Deleted Added
sdiff udiff text old ( 10240:15f822e9410a ) new ( 10327:5b6279635c49 )
full compact
1/*
2 * Copyright (c) 2010-2013 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 */
43
44#ifndef __CPU_O3_IEW_IMPL_IMPL_HH__
45#define __CPU_O3_IEW_IMPL_IMPL_HH__
46
47// @todo: Fix the instantaneous communication among all the stages within
48// iew. There's a clear delay between issue and execute, yet backwards
49// communication happens simultaneously.
50
51#include <queue>
52
53#include "arch/utility.hh"
54#include "config/the_isa.hh"
55#include "cpu/checker/cpu.hh"
56#include "cpu/o3/fu_pool.hh"
57#include "cpu/o3/iew.hh"
58#include "cpu/timebuf.hh"
59#include "debug/Activity.hh"
60#include "debug/Drain.hh"
61#include "debug/IEW.hh"
62#include "debug/O3PipeView.hh"
63#include "params/DerivO3CPU.hh"
64
65using namespace std;
66
67template<class Impl>
68DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params)
69 : issueToExecQueue(params->backComSize, params->forwardComSize),
70 cpu(_cpu),
71 instQueue(_cpu, this, params),
72 ldstQueue(_cpu, this, params),
73 fuPool(params->fuPool),
74 commitToIEWDelay(params->commitToIEWDelay),
75 renameToIEWDelay(params->renameToIEWDelay),
76 issueToExecuteDelay(params->issueToExecuteDelay),
77 dispatchWidth(params->dispatchWidth),
78 issueWidth(params->issueWidth),
79 wbOutstanding(0),
80 wbWidth(params->wbWidth),
81 numThreads(params->numThreads)
82{
83 if (dispatchWidth > Impl::MaxWidth)
84 fatal("dispatchWidth (%d) is larger than compiled limit (%d),\n"
85 "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
86 dispatchWidth, static_cast<int>(Impl::MaxWidth));
87 if (issueWidth > Impl::MaxWidth)
88 fatal("issueWidth (%d) is larger than compiled limit (%d),\n"
89 "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
90 issueWidth, static_cast<int>(Impl::MaxWidth));
91 if (wbWidth > Impl::MaxWidth)
92 fatal("wbWidth (%d) is larger than compiled limit (%d),\n"
93 "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
94 wbWidth, static_cast<int>(Impl::MaxWidth));
95
96 _status = Active;
97 exeStatus = Running;
98 wbStatus = Idle;
99
100 // Setup wire to read instructions coming from issue.
101 fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
102
103 // Instruction queue needs the queue between issue and execute.
104 instQueue.setIssueToExecuteQueue(&issueToExecQueue);
105
106 for (ThreadID tid = 0; tid < numThreads; tid++) {
107 dispatchStatus[tid] = Running;
108 stalls[tid].commit = false;
109 fetchRedirect[tid] = false;
110 }
111
112 wbMax = wbWidth * params->wbDepth;
113
114 updateLSQNextCycle = false;
115
116 ableToIssue = true;
117
118 skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
119}
120
121template <class Impl>
122std::string
123DefaultIEW<Impl>::name() const
124{
125 return cpu->name() + ".iew";
126}
127
128template <class Impl>
129void
130DefaultIEW<Impl>::regProbePoints()
131{
132 ppDispatch = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Dispatch");
133 ppMispredict = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Mispredict");
134}
135
136template <class Impl>
137void
138DefaultIEW<Impl>::regStats()
139{
140 using namespace Stats;
141
142 instQueue.regStats();
143 ldstQueue.regStats();
144
145 iewIdleCycles
146 .name(name() + ".iewIdleCycles")
147 .desc("Number of cycles IEW is idle");
148
149 iewSquashCycles
150 .name(name() + ".iewSquashCycles")
151 .desc("Number of cycles IEW is squashing");
152
153 iewBlockCycles
154 .name(name() + ".iewBlockCycles")
155 .desc("Number of cycles IEW is blocking");
156
157 iewUnblockCycles
158 .name(name() + ".iewUnblockCycles")
159 .desc("Number of cycles IEW is unblocking");
160
161 iewDispatchedInsts
162 .name(name() + ".iewDispatchedInsts")
163 .desc("Number of instructions dispatched to IQ");
164
165 iewDispSquashedInsts
166 .name(name() + ".iewDispSquashedInsts")
167 .desc("Number of squashed instructions skipped by dispatch");
168
169 iewDispLoadInsts
170 .name(name() + ".iewDispLoadInsts")
171 .desc("Number of dispatched load instructions");
172
173 iewDispStoreInsts
174 .name(name() + ".iewDispStoreInsts")
175 .desc("Number of dispatched store instructions");
176
177 iewDispNonSpecInsts
178 .name(name() + ".iewDispNonSpecInsts")
179 .desc("Number of dispatched non-speculative instructions");
180
181 iewIQFullEvents
182 .name(name() + ".iewIQFullEvents")
183 .desc("Number of times the IQ has become full, causing a stall");
184
185 iewLSQFullEvents
186 .name(name() + ".iewLSQFullEvents")
187 .desc("Number of times the LSQ has become full, causing a stall");
188
189 memOrderViolationEvents
190 .name(name() + ".memOrderViolationEvents")
191 .desc("Number of memory order violations");
192
193 predictedTakenIncorrect
194 .name(name() + ".predictedTakenIncorrect")
195 .desc("Number of branches that were predicted taken incorrectly");
196
197 predictedNotTakenIncorrect
198 .name(name() + ".predictedNotTakenIncorrect")
199 .desc("Number of branches that were predicted not taken incorrectly");
200
201 branchMispredicts
202 .name(name() + ".branchMispredicts")
203 .desc("Number of branch mispredicts detected at execute");
204
205 branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
206
207 iewExecutedInsts
208 .name(name() + ".iewExecutedInsts")
209 .desc("Number of executed instructions");
210
211 iewExecLoadInsts
212 .init(cpu->numThreads)
213 .name(name() + ".iewExecLoadInsts")
214 .desc("Number of load instructions executed")
215 .flags(total);
216
217 iewExecSquashedInsts
218 .name(name() + ".iewExecSquashedInsts")
219 .desc("Number of squashed instructions skipped in execute");
220
221 iewExecutedSwp
222 .init(cpu->numThreads)
223 .name(name() + ".exec_swp")
224 .desc("number of swp insts executed")
225 .flags(total);
226
227 iewExecutedNop
