iew.hh (7782:9b87755cb699) iew.hh (7813:7338bc628489)
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43#ifndef __CPU_O3_IEW_HH__
44#define __CPU_O3_IEW_HH__
45
46#include <queue>
47
48#include "base/statistics.hh"
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43#ifndef __CPU_O3_IEW_HH__
44#define __CPU_O3_IEW_HH__
45
46#include <queue>
47
48#include "base/statistics.hh"
49#include "base/timebuf.hh"
49#include "cpu/timebuf.hh"
50#include "config/full_system.hh"
51#include "cpu/o3/comm.hh"
52#include "cpu/o3/scoreboard.hh"
53#include "cpu/o3/lsq.hh"
54
55class DerivO3CPUParams;
56class FUPool;
57
58/**
59 * DefaultIEW handles both single threaded and SMT IEW
60 * (issue/execute/writeback). It handles the dispatching of
61 * instructions to the LSQ/IQ as part of the issue stage, and has the
62 * IQ try to issue instructions each cycle. The execute latency is
63 * actually tied into the issue latency to allow the IQ to be able to
64 * do back-to-back scheduling without having to speculatively schedule
65 * instructions. This happens by having the IQ have access to the
66 * functional units, and the IQ gets the execution latencies from the
67 * FUs when it issues instructions. Instructions reach the execute
68 * stage on the last cycle of their execution, which is when the IQ
69 * knows to wake up any dependent instructions, allowing back to back
70 * scheduling. The execute portion of IEW separates memory
71 * instructions from non-memory instructions, either telling the LSQ
72 * to execute the instruction, or executing the instruction directly.
73 * The writeback portion of IEW completes the instructions by waking
74 * up any dependents, and marking the register ready on the
75 * scoreboard.
76 */
77template<class Impl>
78class DefaultIEW
79{
80 private:
81 //Typedefs from Impl
82 typedef typename Impl::CPUPol CPUPol;
83 typedef typename Impl::DynInstPtr DynInstPtr;
84 typedef typename Impl::O3CPU O3CPU;
85
86 typedef typename CPUPol::IQ IQ;
87 typedef typename CPUPol::RenameMap RenameMap;
88 typedef typename CPUPol::LSQ LSQ;
89
90 typedef typename CPUPol::TimeStruct TimeStruct;
91 typedef typename CPUPol::IEWStruct IEWStruct;
92 typedef typename CPUPol::RenameStruct RenameStruct;
93 typedef typename CPUPol::IssueStruct IssueStruct;
94
95 friend class Impl::O3CPU;
96 friend class CPUPol::IQ;
97
98 public:
99 /** Overall IEW stage status. Used to determine if the CPU can
100 * deschedule itself due to a lack of activity.
101 */
102 enum Status {
103 Active,
104 Inactive
105 };
106
107 /** Status for Issue, Execute, and Writeback stages. */
108 enum StageStatus {
109 Running,
110 Blocked,
111 Idle,
112 StartSquash,
113 Squashing,
114 Unblocking
115 };
116
117 private:
118 /** Overall stage status. */
119 Status _status;
120 /** Dispatch status. */
121 StageStatus dispatchStatus[Impl::MaxThreads];
122 /** Execute status. */
123 StageStatus exeStatus;
124 /** Writeback status. */
125 StageStatus wbStatus;
126
127 public:
128 /** Constructs a DefaultIEW with the given parameters. */
129 DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params);
130
131 /** Returns the name of the DefaultIEW stage. */
132 std::string name() const;
133
134 /** Registers statistics. */
135 void regStats();
136
137 /** Initializes stage; sends back the number of free IQ and LSQ entries. */
138 void initStage();
139
140 /** Returns the dcache port. */
141 Port *getDcachePort() { return ldstQueue.getDcachePort(); }
142
143 /** Sets main time buffer used for backwards communication. */
144 void setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr);
145
146 /** Sets time buffer for getting instructions coming from rename. */
147 void setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr);
148
149 /** Sets time buffer to pass on instructions to commit. */
150 void setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr);
151
152 /** Sets pointer to list of active threads. */
153 void setActiveThreads(std::list<ThreadID> *at_ptr);
154
155 /** Sets pointer to the scoreboard. */
156 void setScoreboard(Scoreboard *sb_ptr);
157
158 /** Drains IEW stage. */
159 bool drain();
160
161 /** Resumes execution after a drain. */
162 void resume();
163
164 /** Completes switch out of IEW stage. */
165 void switchOut();
166
167 /** Takes over from another CPU's thread. */
168 void takeOverFrom();
169
170 /** Returns if IEW is switched out. */
171 bool isSwitchedOut() { return switchedOut; }
172
173 /** Squashes instructions in IEW for a specific thread. */
174 void squash(ThreadID tid);
175
176 /** Wakes all dependents of a completed instruction. */
177 void wakeDependents(DynInstPtr &inst);
178
179 /** Tells memory dependence unit that a memory instruction needs to be
180 * rescheduled. It will re-execute once replayMemInst() is called.
