Deleted Added
sdiff udiff text old ( 10164:2d2c60bda8b2 ) new ( 10172:790a214be1f4 )
full compact
1/*
2 * Copyright (c) 2010-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43#ifndef __CPU_O3_IEW_IMPL_IMPL_HH__
44#define __CPU_O3_IEW_IMPL_IMPL_HH__
45
46// @todo: Fix the instantaneous communication among all the stages within
47// iew. There's a clear delay between issue and execute, yet backwards
48// communication happens simultaneously.
49
50#include <queue>
51
52#include "arch/utility.hh"
53#include "config/the_isa.hh"
54#include "cpu/checker/cpu.hh"
55#include "cpu/o3/fu_pool.hh"
56#include "cpu/o3/iew.hh"
57#include "cpu/timebuf.hh"
58#include "debug/Activity.hh"
59#include "debug/Drain.hh"
60#include "debug/IEW.hh"
61#include "debug/O3PipeView.hh"
62#include "params/DerivO3CPU.hh"
63
64using namespace std;
65
66template<class Impl>
67DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params)
68 : issueToExecQueue(params->backComSize, params->forwardComSize),
69 cpu(_cpu),
70 instQueue(_cpu, this, params),
71 ldstQueue(_cpu, this, params),
72 fuPool(params->fuPool),
73 commitToIEWDelay(params->commitToIEWDelay),
74 renameToIEWDelay(params->renameToIEWDelay),
75 issueToExecuteDelay(params->issueToExecuteDelay),
76 dispatchWidth(params->dispatchWidth),
77 issueWidth(params->issueWidth),
78 wbOutstanding(0),
79 wbWidth(params->wbWidth),
80 numThreads(params->numThreads)
81{
82 _status = Active;
83 exeStatus = Running;
84 wbStatus = Idle;
85
86 // Setup wire to read instructions coming from issue.
87 fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
88
89 // Instruction queue needs the queue between issue and execute.
90 instQueue.setIssueToExecuteQueue(&issueToExecQueue);
91
92 for (ThreadID tid = 0; tid < numThreads; tid++) {
93 dispatchStatus[tid] = Running;
94 stalls[tid].commit = false;
95 fetchRedirect[tid] = false;
96 }
97
98 wbMax = wbWidth * params->wbDepth;
99
100 updateLSQNextCycle = false;
101
102 ableToIssue = true;
103
104 skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
105}
106
107template <class Impl>
108std::string
109DefaultIEW<Impl>::name() const
110{
111 return cpu->name() + ".iew";
112}
113
114template <class Impl>
115void
116DefaultIEW<Impl>::regProbePoints()
117{
118 ppDispatch = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Dispatch");
119 ppMispredict = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Mispredict");
120}
121
122template <class Impl>
123void
124DefaultIEW<Impl>::regStats()
125{
126 using namespace Stats;
127
128 instQueue.regStats();
129 ldstQueue.regStats();
130
131 iewIdleCycles
132 .name(name() + ".iewIdleCycles")
133 .desc("Number of cycles IEW is idle");
134
135 iewSquashCycles
136 .name(name() + ".iewSquashCycles")
137 .desc("Number of cycles IEW is squashing");
138
139 iewBlockCycles
140 .name(name() + ".iewBlockCycles")
141 .desc("Number of cycles IEW is blocking");
142
143 iewUnblockCycles
144 .name(name() + ".iewUnblockCycles")
145 .desc("Number of cycles IEW is unblocking");
146
147 iewDispatchedInsts
148 .name(name() + ".iewDispatchedInsts")
149 .desc("Number of instructions dispatched to IQ");
150
151 iewDispSquashedInsts
152 .name(name() + ".iewDispSquashedInsts")
153 .desc("Number of squashed instructions skipped by dispatch");
154
155 iewDispLoadInsts
156 .name(name() + ".iewDispLoadInsts")
157 .desc("Number of dispatched load instructions");
158
159 iewDispStoreInsts
160 .name(name() + ".iewDispStoreInsts")
161 .desc("Number of dispatched store instructions");
162
163 iewDispNonSpecInsts
164 .name(name() + ".iewDispNonSpecInsts")
165 .desc("Number of dispatched non-speculative instructions");
166
167 iewIQFullEvents
168 .name(name() + ".iewIQFullEvents")
169 .desc("Number of times the IQ has become full, causing a stall");
170
171 iewLSQFullEvents
172 .name(name() + ".iewLSQFullEvents")
173 .desc("Number of times the LSQ has become full, causing a stall");
174
175 memOrderViolationEvents
176 .name(name() + ".memOrderViolationEvents")
177 .desc("Number of memory order violations");
178
179 predictedTakenIncorrect
180 .name(name() + ".predictedTakenIncorrect")
181 .desc("Number of branches that were predicted taken incorrectly");
182
183 predictedNotTakenIncorrect
184 .name(name() + ".predictedNotTakenIncorrect")
185 .desc("Number of branches that were predicted not taken incorrectly");
186
187 branchMispredicts
188 .name(name() + ".branchMispredicts")
189 .desc("Number of branch mispredicts detected at execute");
190
191 branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
192
193 iewExecutedInsts
194 .name(name() + ".iewExecutedInsts")
195 .desc("Number of executed instructions");
196
197 iewExecLoadInsts
198 .init(cpu->numThreads)
199 .name(name() + ".iewExecLoadInsts")
200 .desc("Number of load instructions executed")
201 .flags(total);
202
203 iewExecSquashedInsts
204 .name(name() + ".iewExecSquashedInsts")
205 .desc("Number of squashed instructions skipped in execute");
206
207 iewExecutedSwp
208 .init(cpu->numThreads)
209 .name(name() + ".exec_swp")
210 .desc("number of swp insts executed")
211 .flags(total);
212
213 iewExecutedNop
214 .init(cpu->numThreads)
215 .name(name() + ".exec_nop")
216 .desc("number of nop insts executed")
217 .flags(total);
218
219 iewExecutedRefs
220 .init(cpu->numThreads)
221 .name(name() + ".exec_refs")
222 .desc("number of memory reference insts executed")
223 .flags(total);
224
225 iewExecutedBranches
226 .init(cpu->numThreads)
227 .name(name() + ".exec_branches")
228 .desc("Number of branches executed")