228 .init(cpu->numThreads)
229 .name(name() + ".exec_nop")
230 .desc("number of nop insts executed")
231 .flags(total);
232
233 iewExecutedRefs
234 .init(cpu->numThreads)
235 .name(name() + ".exec_refs")
236 .desc("number of memory reference insts executed")
237 .flags(total);
238
239 iewExecutedBranches
240 .init(cpu->numThreads)
241 .name(name() + ".exec_branches")
242 .desc("Number of branches executed")
243 .flags(total);
244
245 iewExecStoreInsts
246 .name(name() + ".exec_stores")
247 .desc("Number of stores executed")
248 .flags(total);
249 iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
250
251 iewExecRate
252 .name(name() + ".exec_rate")
253 .desc("Inst execution rate")
254 .flags(total);
255
256 iewExecRate = iewExecutedInsts / cpu->numCycles;
257
258 iewInstsToCommit
259 .init(cpu->numThreads)
260 .name(name() + ".wb_sent")
261 .desc("cumulative count of insts sent to commit")
262 .flags(total);
263
264 writebackCount
265 .init(cpu->numThreads)
266 .name(name() + ".wb_count")
267 .desc("cumulative count of insts written-back")
268 .flags(total);
269
270 producerInst
271 .init(cpu->numThreads)
272 .name(name() + ".wb_producers")
273 .desc("num instructions producing a value")
274 .flags(total);
275
276 consumerInst
277 .init(cpu->numThreads)
278 .name(name() + ".wb_consumers")
279 .desc("num instructions consuming a value")
280 .flags(total);
281
282 wbPenalized
283 .init(cpu->numThreads)
284 .name(name() + ".wb_penalized")
285 .desc("number of instrctions required to write to 'other' IQ")
286 .flags(total);
287
288 wbPenalizedRate
289 .name(name() + ".wb_penalized_rate")
290 .desc ("fraction of instructions written-back that wrote to 'other' IQ")
291 .flags(total);
292
293 wbPenalizedRate = wbPenalized / writebackCount;
294
295 wbFanout
296 .name(name() + ".wb_fanout")
297 .desc("average fanout of values written-back")
298 .flags(total);
299
300 wbFanout = producerInst / consumerInst;
301
302 wbRate
303 .name(name() + ".wb_rate")
304 .desc("insts written-back per cycle")
305 .flags(total);
306 wbRate = writebackCount / cpu->numCycles;
307}
308
309template<class Impl>
310void
311DefaultIEW<Impl>::startupStage()
312{
313 for (ThreadID tid = 0; tid < numThreads; tid++) {
314 toRename->iewInfo[tid].usedIQ = true;
315 toRename->iewInfo[tid].freeIQEntries =
316 instQueue.numFreeEntries(tid);
317
318 toRename->iewInfo[tid].usedLSQ = true;
319 toRename->iewInfo[tid].freeLQEntries = ldstQueue.numFreeLoadEntries(tid);
320 toRename->iewInfo[tid].freeSQEntries = ldstQueue.numFreeStoreEntries(tid);
321 }
322
323 // Initialize the checker's dcache port here
324 if (cpu->checker) {
325 cpu->checker->setDcachePort(&cpu->getDataPort());
326 }
327
328 cpu->activateStage(O3CPU::IEWIdx);
329}
330
331template<class Impl>
332void
333DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
334{
335 timeBuffer = tb_ptr;
336
337 // Setup wire to read information from time buffer, from commit.
338 fromCommit = timeBuffer->getWire(-commitToIEWDelay);
339
340 // Setup wire to write information back to previous stages.
341 toRename = timeBuffer->getWire(0);
342
343 toFetch = timeBuffer->getWire(0);
344
345 // Instruction queue also needs main time buffer.
346 instQueue.setTimeBuffer(tb_ptr);
347}
348
349template<class Impl>
350void
351DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
352{
353 renameQueue = rq_ptr;
354
355 // Setup wire to read information from rename queue.
356 fromRename = renameQueue->getWire(-renameToIEWDelay);
357}
358
359template<class Impl>
360void
361DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
362{
363 iewQueue = iq_ptr;
364
365 // Setup wire to write instructions to commit.
366 toCommit = iewQueue->getWire(0);
367}
368
369template<class Impl>
370void
371DefaultIEW<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
372{
373 activeThreads = at_ptr;
374
375 ldstQueue.setActiveThreads(at_ptr);
376 instQueue.setActiveThreads(at_ptr);
377}
378
379template<class Impl>
380void
381DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
382{
383 scoreboard = sb_ptr;
384}
385
386template <class Impl>
387bool
388DefaultIEW<Impl>::isDrained() const
389{
390 bool drained(ldstQueue.isDrained());
391
392 for (ThreadID tid = 0; tid < numThreads; tid++) {
393 if (!insts[tid].empty()) {
394 DPRINTF(Drain, "%i: Insts not empty.\n", tid);
395 drained = false;
396 }
397 if (!skidBuffer[tid].empty()) {
398 DPRINTF(Drain, "%i: Skid buffer not empty.\n", tid);
399 drained = false;
400 }
401 }
402
403 // Also check the FU pool as instructions are "stored" in FU
404 // completion events until they are done and not accounted for
405 // above
406 if (drained && !fuPool->isDrained()) {
407 DPRINTF(Drain, "FU pool still busy.\n");
408 drained = false;
409 }
410
411 return drained;
412}
413
414template <class Impl>
415void
416DefaultIEW<Impl>::drainSanityCheck() const
417{
418 assert(isDrained());
419
420 instQueue.drainSanityCheck();
421 ldstQueue.drainSanityCheck();
422}
423
424template <class Impl>
425void
426DefaultIEW<Impl>::takeOverFrom()
427{
428 // Reset all state.
429 _status = Active;
430 exeStatus = Running;
431 wbStatus = Idle;
432
433 instQueue.takeOverFrom();
434 ldstQueue.takeOverFrom();
435 fuPool->takeOverFrom();
436
437 startupStage();
438 cpu->activityThisCycle();
439
440 for (ThreadID tid = 0; tid < numThreads; tid++) {
441 dispatchStatus[tid] = Running;
442 stalls[tid].commit = false;
443 fetchRedirect[tid] = false;
444 }
445
446 updateLSQNextCycle = false;
447
448 for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
449 issueToExecQueue.advance();
450 }
451}
452
453template<class Impl>
454void
455DefaultIEW<Impl>::squash(ThreadID tid)
456{
457 DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", tid);
458
459 // Tell the IQ to start squashing.