181 */
182 void rescheduleMemInst(DynInstPtr &inst);
183
184 /** Re-executes all rescheduled memory instructions. */
185 void replayMemInst(DynInstPtr &inst);
186
187 /** Sends an instruction to commit through the time buffer. */
188 void instToCommit(DynInstPtr &inst);
189
190 /** Inserts unused instructions of a thread into the skid buffer. */
191 void skidInsert(ThreadID tid);
192
193 /** Returns the max of the number of entries in all of the skid buffers. */
194 int skidCount();
195
196 /** Returns if all of the skid buffers are empty. */
197 bool skidsEmpty();
198
199 /** Updates overall IEW status based on all of the stages' statuses. */
200 void updateStatus();
201
202 /** Resets entries of the IQ and the LSQ. */
203 void resetEntries();
204
205 /** Tells the CPU to wakeup if it has descheduled itself due to no
206 * activity. Used mainly by the LdWritebackEvent.
207 */
208 void wakeCPU();
209
210 /** Reports to the CPU that there is activity this cycle. */
211 void activityThisCycle();
212
213 /** Tells CPU that the IEW stage is active and running. */
214 inline void activateStage();
215
216 /** Tells CPU that the IEW stage is inactive and idle. */
217 inline void deactivateStage();
218
219 /** Returns if the LSQ has any stores to writeback. */
220 bool hasStoresToWB() { return ldstQueue.hasStoresToWB(); }
221
222 /** Returns if the LSQ has any stores to writeback. */
223 bool hasStoresToWB(ThreadID tid) { return ldstQueue.hasStoresToWB(tid); }
224
225 void incrWb(InstSeqNum &sn)
226 {
227 if (++wbOutstanding == wbMax)
228 ableToIssue = false;
229 DPRINTF(IEW, "wbOutstanding: %i\n", wbOutstanding);
230 assert(wbOutstanding <= wbMax);
231#ifdef DEBUG
232 wbList.insert(sn);
233#endif
234 }
235
236 void decrWb(InstSeqNum &sn)
237 {
238 if (wbOutstanding-- == wbMax)
239 ableToIssue = true;
240 DPRINTF(IEW, "wbOutstanding: %i [sn:%lli]\n", wbOutstanding, sn);
241 assert(wbOutstanding >= 0);
242#ifdef DEBUG
243 assert(wbList.find(sn) != wbList.end());
244 wbList.erase(sn);
245#endif
246 }
247
248#ifdef DEBUG
249 std::set<InstSeqNum> wbList;
250
251 void dumpWb()
252 {
253 std::set<InstSeqNum>::iterator wb_it = wbList.begin();
254 while (wb_it != wbList.end()) {
255 cprintf("[sn:%lli]\n",
256 (*wb_it));
257 wb_it++;
258 }
259 }
260#endif
261
262 bool canIssue() { return ableToIssue; }
263
264 bool ableToIssue;
265
266 /** Check misprediction */
267 void checkMisprediction(DynInstPtr &inst);
268
269 private:
270 /** Sends commit proper information for a squash due to a branch
271 * mispredict.