229 .flags(total);
230
231 iewExecStoreInsts
232 .name(name() + ".exec_stores")
233 .desc("Number of stores executed")
234 .flags(total);
235 iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
236
237 iewExecRate
238 .name(name() + ".exec_rate")
239 .desc("Inst execution rate")
240 .flags(total);
241
242 iewExecRate = iewExecutedInsts / cpu->numCycles;
243
244 iewInstsToCommit
245 .init(cpu->numThreads)
246 .name(name() + ".wb_sent")
247 .desc("cumulative count of insts sent to commit")
248 .flags(total);
249
250 writebackCount
251 .init(cpu->numThreads)
252 .name(name() + ".wb_count")
253 .desc("cumulative count of insts written-back")
254 .flags(total);
255
256 producerInst
257 .init(cpu->numThreads)
258 .name(name() + ".wb_producers")
259 .desc("num instructions producing a value")
260 .flags(total);
261
262 consumerInst
263 .init(cpu->numThreads)
264 .name(name() + ".wb_consumers")
265 .desc("num instructions consuming a value")
266 .flags(total);
267
268 wbPenalized
269 .init(cpu->numThreads)
270 .name(name() + ".wb_penalized")
271 .desc("number of instrctions required to write to 'other' IQ")
272 .flags(total);
273
274 wbPenalizedRate
275 .name(name() + ".wb_penalized_rate")
276 .desc ("fraction of instructions written-back that wrote to 'other' IQ")
277 .flags(total);
278
279 wbPenalizedRate = wbPenalized / writebackCount;
280
281 wbFanout
282 .name(name() + ".wb_fanout")
283 .desc("average fanout of values written-back")
284 .flags(total);
285
286 wbFanout = producerInst / consumerInst;
287
288 wbRate
289 .name(name() + ".wb_rate")
290 .desc("insts written-back per cycle")
291 .flags(total);
292 wbRate = writebackCount / cpu->numCycles;
293}
294
295template<class Impl>
296void
297DefaultIEW<Impl>::startupStage()
298{
299 for (ThreadID tid = 0; tid < numThreads; tid++) {
300 toRename->iewInfo[tid].usedIQ = true;
301 toRename->iewInfo[tid].freeIQEntries =
302 instQueue.numFreeEntries(tid);
303
304 toRename->iewInfo[tid].usedLSQ = true;
305 toRename->iewInfo[tid].freeLSQEntries =
306 ldstQueue.numFreeEntries(tid);
307 }
308
309 // Initialize the checker's dcache port here
310 if (cpu->checker) {
311 cpu->checker->setDcachePort(&cpu->getDataPort());
312 }
313
314 cpu->activateStage(O3CPU::IEWIdx);
315}
316
317template<class Impl>
318void
319DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
320{
321 timeBuffer = tb_ptr;
322
323 // Setup wire to read information from time buffer, from commit.
324 fromCommit = timeBuffer->getWire(-commitToIEWDelay);
325
326 // Setup wire to write information back to previous stages.
327 toRename = timeBuffer->getWire(0);
328
329 toFetch = timeBuffer->getWire(0);
330
331 // Instruction queue also needs main time buffer.
332 instQueue.setTimeBuffer(tb_ptr);
333}
334
335template<class Impl>
336void
337DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
338{
339 renameQueue = rq_ptr;
340
341 // Setup wire to read information from rename queue.
342 fromRename = renameQueue->getWire(-renameToIEWDelay);
343}
344
345template<class Impl>
346void
347DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
348{
349 iewQueue = iq_ptr;
350
351 // Setup wire to write instructions to commit.
352 toCommit = iewQueue->getWire(0);
353}
354
355template<class Impl>
356void
357DefaultIEW<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
358{
359 activeThreads = at_ptr;
360
361 ldstQueue.setActiveThreads(at_ptr);
362 instQueue.setActiveThreads(at_ptr);
363}
364
365template<class Impl>
366void
367DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
368{
369 scoreboard = sb_ptr;
370}
371
372template <class Impl>
373bool
374DefaultIEW<Impl>::isDrained() const
375{
376 bool drained(ldstQueue.isDrained());
377
378 for (ThreadID tid = 0; tid < numThreads; tid++) {
379 if (!insts[tid].empty()) {
380 DPRINTF(Drain, "%i: Insts not empty.\n", tid);
381 drained = false;
382 }
383 if (!skidBuffer[tid].empty()) {
384 DPRINTF(Drain, "%i: Skid buffer not empty.\n", tid);
385 drained = false;
386 }
387 }
388
389 // Also check the FU pool as instructions are "stored" in FU
390 // completion events until they are done and not accounted for
391 // above
392 if (drained && !fuPool->isDrained()) {
393 DPRINTF(Drain, "FU pool still busy.\n");
394 drained = false;
395 }
396
397 return drained;
398}
399
400template <class Impl>
401void
402DefaultIEW<Impl>::drainSanityCheck() const
403{
404 assert(isDrained());
405
406 instQueue.drainSanityCheck();
407 ldstQueue.drainSanityCheck();
408}
409
410template <class Impl>
411void
412DefaultIEW<Impl>::takeOverFrom()
413{
414 // Reset all state.
415 _status = Active;
416 exeStatus = Running;
417 wbStatus = Idle;
418
419 instQueue.takeOverFrom();
420 ldstQueue.takeOverFrom();
421 fuPool->takeOverFrom();
422
423 startupStage();
424 cpu->activityThisCycle();
425
426 for (ThreadID tid = 0; tid < numThreads; tid++) {
427 dispatchStatus[tid] = Running;
428 stalls[tid].commit = false;
429 fetchRedirect[tid] = false;
430 }
431
432 updateLSQNextCycle = false;
433
434 for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
435 issueToExecQueue.advance();
436 }
437}
438
439template<class Impl>
440void
441DefaultIEW<Impl>::squash(ThreadID tid)
442{
443 DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", tid);
444
445 // Tell the IQ to start squashing.
446 instQueue.squash(tid);
447
448 // Tell the LDSTQ to start squashing.
449 ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
450 updatedQueues = true;
451
452 // Clear the skid buffer in case it has any data in it.