460 instQueue.squash(tid);
461
462 // Tell the LDSTQ to start squashing.
463 ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
464 updatedQueues = true;
465
466 // Clear the skid buffer in case it has any data in it.
467 DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
468 tid, fromCommit->commitInfo[tid].doneSeqNum);
469
470 while (!skidBuffer[tid].empty()) {
471 if (skidBuffer[tid].front()->isLoad()) {
472 toRename->iewInfo[tid].dispatchedToLQ++;
473 }
474 if (skidBuffer[tid].front()->isStore()) {
475 toRename->iewInfo[tid].dispatchedToSQ++;
476 }
477
478 toRename->iewInfo[tid].dispatched++;
479
480 skidBuffer[tid].pop();
481 }
482
483 emptyRenameInsts(tid);
484}
485
486template<class Impl>
487void
488DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, ThreadID tid)
489{
490 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %s "
491 "[sn:%i].\n", tid, inst->pcState(), inst->seqNum);
492
493 if (!toCommit->squash[tid] ||
494 inst->seqNum < toCommit->squashedSeqNum[tid]) {
495 toCommit->squash[tid] = true;
496 toCommit->squashedSeqNum[tid] = inst->seqNum;
497 toCommit->branchTaken[tid] = inst->pcState().branching();
498
499 TheISA::PCState pc = inst->pcState();
500 TheISA::advancePC(pc, inst->staticInst);
501
502 toCommit->pc[tid] = pc;
503 toCommit->mispredictInst[tid] = inst;
504 toCommit->includeSquashInst[tid] = false;
505
506 wroteToTimeBuffer = true;
507 }
508
509}
510
511template<class Impl>
512void
513DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, ThreadID tid)
514{
515 DPRINTF(IEW, "[tid:%i]: Memory violation, squashing violator and younger "
516 "insts, PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
517 // Need to include inst->seqNum in the following comparison to cover the
518 // corner case when a branch misprediction and a memory violation for the
519 // same instruction (e.g. load PC) are detected in the same cycle. In this
520 // case the memory violator should take precedence over the branch
521 // misprediction because it requires the violator itself to be included in
522 // the squash.
523 if (!toCommit->squash[tid] ||
524 inst->seqNum <= toCommit->squashedSeqNum[tid]) {
525 toCommit->squash[tid] = true;
526
527 toCommit->squashedSeqNum[tid] = inst->seqNum;
528 toCommit->pc[tid] = inst->pcState();
529 toCommit->mispredictInst[tid] = NULL;
530
531 // Must include the memory violator in the squash.
532 toCommit->includeSquashInst[tid] = true;
533
534 wroteToTimeBuffer = true;
535 }
536}
537
538template<class Impl>
539void
540DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, ThreadID tid)
541{
542 DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
543 "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
544 if (!toCommit->squash[tid] ||
545 inst->seqNum < toCommit->squashedSeqNum[tid]) {
546 toCommit->squash[tid] = true;
547
548 toCommit->squashedSeqNum[tid] = inst->seqNum;
549 toCommit->pc[tid] = inst->pcState();
550 toCommit->mispredictInst[tid] = NULL;
551
552 // Must include the broadcasted SN in the squash.
553 toCommit->includeSquashInst[tid] = true;
554
555 ldstQueue.setLoadBlockedHandled(tid);
556
557 wroteToTimeBuffer = true;
558 }
559}
560
561template<class Impl>
562void
563DefaultIEW<Impl>::block(ThreadID tid)
564{
565 DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
566
567 if (dispatchStatus[tid] != Blocked &&
568 dispatchStatus[tid] != Unblocking) {
569 toRename->iewBlock[tid] = true;
570 wroteToTimeBuffer = true;
571 }
572
573 // Add the current inputs to the skid buffer so they can be
574 // reprocessed when this stage unblocks.
575 skidInsert(tid);
576
577 dispatchStatus[tid] = Blocked;
578}
579
580template<class Impl>
581void
582DefaultIEW<Impl>::unblock(ThreadID tid)
583{
584 DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
585 "buffer %u.\n",tid, tid);
586
587 // If the skid bufffer is empty, signal back to previous stages to unblock.
588 // Also switch status to running.
589 if (skidBuffer[tid].empty()) {
590 toRename->iewUnblock[tid] = true;
591 wroteToTimeBuffer = true;
592 DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
593 dispatchStatus[tid] = Running;
594 }
595}
596
597template<class Impl>
598void
599DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
600{
601 instQueue.wakeDependents(inst);
602}
603
604template<class Impl>
605void
606DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
607{
608 instQueue.rescheduleMemInst(inst);
609}
610
611template<class Impl>
612void
613DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
614{
615 instQueue.replayMemInst(inst);
616}
617
618template<class Impl>
619void
620DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
621{
622 // This function should not be called after writebackInsts in a
623 // single cycle. That will cause problems with an instruction
624 // being added to the queue to commit without being processed by
625 // writebackInsts prior to being sent to commit.
626
627 // First check the time slot that this instruction will write
628 // to. If there are free write ports at the time, then go ahead
629 // and write the instruction to that time. If there are not,
630 // keep looking back to see where's the first time there's a
631 // free slot.
632 while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
633 ++wbNumInst;
634 if (wbNumInst == wbWidth) {
635 ++wbCycle;
636 wbNumInst = 0;
637 }
638
639 assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
640 }
641
642 DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
643 wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
644 // Add finished instruction to queue to commit.