272 */
273 void squashDueToBranch(DynInstPtr &inst, ThreadID tid);
274
275 /** Sends commit proper information for a squash due to a memory order
276 * violation.
277 */
278 void squashDueToMemOrder(DynInstPtr &inst, ThreadID tid);
279
280 /** Sends commit proper information for a squash due to memory becoming
281 * blocked (younger issued instructions must be retried).
282 */
283 void squashDueToMemBlocked(DynInstPtr &inst, ThreadID tid);
284
285 /** Sets Dispatch to blocked, and signals back to other stages to block. */
286 void block(ThreadID tid);
287
288 /** Unblocks Dispatch if the skid buffer is empty, and signals back to
289 * other stages to unblock.
290 */
291 void unblock(ThreadID tid);
292
293 /** Determines proper actions to take given Dispatch's status. */
294 void dispatch(ThreadID tid);
295
296 /** Dispatches instructions to IQ and LSQ. */
297 void dispatchInsts(ThreadID tid);
298
299 /** Executes instructions. In the case of memory operations, it informs the
300 * LSQ to execute the instructions. Also handles any redirects that occur
301 * due to the executed instructions.
302 */
303 void executeInsts();
304
305 /** Writebacks instructions. In our model, the instruction's execute()
306 * function atomically reads registers, executes, and writes registers.
307 * Thus this writeback only wakes up dependent instructions, and informs
308 * the scoreboard of registers becoming ready.
309 */
310 void writebackInsts();
311
312 /** Returns the number of valid, non-squashed instructions coming from
313 * rename to dispatch.
314 */
315 unsigned validInstsFromRename();
316
317 /** Reads the stall signals. */
318 void readStallSignals(ThreadID tid);
319
320 /** Checks if any of the stall conditions are currently true. */
321 bool checkStall(ThreadID tid);
322
323 /** Processes inputs and changes state accordingly. */
324 void checkSignalsAndUpdate(ThreadID tid);
325
326 /** Removes instructions from rename from a thread's instruction list. */
327 void emptyRenameInsts(ThreadID tid);
328
329 /** Sorts instructions coming from rename into lists separated by thread. */
330 void sortInsts();
331
332 public:
333 /** Ticks IEW stage, causing Dispatch, the IQ, the LSQ, Execute, and
334 * Writeback to run for one cycle.
335 */
336 void tick();
337
338 private:
339 /** Updates execution stats based on the instruction. */
340 void updateExeInstStats(DynInstPtr &inst);
341
342 /** Pointer to main time buffer used for backwards communication. */
343 TimeBuffer<TimeStruct> *timeBuffer;
344
345 /** Wire to write information heading to previous stages. */
346 typename TimeBuffer<TimeStruct>::wire toFetch;
347
348 /** Wire to get commit's output from backwards time buffer. */
349 typename TimeBuffer<TimeStruct>::wire fromCommit;
350
351 /** Wire to write information heading to previous stages. */
352 typename TimeBuffer<TimeStruct>::wire toRename;
353
354 /** Rename instruction queue interface. */
355 TimeBuffer<RenameStruct> *renameQueue;
356
357 /** Wire to get rename's output from rename queue. */
358 typename TimeBuffer<RenameStruct>::wire fromRename;
359
360 /** Issue stage queue. */
361 TimeBuffer<IssueStruct> issueToExecQueue;
362
363 /** Wire to read information from the issue stage time queue. */
364 typename TimeBuffer<IssueStruct>::wire fromIssue;
365
366 /**
367 * IEW stage time buffer. Holds ROB indices of instructions that
368 * can be marked as completed.