453 DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
454 tid, fromCommit->commitInfo[tid].doneSeqNum);
455
456 while (!skidBuffer[tid].empty()) {
457 if (skidBuffer[tid].front()->isLoad() ||
458 skidBuffer[tid].front()->isStore() ) {
459 toRename->iewInfo[tid].dispatchedToLSQ++;
460 }
461
462 toRename->iewInfo[tid].dispatched++;
463
464 skidBuffer[tid].pop();
465 }
466
467 emptyRenameInsts(tid);
468}
469
470template<class Impl>
471void
472DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, ThreadID tid)
473{
474 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %s "
475 "[sn:%i].\n", tid, inst->pcState(), inst->seqNum);
476
477 if (toCommit->squash[tid] == false ||
478 inst->seqNum < toCommit->squashedSeqNum[tid]) {
479 toCommit->squash[tid] = true;
480 toCommit->squashedSeqNum[tid] = inst->seqNum;
481 toCommit->branchTaken[tid] = inst->pcState().branching();
482
483 TheISA::PCState pc = inst->pcState();
484 TheISA::advancePC(pc, inst->staticInst);
485
486 toCommit->pc[tid] = pc;
487 toCommit->mispredictInst[tid] = inst;
488 toCommit->includeSquashInst[tid] = false;
489
490 wroteToTimeBuffer = true;
491 }
492
493}
494
495template<class Impl>
496void
497DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, ThreadID tid)
498{
499 DPRINTF(IEW, "[tid:%i]: Memory violation, squashing violator and younger "
500 "insts, PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
501 // Need to include inst->seqNum in the following comparison to cover the
502 // corner case when a branch misprediction and a memory violation for the
503 // same instruction (e.g. load PC) are detected in the same cycle. In this
504 // case the memory violator should take precedence over the branch
505 // misprediction because it requires the violator itself to be included in
506 // the squash.
507 if (toCommit->squash[tid] == false ||
508 inst->seqNum <= toCommit->squashedSeqNum[tid]) {
509 toCommit->squash[tid] = true;
510
511 toCommit->squashedSeqNum[tid] = inst->seqNum;
512 toCommit->pc[tid] = inst->pcState();
513 toCommit->mispredictInst[tid] = NULL;
514
515 // Must include the memory violator in the squash.
516 toCommit->includeSquashInst[tid] = true;
517
518 wroteToTimeBuffer = true;
519 }
520}
521
522template<class Impl>
523void
524DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, ThreadID tid)
525{
526 DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
527 "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
528 if (toCommit->squash[tid] == false ||
529 inst->seqNum < toCommit->squashedSeqNum[tid]) {
530 toCommit->squash[tid] = true;
531
532 toCommit->squashedSeqNum[tid] = inst->seqNum;
533 toCommit->pc[tid] = inst->pcState();
534 toCommit->mispredictInst[tid] = NULL;
535
536 // Must include the broadcasted SN in the squash.
537 toCommit->includeSquashInst[tid] = true;
538
539 ldstQueue.setLoadBlockedHandled(tid);
540
541 wroteToTimeBuffer = true;
542 }
543}
544
545template<class Impl>
546void
547DefaultIEW<Impl>::block(ThreadID tid)
548{
549 DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
550
551 if (dispatchStatus[tid] != Blocked &&
552 dispatchStatus[tid] != Unblocking) {
553 toRename->iewBlock[tid] = true;
554 wroteToTimeBuffer = true;
555 }
556
557 // Add the current inputs to the skid buffer so they can be
558 // reprocessed when this stage unblocks.
559 skidInsert(tid);
560
561 dispatchStatus[tid] = Blocked;
562}
563
564template<class Impl>
565void
566DefaultIEW<Impl>::unblock(ThreadID tid)
567{
568 DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
569 "buffer %u.\n",tid, tid);
570
571 // If the skid bufffer is empty, signal back to previous stages to unblock.
572 // Also switch status to running.
573 if (skidBuffer[tid].empty()) {
574 toRename->iewUnblock[tid] = true;
575 wroteToTimeBuffer = true;
576 DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
577 dispatchStatus[tid] = Running;
578 }
579}
580
581template<class Impl>
582void
583DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
584{
585 instQueue.wakeDependents(inst);
586}
587
588template<class Impl>
589void
590DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
591{
592 instQueue.rescheduleMemInst(inst);
593}
594
595template<class Impl>
596void
597DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
598{
599 instQueue.replayMemInst(inst);
600}
601
602template<class Impl>
603void
604DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
605{
606 // This function should not be called after writebackInsts in a
607 // single cycle. That will cause problems with an instruction
608 // being added to the queue to commit without being processed by
609 // writebackInsts prior to being sent to commit.
610
611 // First check the time slot that this instruction will write
612 // to. If there are free write ports at the time, then go ahead
613 // and write the instruction to that time. If there are not,
614 // keep looking back to see where's the first time there's a
615 // free slot.
616 while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
617 ++wbNumInst;
618 if (wbNumInst == wbWidth) {
619 ++wbCycle;
620 wbNumInst = 0;
621 }
622
623 assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
624 }
625
626 DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
627 wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
628 // Add finished instruction to queue to commit.