645 (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
646 (*iewQueue)[wbCycle].size++;
647}
648
649template <class Impl>
650unsigned
651DefaultIEW<Impl>::validInstsFromRename()
652{
653 unsigned inst_count = 0;
654
655 for (int i=0; i<fromRename->size; i++) {
656 if (!fromRename->insts[i]->isSquashed())
657 inst_count++;
658 }
659
660 return inst_count;
661}
662
663template<class Impl>
664void
665DefaultIEW<Impl>::skidInsert(ThreadID tid)
666{
667 DynInstPtr inst = NULL;
668
669 while (!insts[tid].empty()) {
670 inst = insts[tid].front();
671
672 insts[tid].pop();
673
674 DPRINTF(IEW,"[tid:%i]: Inserting [sn:%lli] PC:%s into "
675 "dispatch skidBuffer %i\n",tid, inst->seqNum,
676 inst->pcState(),tid);
677
678 skidBuffer[tid].push(inst);
679 }
680
681 assert(skidBuffer[tid].size() <= skidBufferMax &&
682 "Skidbuffer Exceeded Max Size");
683}
684
685template<class Impl>
686int
687DefaultIEW<Impl>::skidCount()
688{
689 int max=0;
690
691 list<ThreadID>::iterator threads = activeThreads->begin();
692 list<ThreadID>::iterator end = activeThreads->end();
693
694 while (threads != end) {
695 ThreadID tid = *threads++;
696 unsigned thread_count = skidBuffer[tid].size();
697 if (max < thread_count)
698 max = thread_count;
699 }
700
701 return max;
702}
703
704template<class Impl>
705bool
706DefaultIEW<Impl>::skidsEmpty()
707{
708 list<ThreadID>::iterator threads = activeThreads->begin();
709 list<ThreadID>::iterator end = activeThreads->end();
710
711 while (threads != end) {
712 ThreadID tid = *threads++;
713
714 if (!skidBuffer[tid].empty())
715 return false;
716 }
717
718 return true;
719}
720
721template <class Impl>
722void
723DefaultIEW<Impl>::updateStatus()
724{
725 bool any_unblocking = false;
726
727 list<ThreadID>::iterator threads = activeThreads->begin();
728 list<ThreadID>::iterator end = activeThreads->end();
729
730 while (threads != end) {
731 ThreadID tid = *threads++;
732
733 if (dispatchStatus[tid] == Unblocking) {
734 any_unblocking = true;
735 break;
736 }
737 }
738
739 // If there are no ready instructions waiting to be scheduled by the IQ,
740 // and there's no stores waiting to write back, and dispatch is not
741 // unblocking, then there is no internal activity for the IEW stage.
742 instQueue.intInstQueueReads++;
743 if (_status == Active && !instQueue.hasReadyInsts() &&
744 !ldstQueue.willWB() && !any_unblocking) {
745 DPRINTF(IEW, "IEW switching to idle\n");
746
747 deactivateStage();
748
749 _status = Inactive;
750 } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
751 ldstQueue.willWB() ||
752 any_unblocking)) {
753 // Otherwise there is internal activity. Set to active.
754 DPRINTF(IEW, "IEW switching to active\n");
755
756 activateStage();
757
758 _status = Active;
759 }
760}
761
762template <class Impl>
763void
764DefaultIEW<Impl>::resetEntries()
765{
766 instQueue.resetEntries();
767 ldstQueue.resetEntries();
768}
769
770template <class Impl>
771void
772DefaultIEW<Impl>::readStallSignals(ThreadID tid)
773{
774 if (fromCommit->commitBlock[tid]) {
775 stalls[tid].commit = true;
776 }
777
778 if (fromCommit->commitUnblock[tid]) {
779 assert(stalls[tid].commit);
780 stalls[tid].commit = false;
781 }
782}
783
784template <class Impl>
785bool
786DefaultIEW<Impl>::checkStall(ThreadID tid)
787{
788 bool ret_val(false);
789
790 if (stalls[tid].commit) {
791 DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
792 ret_val = true;
793 } else if (instQueue.isFull(tid)) {
794 DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid);
795 ret_val = true;
796 }
797
798 return ret_val;
799}
800
801template <class Impl>
802void
803DefaultIEW<Impl>::checkSignalsAndUpdate(ThreadID tid)
804{
805 // Check if there's a squash signal, squash if there is
806 // Check stall signals, block if there is.
807 // If status was Blocked
808 // if so then go to unblocking
809 // If status was Squashing
810 // check if squashing is not high. Switch to running this cycle.
811
812 readStallSignals(tid);
813
814 if (fromCommit->commitInfo[tid].squash) {
815 squash(tid);
816
817 if (dispatchStatus[tid] == Blocked ||
818 dispatchStatus[tid] == Unblocking) {
819 toRename->iewUnblock[tid] = true;
820 wroteToTimeBuffer = true;
821 }
822
823 dispatchStatus[tid] = Squashing;
824 fetchRedirect[tid] = false;
825 return;
826 }
827
828 if (fromCommit->commitInfo[tid].robSquashing) {
829 DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
830
831 dispatchStatus[tid] = Squashing;
832 emptyRenameInsts(tid);
833 wroteToTimeBuffer = true;
834 return;
835 }
836
837 if (checkStall(tid)) {
838 block(tid);
839 dispatchStatus[tid] = Blocked;
840 return;
841 }
842
843 if (dispatchStatus[tid] == Blocked) {
844 // Status from previous cycle was blocked, but there are no more stall
845 // conditions. Switch over to unblocking.
846 DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
847 tid);
848
849 dispatchStatus[tid] = Unblocking;
850
851 unblock(tid);
852
853 return;
854 }
855
856 if (dispatchStatus[tid] == Squashing) {
857 // Switch status to running if rename isn't being told to block or
858 // squash this cycle.
859 DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
860 tid);
861
862 dispatchStatus[tid] = Running;
863
864 return;
865 }
866}
867
868template <class Impl>
869void
870DefaultIEW<Impl>::sortInsts()
871{
872 int insts_from_rename = fromRename->size;
873#ifdef DEBUG
874 for (ThreadID tid = 0; tid < numThreads; tid++)
875 assert(insts[tid].empty());
876#endif
877 for (int i = 0; i < insts_from_rename; ++i) {
878 insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
879 }
880}
881
882template <class Impl>
883void
884DefaultIEW<Impl>::emptyRenameInsts(ThreadID tid)
885{
886 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid);
887
888 while (!insts[tid].empty()) {
889
890 if (insts[tid].front()->isLoad()) {
891 toRename->iewInfo[tid].dispatchedToLQ++;
892 }
893 if (insts[tid].front()->isStore()) {
894 toRename->iewInfo[tid].dispatchedToSQ++;
895 }
896
897 toRename->iewInfo[tid].dispatched++;
898
899 insts[tid].pop();
900 }
901}
902
903template <class Impl>
904void
905DefaultIEW<Impl>::wakeCPU()
906{
907 cpu->wakeCPU();
908}
909
910template <class Impl>
911void
912DefaultIEW<Impl>::activityThisCycle()
913{
914 DPRINTF(Activity, "Activity this cycle.\n");
915 cpu->activityThisCycle();
916}
917
918template <class Impl>
919inline void
920DefaultIEW<Impl>::activateStage()
921{
922 DPRINTF(Activity, "Activating stage.\n");
923 cpu->activateStage(O3CPU::IEWIdx);
924}
925
926template <class Impl>
927inline void
928DefaultIEW<Impl>::deactivateStage()
929{
930 DPRINTF(Activity, "Deactivating stage.\n");
931 cpu->deactivateStage(O3CPU::IEWIdx);
932}
933
934template<class Impl>
935void
936DefaultIEW<Impl>::dispatch(ThreadID tid)
937{
938 // If status is Running or idle,
939 // call dispatchInsts()
940 // If status is Unblocking,
941 // buffer any instructions coming from rename
942 // continue trying to empty skid buffer
943 // check if stall conditions have passed
944
945 if (dispatchStatus[tid] == Blocked) {
946 ++iewBlockCycles;
947
948 } else if (dispatchStatus[tid] == Squashing) {
949 ++iewSquashCycles;
950 }
951
952 // Dispatch should try to dispatch as many instructions as its bandwidth
953 // will allow, as long as it is not currently blocked.
