].freeIQEntries =
1525 instQueue.numFreeEntries();
1526 toRename->iewInfo[tid].usedLSQ = true;
1527 toRename->iewInfo[tid].freeLSQEntries =
1528 ldstQueue.numFreeEntries(tid);
1529
1530 wroteToTimeBuffer = true;
1531 }
1532
1533 DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1534 tid, toRename->iewInfo[tid].dispatched);
1535 }
1536
1537 DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). "
1538 "LSQ has %i free entries.\n",
1539 instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1540 ldstQueue.numFreeEntries());
1541
1542 updateStatus();
1543
1544 if (wroteToTimeBuffer) {
1545 DPRINTF(Activity, "Activity this cycle.\n");
1546 cpu->activityThisCycle();
1547 }
1548}
1549
1550template <class Impl>
1551void
1552DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1553{
1554 int thread_number = inst->threadNumber;
1555
1556 //
1557 // Pick off the software prefetches
1558 //
1559#ifdef TARGET_ALPHA
1560 if (inst->isDataPrefetch())
1561 iewExecutedSwp[thread_number]++;
1562 else
1563 iewIewExecutedcutedInsts++;
1564#else
1565 iewExecutedInsts++;
1566#endif
1567
1568 //
1569 // Control operations
1570 //
1571 if (inst->isControl())
1572 iewExecutedBranches[thread_number]++;
1573
1574 //
1575 // Memory operations
1576 //
1577 if (inst->isMemRef()) {
1578 iewExecutedRefs[thread_number]++;
1579
1580 if (inst->isLoad()) {
1581 iewExecLoadInsts[thread_number]++;
1582 }
1583 }
1584}