629 (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
630 (*iewQueue)[wbCycle].size++;
631}
632
633template <class Impl>
634unsigned
635DefaultIEW<Impl>::validInstsFromRename()
636{
637 unsigned inst_count = 0;
638
639 for (int i=0; i<fromRename->size; i++) {
640 if (!fromRename->insts[i]->isSquashed())
641 inst_count++;
642 }
643
644 return inst_count;
645}
646
647template<class Impl>
648void
649DefaultIEW<Impl>::skidInsert(ThreadID tid)
650{
651 DynInstPtr inst = NULL;
652
653 while (!insts[tid].empty()) {
654 inst = insts[tid].front();
655
656 insts[tid].pop();
657
658 DPRINTF(IEW,"[tid:%i]: Inserting [sn:%lli] PC:%s into "
659 "dispatch skidBuffer %i\n",tid, inst->seqNum,
660 inst->pcState(),tid);
661
662 skidBuffer[tid].push(inst);
663 }
664
665 assert(skidBuffer[tid].size() <= skidBufferMax &&
666 "Skidbuffer Exceeded Max Size");
667}
668
669template<class Impl>
670int
671DefaultIEW<Impl>::skidCount()
672{
673 int max=0;
674
675 list<ThreadID>::iterator threads = activeThreads->begin();
676 list<ThreadID>::iterator end = activeThreads->end();
677
678 while (threads != end) {
679 ThreadID tid = *threads++;
680 unsigned thread_count = skidBuffer[tid].size();
681 if (max < thread_count)
682 max = thread_count;
683 }
684
685 return max;
686}
687
688template<class Impl>
689bool
690DefaultIEW<Impl>::skidsEmpty()
691{
692 list<ThreadID>::iterator threads = activeThreads->begin();
693 list<ThreadID>::iterator end = activeThreads->end();
694
695 while (threads != end) {
696 ThreadID tid = *threads++;
697
698 if (!skidBuffer[tid].empty())
699 return false;
700 }
701
702 return true;
703}
704
705template <class Impl>
706void
707DefaultIEW<Impl>::updateStatus()
708{
709 bool any_unblocking = false;
710
711 list<ThreadID>::iterator threads = activeThreads->begin();
712 list<ThreadID>::iterator end = activeThreads->end();
713
714 while (threads != end) {
715 ThreadID tid = *threads++;
716
717 if (dispatchStatus[tid] == Unblocking) {
718 any_unblocking = true;
719 break;
720 }
721 }
722
723 // If there are no ready instructions waiting to be scheduled by the IQ,
724 // and there's no stores waiting to write back, and dispatch is not
725 // unblocking, then there is no internal activity for the IEW stage.
726 instQueue.intInstQueueReads++;
727 if (_status == Active && !instQueue.hasReadyInsts() &&
728 !ldstQueue.willWB() && !any_unblocking) {
729 DPRINTF(IEW, "IEW switching to idle\n");
730
731 deactivateStage();
732
733 _status = Inactive;
734 } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
735 ldstQueue.willWB() ||
736 any_unblocking)) {
737 // Otherwise there is internal activity. Set to active.
738 DPRINTF(IEW, "IEW switching to active\n");
739
740 activateStage();
741
742 _status = Active;
743 }
744}
745
746template <class Impl>
747void
748DefaultIEW<Impl>::resetEntries()
749{
750 instQueue.resetEntries();
751 ldstQueue.resetEntries();
752}
753
754template <class Impl>
755void
756DefaultIEW<Impl>::readStallSignals(ThreadID tid)
757{
758 if (fromCommit->commitBlock[tid]) {
759 stalls[tid].commit = true;
760 }
761
762 if (fromCommit->commitUnblock[tid]) {
763 assert(stalls[tid].commit);
764 stalls[tid].commit = false;
765 }
766}
767
768template <class Impl>
769bool
770DefaultIEW<Impl>::checkStall(ThreadID tid)
771{
772 bool ret_val(false);
773
774 if (stalls[tid].commit) {
775 DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
776 ret_val = true;
777 } else if (instQueue.isFull(tid)) {
778 DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid);
779 ret_val = true;
780 } else if (ldstQueue.isFull(tid)) {
781 DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
782
783 if (ldstQueue.numLoads(tid) > 0 ) {
784
785 DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
786 tid,ldstQueue.getLoadHeadSeqNum(tid));
787 }
788
789 if (ldstQueue.numStores(tid) > 0) {
790
791 DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
792 tid,ldstQueue.getStoreHeadSeqNum(tid));
793 }
794
795 ret_val = true;
796 } else if (ldstQueue.isStalled(tid)) {
797 DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
798 ret_val = true;
799 }
800
801 return ret_val;
802}
803
804template <class Impl>
805void
806DefaultIEW<Impl>::checkSignalsAndUpdate(ThreadID tid)
807{
808 // Check if there's a squash signal, squash if there is
809 // Check stall signals, block if there is.
810 // If status was Blocked
811 // if so then go to unblocking
812 // If status was Squashing
813 // check if squashing is not high. Switch to running this cycle.
814
815 readStallSignals(tid);
816
817 if (fromCommit->commitInfo[tid].squash) {
818 squash(tid);
819
820 if (dispatchStatus[tid] == Blocked ||
821 dispatchStatus[tid] == Unblocking) {
822 toRename->iewUnblock[tid] = true;
823 wroteToTimeBuffer = true;
824 }
825
826 dispatchStatus[tid] = Squashing;
827 fetchRedirect[tid] = false;
828 return;
829 }
830
831 if (fromCommit->commitInfo[tid].robSquashing) {
832 DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
833
834 dispatchStatus[tid] = Squashing;
835 emptyRenameInsts(tid);
836 wroteToTimeBuffer = true;
837 return;
838 }
839
840 if (checkStall(tid)) {
841 block(tid);
842 dispatchStatus[tid] = Blocked;
843 return;
844 }
845
846 if (dispatchStatus[tid] == Blocked) {
847 // Status from previous cycle was blocked, but there are no more stall
848 // conditions. Switch over to unblocking.
849 DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
850 tid);
851
852 dispatchStatus[tid] = Unblocking;
853
854 unblock(tid);
855
856 return;
857 }
858
859 if (dispatchStatus[tid] == Squashing) {
860 // Switch status to running if rename isn't being told to block or
861 // squash this cycle.