954 if (dispatchStatus[tid] == Running ||
955 dispatchStatus[tid] == Idle) {
956 DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
957 "dispatch.\n", tid);
958
959 dispatchInsts(tid);
960 } else if (dispatchStatus[tid] == Unblocking) {
961 // Make sure that the skid buffer has something in it if the
962 // status is unblocking.
963 assert(!skidsEmpty());
964
965 // If the status was unblocking, then instructions from the skid
966 // buffer were used. Remove those instructions and handle
967 // the rest of unblocking.
968 dispatchInsts(tid);
969
970 ++iewUnblockCycles;
971
972 if (validInstsFromRename()) {
973 // Add the current inputs to the skid buffer so they can be
974 // reprocessed when this stage unblocks.
975 skidInsert(tid);
976 }
977
978 unblock(tid);
979 }
980}
981
982template <class Impl>
983void
984DefaultIEW<Impl>::dispatchInsts(ThreadID tid)
985{
986 // Obtain instructions from skid buffer if unblocking, or queue from rename
987 // otherwise.
988 std::queue<DynInstPtr> &insts_to_dispatch =
989 dispatchStatus[tid] == Unblocking ?
990 skidBuffer[tid] : insts[tid];
991
992 int insts_to_add = insts_to_dispatch.size();
993
994 DynInstPtr inst;
995 bool add_to_iq = false;
996 int dis_num_inst = 0;
997
998 // Loop through the instructions, putting them in the instruction
999 // queue.
1000 for ( ; dis_num_inst < insts_to_add &&
1001 dis_num_inst < dispatchWidth;
1002 ++dis_num_inst)
1003 {
1004 inst = insts_to_dispatch.front();
1005
1006 if (dispatchStatus[tid] == Unblocking) {
1007 DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
1008 "buffer\n", tid);
1009 }
1010
1011 // Make sure there's a valid instruction there.
1012 assert(inst);
1013
1014 DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %s [sn:%lli] [tid:%i] to "
1015 "IQ.\n",
1016 tid, inst->pcState(), inst->seqNum, inst->threadNumber);
1017
1018 // Be sure to mark these instructions as ready so that the
1019 // commit stage can go ahead and execute them, and mark
1020 // them as issued so the IQ doesn't reprocess them.
1021
1022 // Check for squashed instructions.
1023 if (inst->isSquashed()) {
1024 DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
1025 "not adding to IQ.\n", tid);
1026
1027 ++iewDispSquashedInsts;
1028
1029 insts_to_dispatch.pop();
1030
1031 //Tell Rename That An Instruction has been processed
1032 if (inst->isLoad()) {
1033 toRename->iewInfo[tid].dispatchedToLQ++;
1034 }
1035 if (inst->isStore()) {
1036 toRename->iewInfo[tid].dispatchedToSQ++;
1037 }
1038
1039 toRename->iewInfo[tid].dispatched++;
1040
1041 continue;
1042 }
1043
1044 // Check for full conditions.
1045 if (instQueue.isFull(tid)) {
1046 DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1047
1048 // Call function to start blocking.
1049 block(tid);
1050
1051 // Set unblock to false. Special case where we are using
1052 // skidbuffer (unblocking) instructions but then we still
1053 // get full in the IQ.
1054 toRename->iewUnblock[tid] = false;
1055
1056 ++iewIQFullEvents;
1057 break;
1058 }
1059
1060 // Check LSQ if inst is LD/ST
1061 if ((inst->isLoad() && ldstQueue.lqFull(tid)) ||
1062 (inst->isStore() && ldstQueue.sqFull(tid))) {
1063 DPRINTF(IEW, "[tid:%i]: Issue: %s has become full.\n",tid,
1064 inst->isLoad() ? "LQ" : "SQ");
1065
1066 // Call function to start blocking.
1067 block(tid);
1068
1069 // Set unblock to false. Special case where we are using
1070 // skidbuffer (unblocking) instructions but then we still
1071 // get full in the IQ.
1072 toRename->iewUnblock[tid] = false;
1073
1074 ++iewLSQFullEvents;
1075 break;
1076 }
1077
1078 // Otherwise issue the instruction just fine.
1079 if (inst->isLoad()) {
1080 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1081 "encountered, adding to LSQ.\n", tid);
1082
1083 // Reserve a spot in the load store queue for this
1084 // memory access.
1085 ldstQueue.insertLoad(inst);
1086
1087 ++iewDispLoadInsts;
1088
1089 add_to_iq = true;
1090
1091 toRename->iewInfo[tid].dispatchedToLQ++;
1092 } else if (inst->isStore()) {
1093 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1094 "encountered, adding to LSQ.\n", tid);
1095
1096 ldstQueue.insertStore(inst);
1097
1098 ++iewDispStoreInsts;
1099
1100 if (inst->isStoreConditional()) {
1101 // Store conditionals need to be set as "canCommit()"
1102 // so that commit can process them when they reach the
1103 // head of commit.
1104 // @todo: This is somewhat specific to Alpha.
1105 inst->setCanCommit();
1106 instQueue.insertNonSpec(inst);
1107 add_to_iq = false;
1108
1109 ++iewDispNonSpecInsts;
1110 } else {
1111 add_to_iq = true;
1112 }
1113
1114 toRename->iewInfo[tid].dispatchedToSQ++;
1115 } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1116 // Same as non-speculative stores.
1117 inst->setCanCommit();
1118 instQueue.insertBarrier(inst);
1119 add_to_iq = false;
1120 } else if (inst->isNop()) {
1121 DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1122 "skipping.\n", tid);
1123
1124 inst->setIssued();
1125 inst->setExecuted();
1126 inst->setCanCommit();
1127
1128 instQueue.recordProducer(inst);
1129
1130 iewExecutedNop[tid]++;
1131
1132 add_to_iq = false;
1133 } else if (inst->isExecuted()) {
1134 assert(0 && "Instruction shouldn't be executed.\n");
1135 DPRINTF(IEW, "Issue: Executed branch encountered, "
1136 "skipping.\n");
1137
1138 inst->setIssued();
1139 inst->setCanCommit();
1140
1141 instQueue.recordProducer(inst);
1142
1143 add_to_iq = false;
1144 } else {
1145 add_to_iq = true;
1146 }
1147 if (inst->isNonSpeculative()) {
1148 DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1149 "encountered, skipping.\n", tid);
1150
1151 // Same as non-speculative stores.
1152 inst->setCanCommit();
1153
1154 // Specifically insert it as nonspeculative.
1155 instQueue.insertNonSpec(inst);
1156
1157 ++iewDispNonSpecInsts;
1158
1159 add_to_iq = false;
1160 }
1161
1162 // If the instruction queue is not full, then add the
1163 // instruction.
1164 if (add_to_iq) {
1165 instQueue.insert(inst);
1166 }
1167
1168 insts_to_dispatch.pop();
1169
1170 toRename->iewInfo[tid].dispatched++;
1171
1172 ++iewDispatchedInsts;
1173
1174#if TRACING_ON
1175 inst->dispatchTick = curTick() - inst->fetchTick;
1176#endif
1177 ppDispatch->notify(inst);
1178 }
1179
1180 if (!insts_to_dispatch.empty()) {
1181 DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1182 block(tid);
1183 toRename->iewUnblock[tid] = false;
1184 }
1185
1186 if (dispatchStatus[tid] == Idle && dis_num_inst) {
1187 dispatchStatus[tid] = Running;
1188
1189 updatedQueues = true;
1190 }
1191
1192 dis_num_inst = 0;
1193}
1194
1195template <class Impl>
1196void
1197DefaultIEW<Impl>::printAvailableInsts()
1198{
1199 int inst = 0;
1200
1201 std::cout << "Available Instructions: ";
1202
1203 while (fromIssue->insts[inst]) {
1204
1205 if (inst%3==0) std::cout << "\n\t";
1206
1207 std::cout << "PC: " << fromIssue->insts[inst]->pcState()
1208 << " TN: " << fromIssue->insts[inst]->threadNumber
1209 << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1210
1211 inst++;
1212
1213 }
1214
1215 std::cout << "\n";
1216}
1217
1218template <class Impl>
1219void
1220DefaultIEW<Impl>::executeInsts()
1221{
1222 wbNumInst = 0;
1223 wbCycle = 0;
1224
1225 list<ThreadID>::iterator threads = activeThreads->begin();
1226 list<ThreadID>::iterator end = activeThreads->end();
1227
1228 while (threads != end) {
1229 ThreadID tid = *threads++;
1230 fetchRedirect[tid] = false;
1231 }
1232
1233 // Uncomment this if you want to see all available instructions.
1234 // @todo This doesn't actually work anymore, we should fix it.
1235// printAvailableInsts();
1236
1237 // Execute/writeback any instructions that are available.
1238 int insts_to_execute = fromIssue->size;
1239 int inst_num = 0;
1240 for (; inst_num < insts_to_execute;
1241 ++inst_num) {
1242
1243 DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1244
1245 DynInstPtr inst = instQueue.getInstToExecute();
1246
1247 DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%i].\n",
1248 inst->pcState(), inst->threadNumber,inst->seqNum);
1249
1250 // Check if the instruction is squashed; if so then skip it
1251 if (inst->isSquashed()) {
1252 DPRINTF(IEW, "Execute: Instruction was squashed. PC: %s, [tid:%i]"
1253 " [sn:%i]\n", inst->pcState(), inst->threadNumber,
1254 inst->seqNum);
1255
1256 // Consider this instruction executed so that commit can go
1257 // ahead and retire the instruction.
1258 inst->setExecuted();
1259
1260 // Not sure if I should set this here or just let commit try to
1261 // commit any squashed instructions. I like the latter a bit more.
1262 inst->setCanCommit();
1263
1264 ++iewExecSquashedInsts;
1265
1266 decrWb(inst->seqNum);
1267 continue;
1268 }
1269
1270 Fault fault = NoFault;
1271
1272 // Execute instruction.
1273 // Note that if the instruction faults, it will be handled
1274 // at the commit stage.
1275 if (inst->isMemRef()) {
1276 DPRINTF(IEW, "Execute: Calculating address for memory "
1277 "reference.\n");
1278
1279 // Tell the LDSTQ to execute this instruction (if it is a load).
1280 if (inst->isLoad()) {
1281 // Loads will mark themselves as executed, and their writeback
1282 // event adds the instruction to the queue to commit
1283 fault = ldstQueue.executeLoad(inst);
1284
1285 if (inst->isTranslationDelayed() &&
1286 fault == NoFault) {
1287 // A hw page table walk is currently going on; the
1288 // instruction must be deferred.
1289 DPRINTF(IEW, "Execute: Delayed translation, deferring "
1290 "load.\n");
1291 instQueue.deferMemInst(inst);
1292 continue;
1293 }
1294
1295 if (inst->isDataPrefetch() || inst->isInstPrefetch()) {
1296 inst->fault = NoFault;
1297 }
1298 } else if (inst->isStore()) {
1299 fault = ldstQueue.executeStore(inst);
1300
1301 if (inst->isTranslationDelayed() &&
1302 fault == NoFault) {
1303 // A hw page table walk is currently going on; the
1304 // instruction must be deferred.
1305 DPRINTF(IEW, "Execute: Delayed translation, deferring "
1306 "store.\n");
1307 instQueue.deferMemInst(inst);
1308 continue;
1309 }
1310
1311 // If the store had a fault then it may not have a mem req
1312 if (fault != NoFault || !inst->readPredicate() ||
1313 !inst->isStoreConditional()) {
1314 // If the instruction faulted, then we need to send it along
1315 // to commit without the instruction completing.