862 DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
863 tid);
864
865 dispatchStatus[tid] = Running;
866
867 return;
868 }
869}
870
871template <class Impl>
872void
873DefaultIEW<Impl>::sortInsts()
874{
875 int insts_from_rename = fromRename->size;
876#ifdef DEBUG
877 for (ThreadID tid = 0; tid < numThreads; tid++)
878 assert(insts[tid].empty());
879#endif
880 for (int i = 0; i < insts_from_rename; ++i) {
881 insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
882 }
883}
884
885template <class Impl>
886void
887DefaultIEW<Impl>::emptyRenameInsts(ThreadID tid)
888{
889 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid);
890
891 while (!insts[tid].empty()) {
892
893 if (insts[tid].front()->isLoad() ||
894 insts[tid].front()->isStore() ) {
895 toRename->iewInfo[tid].dispatchedToLSQ++;
896 }
897
898 toRename->iewInfo[tid].dispatched++;
899
900 insts[tid].pop();
901 }
902}
903
904template <class Impl>
905void
906DefaultIEW<Impl>::wakeCPU()
907{
908 cpu->wakeCPU();
909}
910
911template <class Impl>
912void
913DefaultIEW<Impl>::activityThisCycle()
914{
915 DPRINTF(Activity, "Activity this cycle.\n");
916 cpu->activityThisCycle();
917}
918
919template <class Impl>
920inline void
921DefaultIEW<Impl>::activateStage()
922{
923 DPRINTF(Activity, "Activating stage.\n");
924 cpu->activateStage(O3CPU::IEWIdx);
925}
926
927template <class Impl>
928inline void
929DefaultIEW<Impl>::deactivateStage()
930{
931 DPRINTF(Activity, "Deactivating stage.\n");
932 cpu->deactivateStage(O3CPU::IEWIdx);
933}
934
935template<class Impl>
936void
937DefaultIEW<Impl>::dispatch(ThreadID tid)
938{
939 // If status is Running or idle,
940 // call dispatchInsts()
941 // If status is Unblocking,
942 // buffer any instructions coming from rename
943 // continue trying to empty skid buffer
944 // check if stall conditions have passed
945
946 if (dispatchStatus[tid] == Blocked) {
947 ++iewBlockCycles;
948
949 } else if (dispatchStatus[tid] == Squashing) {
950 ++iewSquashCycles;
951 }
952
953 // Dispatch should try to dispatch as many instructions as its bandwidth
954 // will allow, as long as it is not currently blocked.
955 if (dispatchStatus[tid] == Running ||
956 dispatchStatus[tid] == Idle) {
957 DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
958 "dispatch.\n", tid);
959
960 dispatchInsts(tid);
961 } else if (dispatchStatus[tid] == Unblocking) {
962 // Make sure that the skid buffer has something in it if the
963 // status is unblocking.
964 assert(!skidsEmpty());
965
966 // If the status was unblocking, then instructions from the skid
967 // buffer were used. Remove those instructions and handle
968 // the rest of unblocking.
969 dispatchInsts(tid);
970
971 ++iewUnblockCycles;
972
973 if (validInstsFromRename()) {
974 // Add the current inputs to the skid buffer so they can be
975 // reprocessed when this stage unblocks.
976 skidInsert(tid);
977 }
978
979 unblock(tid);
980 }
981}
982
983template <class Impl>
984void
985DefaultIEW<Impl>::dispatchInsts(ThreadID tid)
986{
987 // Obtain instructions from skid buffer if unblocking, or queue from rename
988 // otherwise.
989 std::queue<DynInstPtr> &insts_to_dispatch =
990 dispatchStatus[tid] == Unblocking ?
991 skidBuffer[tid] : insts[tid];
992
993 int insts_to_add = insts_to_dispatch.size();
994
995 DynInstPtr inst;
996 bool add_to_iq = false;
997 int dis_num_inst = 0;
998
999 // Loop through the instructions, putting them in the instruction
1000 // queue.
1001 for ( ; dis_num_inst < insts_to_add &&
1002 dis_num_inst < dispatchWidth;
1003 ++dis_num_inst)
1004 {
1005 inst = insts_to_dispatch.front();
1006
1007 if (dispatchStatus[tid] == Unblocking) {
1008 DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
1009 "buffer\n", tid);
1010 }
1011
1012 // Make sure there's a valid instruction there.
1013 assert(inst);
1014
1015 DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %s [sn:%lli] [tid:%i] to "
1016 "IQ.\n",
1017 tid, inst->pcState(), inst->seqNum, inst->threadNumber);
1018
1019 // Be sure to mark these instructions as ready so that the
1020 // commit stage can go ahead and execute them, and mark
1021 // them as issued so the IQ doesn't reprocess them.
1022
1023 // Check for squashed instructions.
1024 if (inst->isSquashed()) {
1025 DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
1026 "not adding to IQ.\n", tid);
1027
1028 ++iewDispSquashedInsts;
1029
1030 insts_to_dispatch.pop();
1031
1032 //Tell Rename That An Instruction has been processed
1033 if (inst->isLoad() || inst->isStore()) {
1034 toRename->iewInfo[tid].dispatchedToLSQ++;
1035 }
1036 toRename->iewInfo[tid].dispatched++;
1037
1038 continue;
1039 }
1040
1041 // Check for full conditions.
1042 if (instQueue.isFull(tid)) {
1043 DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1044
1045 // Call function to start blocking.
1046 block(tid);
1047
1048 // Set unblock to false. Special case where we are using
1049 // skidbuffer (unblocking) instructions but then we still
1050 // get full in the IQ.
1051 toRename->iewUnblock[tid] = false;
1052
1053 ++iewIQFullEvents;
1054 break;
1055 } else if (ldstQueue.isFull(tid)) {
1056 DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1057
1058 // Call function to start blocking.
1059 block(tid);
1060
1061 // Set unblock to false. Special case where we are using
1062 // skidbuffer (unblocking) instructions but then we still
1063 // get full in the IQ.
1064 toRename->iewUnblock[tid] = false;
1065
1066 ++iewLSQFullEvents;
1067 break;
1068 }
1069
1070 // Otherwise issue the instruction just fine.
1071 if (inst->isLoad()) {
1072 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1073 "encountered, adding to LSQ.\n", tid);
1074
1075 // Reserve a spot in the load store queue for this
1076 // memory access.
1077 ldstQueue.insertLoad(inst);
1078
1079 ++iewDispLoadInsts;
1080
1081 add_to_iq = true;
1082
1083 toRename->iewInfo[tid].dispatchedToLSQ++;
1084 } else if (inst->isStore()) {
1085 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1086 "encountered, adding to LSQ.\n", tid);
1087
1088 ldstQueue.insertStore(inst);
1089
1090 ++iewDispStoreInsts;
1091
1092 if (inst->isStoreConditional()) {
1093 // Store conditionals need to be set as "canCommit()"
1094 // so that commit can process them when they reach the
1095 // head of commit.
1096 // @todo: This is somewhat specific to Alpha.
1097 inst->setCanCommit();
1098 instQueue.insertNonSpec(inst);
1099 add_to_iq = false;
1100
1101 ++iewDispNonSpecInsts;
1102 } else {
1103 add_to_iq = true;
1104 }
1105
1106 toRename->iewInfo[tid].dispatchedToLSQ++;
1107 } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1108 // Same as non-speculative stores.