1316 // Send this instruction to commit, also make sure iew stage
1317 // realizes there is activity.
1318 inst->setExecuted();
1319 instToCommit(inst);
1320 activityThisCycle();
1321 }
1322
1323 // Store conditionals will mark themselves as
1324 // executed, and their writeback event will add the
1325 // instruction to the queue to commit.
1326 } else {
1327 panic("Unexpected memory type!\n");
1328 }
1329
1330 } else {
1331 // If the instruction has already faulted, then skip executing it.
1332 // Such case can happen when it faulted during ITLB translation.
1333 // If we execute the instruction (even if it's a nop) the fault
1334 // will be replaced and we will lose it.
1335 if (inst->getFault() == NoFault) {
1336 inst->execute();
1337 if (!inst->readPredicate())
1338 inst->forwardOldRegs();
1339 }
1340
1341 inst->setExecuted();
1342
1343 instToCommit(inst);
1344 }
1345
1346 updateExeInstStats(inst);
1347
1348 // Check if branch prediction was correct, if not then we need
1349 // to tell commit to squash in flight instructions. Only
1350 // handle this if there hasn't already been something that
1351 // redirects fetch in this group of instructions.
1352
1353 // This probably needs to prioritize the redirects if a different
1354 // scheduler is used. Currently the scheduler schedules the oldest
1355 // instruction first, so the branch resolution order will be correct.
1356 ThreadID tid = inst->threadNumber;
1357
1358 if (!fetchRedirect[tid] ||
1359 !toCommit->squash[tid] ||
1360 toCommit->squashedSeqNum[tid] > inst->seqNum) {
1361
1362 // Prevent testing for misprediction on load instructions,
1363 // that have not been executed.
1364 bool loadNotExecuted = !inst->isExecuted() && inst->isLoad();
1365
1366 if (inst->mispredicted() && !loadNotExecuted) {
1367 fetchRedirect[tid] = true;
1368
1369 DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1370 DPRINTF(IEW, "Predicted target was PC: %s.\n",
1371 inst->readPredTarg());
1372 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %s.\n",
1373 inst->pcState());
1374 // If incorrect, then signal the ROB that it must be squashed.
1375 squashDueToBranch(inst, tid);
1376
1377 ppMispredict->notify(inst);
1378
1379 if (inst->readPredTaken()) {
1380 predictedTakenIncorrect++;
1381 } else {
1382 predictedNotTakenIncorrect++;
1383 }
1384 } else if (ldstQueue.violation(tid)) {
1385 assert(inst->isMemRef());
1386 // If there was an ordering violation, then get the
1387 // DynInst that caused the violation. Note that this
1388 // clears the violation signal.
1389 DynInstPtr violator;
1390 violator = ldstQueue.getMemDepViolator(tid);
1391
1392 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s "
1393 "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n",
1394 violator->pcState(), violator->seqNum,
1395 inst->pcState(), inst->seqNum, inst->physEffAddr);
1396
1397 fetchRedirect[tid] = true;
1398
1399 // Tell the instruction queue that a violation has occured.
1400 instQueue.violation(inst, violator);
1401
1402 // Squash.
1403 squashDueToMemOrder(violator, tid);
1404
1405 ++memOrderViolationEvents;
1406 } else if (ldstQueue.loadBlocked(tid) &&
1407 !ldstQueue.isLoadBlockedHandled(tid)) {
1408 fetchRedirect[tid] = true;
1409
1410 DPRINTF(IEW, "Load operation couldn't execute because the "
1411 "memory system is blocked. PC: %s [sn:%lli]\n",
1412 inst->pcState(), inst->seqNum);
1413
1414 squashDueToMemBlocked(inst, tid);
1415 }
1416 } else {
1417 // Reset any state associated with redirects that will not
1418 // be used.
1419 if (ldstQueue.violation(tid)) {
1420 assert(inst->isMemRef());
1421
1422 DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1423
1424 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
1425 "%s, inst PC: %s. Addr is: %#x.\n",
1426 violator->pcState(), inst->pcState(),
1427 inst->physEffAddr);
1428 DPRINTF(IEW, "Violation will not be handled because "
1429 "already squashing\n");
1430
1431 ++memOrderViolationEvents;
1432 }
1433 if (ldstQueue.loadBlocked(tid) &&
1434 !ldstQueue.isLoadBlockedHandled(tid)) {
1435 DPRINTF(IEW, "Load operation couldn't execute because the "
1436 "memory system is blocked. PC: %s [sn:%lli]\n",
1437 inst->pcState(), inst->seqNum);
1438 DPRINTF(IEW, "Blocked load will not be handled because "
1439 "already squashing\n");
1440
1441 ldstQueue.setLoadBlockedHandled(tid);
1442 }
1443
1444 }
1445 }
1446
1447 // Update and record activity if we processed any instructions.
1448 if (inst_num) {
1449 if (exeStatus == Idle) {
1450 exeStatus = Running;
1451 }
1452
1453 updatedQueues = true;
1454
1455 cpu->activityThisCycle();
1456 }
1457
1458 // Need to reset this in case a writeback event needs to write into the
1459 // iew queue. That way the writeback event will write into the correct
1460 // spot in the queue.
1461 wbNumInst = 0;
1462
1463}
1464
1465template <class Impl>
1466void
1467DefaultIEW<Impl>::writebackInsts()
1468{
1469 // Loop through the head of the time buffer and wake any
1470 // dependents. These instructions are about to write back. Also
1471 // mark scoreboard that this instruction is finally complete.
1472 // Either have IEW have direct access to scoreboard, or have this
1473 // as part of backwards communication.
1474 for (int inst_num = 0; inst_num < wbWidth &&
1475 toCommit->insts[inst_num]; inst_num++) {
1476 DynInstPtr inst = toCommit->insts[inst_num];
1477 ThreadID tid = inst->threadNumber;
1478
1479 DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n",
1480 inst->seqNum, inst->pcState());
1481
1482 iewInstsToCommit[tid]++;
1483
1484 // Some instructions will be sent to commit without having
1485 // executed because they need commit to handle them.
1486 // E.g. Uncached loads have not actually executed when they
1487 // are first sent to commit. Instead commit must tell the LSQ
1488 // when it's ready to execute the uncached load.
1489 if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1490 int dependents = instQueue.wakeDependents(inst);
1491
1492 for (int i = 0; i < inst->numDestRegs(); i++) {
1493 //mark as Ready
1494 DPRINTF(IEW,"Setting Destination Register %i\n",
1495 inst->renamedDestRegIdx(i));
1496 scoreboard->setReg(inst->renamedDestRegIdx(i));
1497 }
1498
1499 if (dependents) {
1500 producerInst[tid]++;
1501 consumerInst[tid]+= dependents;
1502 }
1503 writebackCount[tid]++;
1504 }
1505
1506 decrWb(inst->seqNum);
1507 }
1508}
1509
1510template<class Impl>
1511void
1512DefaultIEW<Impl>::tick()
1513{
1514 wbNumInst = 0;
1515 wbCycle = 0;
1516
1517 wroteToTimeBuffer = false;
1518 updatedQueues = false;
1519
1520 sortInsts();
1521
1522 // Free function units marked as being freed this cycle.
1523 fuPool->processFreeUnits();
1524
1525 list<ThreadID>::iterator threads = activeThreads->begin();
1526 list<ThreadID>::iterator end = activeThreads->end();
1527
1528 // Check stall and squash signals, dispatch any instructions.
1529 while (threads != end) {
1530 ThreadID tid = *threads++;
1531
1532 DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1533
1534 checkSignalsAndUpdate(tid);
1535 dispatch(tid);
1536 }
1537
1538 if (exeStatus != Squashing) {
1539 executeInsts();
1540
1541 writebackInsts();
1542
1543 // Have the instruction queue try to schedule any ready instructions.
1544 // (In actuality, this scheduling is for instructions that will
1545 // be executed next cycle.)
1546 instQueue.scheduleReadyInsts();
1547
1548 // Also should advance its own time buffers if the stage ran.
1549 // Not the best place for it, but this works (hopefully).
1550 issueToExecQueue.advance();
1551 }
1552
1553 bool broadcast_free_entries = false;
1554
1555 if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1556 exeStatus = Idle;
1557 updateLSQNextCycle = false;
1558
1559 broadcast_free_entries = true;
1560 }
1561
1562 // Writeback any stores using any leftover bandwidth.
1563 ldstQueue.writebackStores();
1564
1565 // Check the committed load/store signals to see if there's a load
1566 // or store to commit. Also check if it's being told to execute a
1567 // nonspeculative instruction.
1568 // This is pretty inefficient...
1569
1570 threads = activeThreads->begin();
1571 while (threads != end) {
1572 ThreadID tid = (*threads++);
1573
1574 DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1575
1576 // Update structures based on instructions committed.
1577 if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1578 !fromCommit->commitInfo[tid].squash &&
1579 !fromCommit->commitInfo[tid].robSquashing) {
1580
1581 ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1582
1583 ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1584
1585 updateLSQNextCycle = true;
1586 instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1587 }
1588
1589 if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1590
1591 //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1592 if (fromCommit->commitInfo[tid].uncached) {
1593 instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1594 fromCommit->commitInfo[tid].uncachedLoad->setAtCommit();
1595 } else {
1596 instQueue.scheduleNonSpec(
1597 fromCommit->commitInfo[tid].nonSpecSeqNum);
1598 }
1599 }
1600
1601 if (broadcast_free_entries) {
1602 toFetch->iewInfo[tid].iqCount =
1603 instQueue.getCount(tid);
1604 toFetch->iewInfo[tid].ldstqCount =
1605 ldstQueue.getCount(tid);
1606
1607 toRename->iewInfo[tid].usedIQ = true;
1608 toRename->iewInfo[tid].freeIQEntries =
1609 instQueue.numFreeEntries(tid);
1610 toRename->iewInfo[tid].usedLSQ = true;
1611
1612 toRename->iewInfo[tid].freeLQEntries =
1613 ldstQueue.numFreeLoadEntries(tid);
1614 toRename->iewInfo[tid].freeSQEntries =
1615 ldstQueue.numFreeStoreEntries(tid);
1616
1617 wroteToTimeBuffer = true;
1618 }
1619
1620 DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1621 tid, toRename->iewInfo[tid].dispatched);
1622 }
1623
1624 DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). "
1625 "LQ has %i free entries. SQ has %i free entries.\n",
1626 instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1627 ldstQueue.numFreeLoadEntries(), ldstQueue.numFreeStoreEntries());
1628
1629 updateStatus();
1630
1631 if (wroteToTimeBuffer) {
1632 DPRINTF(Activity, "Activity this cycle.\n");
1633 cpu->activityThisCycle();
1634 }
1635}
1636
1637template <class Impl>
1638void
1639DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1640{
1641 ThreadID tid = inst->threadNumber;
1642
1643 iewExecutedInsts++;
1644
1645#if TRACING_ON
1646 if (DTRACE(O3PipeView)) {
1647 inst->completeTick = curTick() - inst->fetchTick;
1648 }
1649#endif
1650
1651 //
1652 // Control operations
1653 //
1654 if (inst->isControl())
1655 iewExecutedBranches[tid]++;
1656
1657 //
1658 // Memory operations
1659 //
1660 if (inst->isMemRef()) {
1661 iewExecutedRefs[tid]++;
1662
1663 if (inst->isLoad()) {
1664 iewExecLoadInsts[tid]++;
1665 }
1666 }
1667}
1668
1669template <class Impl>
1670void
1671DefaultIEW<Impl>::checkMisprediction(DynInstPtr &inst)
1672{
1673 ThreadID tid = inst->threadNumber;
1674
1675 if (!fetchRedirect[tid] ||
1676 !toCommit->squash[tid] ||
1677 toCommit->squashedSeqNum[tid] > inst->seqNum) {
1678
1679 if (inst->mispredicted()) {
1680 fetchRedirect[tid] = true;
1681
1682 DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1683 DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1684 inst->predInstAddr(), inst->predNextInstAddr());
1685 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x,"
1686 " NPC: %#x.\n", inst->nextInstAddr(),
1687 inst->nextInstAddr());
1688 // If incorrect, then signal the ROB that it must be squashed.
1689 squashDueToBranch(inst, tid);
1690
1691 if (inst->readPredTaken()) {
1692 predictedTakenIncorrect++;
1693 } else {
1694 predictedNotTakenIncorrect++;
1695 }
1696 }
1697 }
1698}
1699
1700#endif//__CPU_O3_IEW_IMPL_IMPL_HH__