1109 inst->setCanCommit();
1110 instQueue.insertBarrier(inst);
1111 add_to_iq = false;
1112 } else if (inst->isNop()) {
1113 DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1114 "skipping.\n", tid);
1115
1116 inst->setIssued();
1117 inst->setExecuted();
1118 inst->setCanCommit();
1119
1120 instQueue.recordProducer(inst);
1121
1122 iewExecutedNop[tid]++;
1123
1124 add_to_iq = false;
1125 } else if (inst->isExecuted()) {
1126 assert(0 && "Instruction shouldn't be executed.\n");
1127 DPRINTF(IEW, "Issue: Executed branch encountered, "
1128 "skipping.\n");
1129
1130 inst->setIssued();
1131 inst->setCanCommit();
1132
1133 instQueue.recordProducer(inst);
1134
1135 add_to_iq = false;
1136 } else {
1137 add_to_iq = true;
1138 }
1139 if (inst->isNonSpeculative()) {
1140 DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1141 "encountered, skipping.\n", tid);
1142
1143 // Same as non-speculative stores.
1144 inst->setCanCommit();
1145
1146 // Specifically insert it as nonspeculative.
1147 instQueue.insertNonSpec(inst);
1148
1149 ++iewDispNonSpecInsts;
1150
1151 add_to_iq = false;
1152 }
1153
1154 // If the instruction queue is not full, then add the
1155 // instruction.
1156 if (add_to_iq) {
1157 instQueue.insert(inst);
1158 }
1159
1160 insts_to_dispatch.pop();
1161
1162 toRename->iewInfo[tid].dispatched++;
1163
1164 ++iewDispatchedInsts;
1165
1166#if TRACING_ON
1167 inst->dispatchTick = curTick() - inst->fetchTick;
1168#endif
1169 ppDispatch->notify(inst);
1170 }
1171
1172 if (!insts_to_dispatch.empty()) {
1173 DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1174 block(tid);
1175 toRename->iewUnblock[tid] = false;
1176 }
1177
1178 if (dispatchStatus[tid] == Idle && dis_num_inst) {
1179 dispatchStatus[tid] = Running;
1180
1181 updatedQueues = true;
1182 }
1183
1184 dis_num_inst = 0;
1185}
1186
1187template <class Impl>
1188void
1189DefaultIEW<Impl>::printAvailableInsts()
1190{
1191 int inst = 0;
1192
1193 std::cout << "Available Instructions: ";
1194
1195 while (fromIssue->insts[inst]) {
1196
1197 if (inst%3==0) std::cout << "\n\t";
1198
1199 std::cout << "PC: " << fromIssue->insts[inst]->pcState()
1200 << " TN: " << fromIssue->insts[inst]->threadNumber
1201 << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1202
1203 inst++;
1204
1205 }
1206
1207 std::cout << "\n";
1208}
1209
1210template <class Impl>
1211void
1212DefaultIEW<Impl>::executeInsts()
1213{
1214 wbNumInst = 0;
1215 wbCycle = 0;
1216
1217 list<ThreadID>::iterator threads = activeThreads->begin();
1218 list<ThreadID>::iterator end = activeThreads->end();
1219
1220 while (threads != end) {
1221 ThreadID tid = *threads++;
1222 fetchRedirect[tid] = false;
1223 }
1224
1225 // Uncomment this if you want to see all available instructions.
1226 // @todo This doesn't actually work anymore, we should fix it.
1227// printAvailableInsts();
1228
1229 // Execute/writeback any instructions that are available.
1230 int insts_to_execute = fromIssue->size;
1231 int inst_num = 0;
1232 for (; inst_num < insts_to_execute;
1233 ++inst_num) {
1234
1235 DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1236
1237 DynInstPtr inst = instQueue.getInstToExecute();
1238
1239 DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%i].\n",
1240 inst->pcState(), inst->threadNumber,inst->seqNum);
1241
1242 // Check if the instruction is squashed; if so then skip it
1243 if (inst->isSquashed()) {
1244 DPRINTF(IEW, "Execute: Instruction was squashed. PC: %s, [tid:%i]"
1245 " [sn:%i]\n", inst->pcState(), inst->threadNumber,
1246 inst->seqNum);
1247
1248 // Consider this instruction executed so that commit can go
1249 // ahead and retire the instruction.
1250 inst->setExecuted();
1251
1252 // Not sure if I should set this here or just let commit try to
1253 // commit any squashed instructions. I like the latter a bit more.
1254 inst->setCanCommit();
1255
1256 ++iewExecSquashedInsts;
1257
1258 decrWb(inst->seqNum);
1259 continue;
1260 }
1261
1262 Fault fault = NoFault;
1263
1264 // Execute instruction.
1265 // Note that if the instruction faults, it will be handled
1266 // at the commit stage.
1267 if (inst->isMemRef()) {
1268 DPRINTF(IEW, "Execute: Calculating address for memory "
1269 "reference.\n");
1270
1271 // Tell the LDSTQ to execute this instruction (if it is a load).
1272 if (inst->isLoad()) {
1273 // Loads will mark themselves as executed, and their writeback
1274 // event adds the instruction to the queue to commit
1275 fault = ldstQueue.executeLoad(inst);
1276
1277 if (inst->isTranslationDelayed() &&
1278 fault == NoFault) {
1279 // A hw page table walk is currently going on; the
1280 // instruction must be deferred.
1281 DPRINTF(IEW, "Execute: Delayed translation, deferring "
1282 "load.\n");
1283 instQueue.deferMemInst(inst);
1284 continue;
1285 }
1286
1287 if (inst->isDataPrefetch() || inst->isInstPrefetch()) {
1288 inst->fault = NoFault;
1289 }
1290 } else if (inst->isStore()) {
1291 fault = ldstQueue.executeStore(inst);
1292
1293 if (inst->isTranslationDelayed() &&
1294 fault == NoFault) {
1295 // A hw page table walk is currently going on; the
1296 // instruction must be deferred.
1297 DPRINTF(IEW, "Execute: Delayed translation, deferring "
1298 "store.\n");
1299 instQueue.deferMemInst(inst);
1300 continue;
1301 }
1302
1303 // If the store had a fault then it may not have a mem req
1304 if (fault != NoFault || inst->readPredicate() == false ||
1305 !inst->isStoreConditional()) {
1306 // If the instruction faulted, then we need to send it along
1307 // to commit without the instruction completing.
1308 // Send this instruction to commit, also make sure iew stage
1309 // realizes there is activity.
1310 inst->setExecuted();
1311 instToCommit(inst);
1312 activityThisCycle();
1313 }
1314
1315 // Store conditionals will mark themselves as
1316 // executed, and their writeback event will add the
1317 // instruction to the queue to commit.
1318 } else {
1319 panic("Unexpected memory type!\n");
1320 }
1321
1322 } else {
1323 // If the instruction has already faulted, then skip executing it.
1324 // Such case can happen when it faulted during ITLB translation.
1325 // If we execute the instruction (even if it's a nop) the fault
1326 // will be replaced and we will lose it.
1327 if (inst->getFault() == NoFault) {
1328 inst->execute();
1329 if (inst->readPredicate() == false)
1330 inst->forwardOldRegs();
1331 }
1332
1333 inst->setExecuted();
1334
1335 instToCommit(inst);
1336 }
1337
1338 updateExeInstStats(inst);
1339
1340 // Check if branch prediction was correct, if not then we need
1341 // to tell commit to squash in flight instructions. Only
1342 // handle this if there hasn't already been something that
1343 // redirects fetch in this group of instructions.
1344
1345 // This probably needs to prioritize the redirects if a different
1346 // scheduler is used. Currently the scheduler schedules the oldest
1347 // instruction first, so the branch resolution order will be correct.
1348 ThreadID tid = inst->threadNumber;
1349
1350 if (!fetchRedirect[tid] ||
1351 !toCommit->squash[tid] ||
1352 toCommit->squashedSeqNum[tid] > inst->seqNum) {
1353
1354 // Prevent testing for misprediction on load instructions,
1355 // that have not been executed.
1356 bool loadNotExecuted = !inst->isExecuted() && inst->isLoad();
1357
1358 if (inst->mispredicted() && !loadNotExecuted) {
1359 fetchRedirect[tid] = true;
1360
1361 DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1362 DPRINTF(IEW, "Predicted target was PC: %s.\n",
1363 inst->readPredTarg());
1364 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %s.\n",
1365 inst->pcState());
1366 // If incorrect, then signal the ROB that it must be squashed.
1367 squashDueToBranch(inst, tid);
1368
1369 ppMispredict->notify(inst);
1370
1371 if (inst->readPredTaken()) {
1372 predictedTakenIncorrect++;
1373 } else {
1374 predictedNotTakenIncorrect++;
1375 }
1376 } else if (ldstQueue.violation(tid)) {
1377 assert(inst->isMemRef());
1378 // If there was an ordering violation, then get the
1379 // DynInst that caused the violation. Note that this
1380 // clears the violation signal.
1381 DynInstPtr violator;
1382 violator = ldstQueue.getMemDepViolator(tid);
1383
1384 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s "
1385 "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n",
1386 violator->pcState(), violator->seqNum,
1387 inst->pcState(), inst->seqNum, inst->physEffAddr);
1388
1389 fetchRedirect[tid] = true;
1390
1391 // Tell the instruction queue that a violation has occured.
1392 instQueue.violation(inst, violator);
1393
1394 // Squash.
1395 squashDueToMemOrder(violator, tid);
1396
1397 ++memOrderViolationEvents;
1398 } else if (ldstQueue.loadBlocked(tid) &&
1399 !ldstQueue.isLoadBlockedHandled(tid)) {
1400 fetchRedirect[tid] = true;
1401
1402 DPRINTF(IEW, "Load operation couldn't execute because the "
1403 "memory system is blocked. PC: %s [sn:%lli]\n",
1404 inst->pcState(), inst->seqNum);
1405
1406 squashDueToMemBlocked(inst, tid);
1407 }
1408 } else {
1409 // Reset any state associated with redirects that will not
1410 // be used.
1411 if (ldstQueue.violation(tid)) {
1412 assert(inst->isMemRef());
1413
1414 DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1415
1416 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
1417 "%s, inst PC: %s. Addr is: %#x.\n",
1418 violator->pcState(), inst->pcState(),
1419 inst->physEffAddr);
1420 DPRINTF(IEW, "Violation will not be handled because "
1421 "already squashing\n");
1422
1423 ++memOrderViolationEvents;
1424 }
1425 if (ldstQueue.loadBlocked(tid) &&
1426 !ldstQueue.isLoadBlockedHandled(tid)) {
1427 DPRINTF(IEW, "Load operation couldn't execute because the "
1428 "memory system is blocked. PC: %s [sn:%lli]\n",
1429 inst->pcState(), inst->seqNum);
1430 DPRINTF(IEW, "Blocked load will not be handled because "
1431 "already squashing\n");
1432
1433 ldstQueue.setLoadBlockedHandled(tid);
1434 }
1435
1436 }
1437 }
1438
1439 // Update and record activity if we processed any instructions.
1440 if (inst_num) {
1441 if (exeStatus == Idle) {
1442 exeStatus = Running;
1443 }
1444
1445 updatedQueues = true;
1446
1447 cpu->activityThisCycle();
1448 }
1449
1450 // Need to reset this in case a writeback event needs to write into the
1451 // iew queue. That way the writeback event will write into the correct
1452 // spot in the queue.
1453 wbNumInst = 0;
1454
1455}
1456
1457template <class Impl>
1458void
1459DefaultIEW<Impl>::writebackInsts()
1460{
1461 // Loop through the head of the time buffer and wake any
1462 // dependents. These instructions are about to write back. Also
1463 // mark scoreboard that this instruction is finally complete.
1464 // Either have IEW have direct access to scoreboard, or have this
1465 // as part of backwards communication.
1466 for (int inst_num = 0; inst_num < wbWidth &&
1467 toCommit->insts[inst_num]; inst_num++) {
1468 DynInstPtr inst = toCommit->insts[inst_num];
1469 ThreadID tid = inst->threadNumber;
1470
1471 DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n",
1472 inst->seqNum, inst->pcState());
1473
1474 iewInstsToCommit[tid]++;
1475
1476 // Some instructions will be sent to commit without having
1477 // executed because they need commit to handle them.
1478 // E.g. Uncached loads have not actually executed when they
1479 // are first sent to commit. Instead commit must tell the LSQ
1480 // when it's ready to execute the uncached load.
1481 if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1482 int dependents = instQueue.wakeDependents(inst);
1483
1484 for (int i = 0; i < inst->numDestRegs(); i++) {
1485 //mark as Ready
1486 DPRINTF(IEW,"Setting Destination Register %i\n",
1487 inst->renamedDestRegIdx(i));
1488 scoreboard->setReg(inst->renamedDestRegIdx(i));
1489 }
1490
1491 if (dependents) {
1492 producerInst[tid]++;
1493 consumerInst[tid]+= dependents;
1494 }
1495 writebackCount[tid]++;
1496 }
1497
1498 decrWb(inst->seqNum);
1499 }
1500}
1501
1502template<class Impl>
1503void
1504DefaultIEW<Impl>::tick()
1505{
1506 wbNumInst = 0;
1507 wbCycle = 0;
1508
1509 wroteToTimeBuffer = false;
1510 updatedQueues = false;
1511
1512 sortInsts();
1513
1514 // Free function units marked as being freed this cycle.
1515 fuPool->processFreeUnits();
1516
1517 list<ThreadID>::iterator threads = activeThreads->begin();
1518 list<ThreadID>::iterator end = activeThreads->end();
1519
1520 // Check stall and squash signals, dispatch any instructions.
1521 while (threads != end) {
1522 ThreadID tid = *threads++;
1523
1524 DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1525
1526 checkSignalsAndUpdate(tid);
1527 dispatch(tid);
1528 }
1529
1530 if (exeStatus != Squashing) {
1531 executeInsts();
1532
1533 writebackInsts();
1534
1535 // Have the instruction queue try to schedule any ready instructions.
1536 // (In actuality, this scheduling is for instructions that will
1537 // be executed next cycle.)
1538 instQueue.scheduleReadyInsts();
1539
1540 // Also should advance its own time buffers if the stage ran.
1541 // Not the best place for it, but this works (hopefully).
1542 issueToExecQueue.advance();
1543 }
1544
1545 bool broadcast_free_entries = false;
1546
1547 if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1548 exeStatus = Idle;
1549 updateLSQNextCycle = false;
1550
1551 broadcast_free_entries = true;
1552 }
1553
1554 // Writeback any stores using any leftover bandwidth.
1555 ldstQueue.writebackStores();
1556
1557 // Check the committed load/store signals to see if there's a load
1558 // or store to commit. Also check if it's being told to execute a
1559 // nonspeculative instruction.
1560 // This is pretty inefficient...
1561
1562 threads = activeThreads->begin();
1563 while (threads != end) {
1564 ThreadID tid = (*threads++);
1565
1566 DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1567
1568 // Update structures based on instructions committed.
1569 if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1570 !fromCommit->commitInfo[tid].squash &&
1571 !fromCommit->commitInfo[tid].robSquashing) {
1572
1573 ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1574
1575 ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1576
1577 updateLSQNextCycle = true;
1578 instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1579 }
1580
1581 if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1582
1583 //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1584 if (fromCommit->commitInfo[tid].uncached) {
1585 instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1586 fromCommit->commitInfo[tid].uncachedLoad->setAtCommit();
1587 } else {
1588 instQueue.scheduleNonSpec(
1589 fromCommit->commitInfo[tid].nonSpecSeqNum);
1590 }
1591 }
1592
1593 if (broadcast_free_entries) {
1594 toFetch->iewInfo[tid].iqCount =
1595 instQueue.getCount(tid);
1596 toFetch->iewInfo[tid].ldstqCount =
1597 ldstQueue.getCount(tid);
1598
1599 toRename->iewInfo[tid].usedIQ = true;
1600 toRename->iewInfo[tid].freeIQEntries =
1601 instQueue.numFreeEntries(tid);
1602 toRename->iewInfo[tid].usedLSQ = true;
1603 toRename->iewInfo[tid].freeLSQEntries =
1604 ldstQueue.numFreeEntries(tid);
1605
1606 wroteToTimeBuffer = true;
1607 }
1608
1609 DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1610 tid, toRename->iewInfo[tid].dispatched);
1611 }
1612
1613 DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). "
1614 "LSQ has %i free entries.\n",
1615 instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1616 ldstQueue.numFreeEntries());
1617
1618 updateStatus();
1619
1620 if (wroteToTimeBuffer) {
1621 DPRINTF(Activity, "Activity this cycle.\n");
1622 cpu->activityThisCycle();
1623 }
1624}
1625
1626template <class Impl>
1627void
1628DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1629{
1630 ThreadID tid = inst->threadNumber;
1631
1632 iewExecutedInsts++;
1633
1634#if TRACING_ON
1635 if (DTRACE(O3PipeView)) {
1636 inst->completeTick = curTick() - inst->fetchTick;
1637 }
1638#endif
1639
1640 //
1641 // Control operations
1642 //
1643 if (inst->isControl())
1644 iewExecutedBranches[tid]++;
1645
1646 //
1647 // Memory operations
1648 //
1649 if (inst->isMemRef()) {
1650 iewExecutedRefs[tid]++;
1651
1652 if (inst->isLoad()) {
1653 iewExecLoadInsts[tid]++;
1654 }
1655 }
1656}
1657
1658template <class Impl>
1659void
1660DefaultIEW<Impl>::checkMisprediction(DynInstPtr &inst)
1661{
1662 ThreadID tid = inst->threadNumber;
1663
1664 if (!fetchRedirect[tid] ||
1665 !toCommit->squash[tid] ||
1666 toCommit->squashedSeqNum[tid] > inst->seqNum) {
1667
1668 if (inst->mispredicted()) {
1669 fetchRedirect[tid] = true;
1670
1671 DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1672 DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1673 inst->predInstAddr(), inst->predNextInstAddr());
1674 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x,"
1675 " NPC: %#x.\n", inst->nextInstAddr(),
1676 inst->nextInstAddr());
1677 // If incorrect, then signal the ROB that it must be squashed.
1678 squashDueToBranch(inst, tid);
1679
1680 if (inst->readPredTaken()) {
1681 predictedTakenIncorrect++;
1682 } else {
1683 predictedNotTakenIncorrect++;
1684 }
1685 }
1686 }
1687}
1688
1689#endif//__CPU_O3_IEW_IMPL_IMPL_HH__