369 */
370 TimeBuffer<IEWStruct> *iewQueue;
371
372 /** Wire to write infromation heading to commit. */
373 typename TimeBuffer<IEWStruct>::wire toCommit;
374
375 /** Queue of all instructions coming from rename this cycle. */
376 std::queue<DynInstPtr> insts[Impl::MaxThreads];
377
378 /** Skid buffer between rename and IEW. */
379 std::queue<DynInstPtr> skidBuffer[Impl::MaxThreads];
380
381 /** Scoreboard pointer. */
382 Scoreboard* scoreboard;
383
384 private:
385 /** CPU pointer. */
386 O3CPU *cpu;
387
388 /** Records if IEW has written to the time buffer this cycle, so that the
389 * CPU can deschedule itself if there is no activity.
390 */
391 bool wroteToTimeBuffer;
392
393 /** Source of possible stalls. */
394 struct Stalls {
395 bool commit;
396 };
397
398 /** Stages that are telling IEW to stall. */
399 Stalls stalls[Impl::MaxThreads];
400
401 /** Debug function to print instructions that are issued this cycle. */
402 void printAvailableInsts();
403
404 public:
405 /** Instruction queue. */
406 IQ instQueue;
407
408 /** Load / store queue. */
409 LSQ ldstQueue;
410
411 /** Pointer to the functional unit pool. */
412 FUPool *fuPool;
413 /** Records if the LSQ needs to be updated on the next cycle, so that
414 * IEW knows if there will be activity on the next cycle.
415 */
416 bool updateLSQNextCycle;
417
418 private:
419 /** Records if there is a fetch redirect on this cycle for each thread. */
420 bool fetchRedirect[Impl::MaxThreads];
421
422 /** Records if the queues have been changed (inserted or issued insts),
423 * so that IEW knows to broadcast the updated amount of free entries.
424 */
425 bool updatedQueues;
426
427 /** Commit to IEW delay, in ticks. */
428 unsigned commitToIEWDelay;
429
430 /** Rename to IEW delay, in ticks. */
431 unsigned renameToIEWDelay;
432
433 /**
434 * Issue to execute delay, in ticks. What this actually represents is
435 * the amount of time it takes for an instruction to wake up, be
436 * scheduled, and sent to a FU for execution.
437 */
438 unsigned issueToExecuteDelay;
439
440 /** Width of dispatch, in instructions. */
441 unsigned dispatchWidth;
442
443 /** Width of issue, in instructions. */
444 unsigned issueWidth;
445
446 /** Index into queue of instructions being written back. */
447 unsigned wbNumInst;
448
449 /** Cycle number within the queue of instructions being written back.
450 * Used in case there are too many instructions writing back at the current
451 * cycle and writesbacks need to be scheduled for the future. See comments
452 * in instToCommit().
453 */
454 unsigned wbCycle;
455
456 /** Number of instructions in flight that will writeback. */
457
458 /** Number of instructions in flight that will writeback. */
459 int wbOutstanding;
460
461 /** Writeback width. */
462 unsigned wbWidth;
463
464 /** Writeback width * writeback depth, where writeback depth is
465 * the number of cycles of writing back instructions that can be
466 * buffered. */
467 unsigned wbMax;
468
469 /** Number of active threads. */
470 ThreadID numThreads;
471
472 /** Pointer to list of active threads. */
473 std::list<ThreadID> *activeThreads;
474
475 /** Maximum size of the skid buffer. */
476 unsigned skidBufferMax;
477
478 /** Is this stage switched out. */
479 bool switchedOut;
480
481 /** Stat for total number of idle cycles. */
482 Stats::Scalar iewIdleCycles;
483 /** Stat for total number of squashing cycles. */
484 Stats::Scalar iewSquashCycles;
485 /** Stat for total number of blocking cycles. */
486 Stats::Scalar iewBlockCycles;
487 /** Stat for total number of unblocking cycles. */
488 Stats::Scalar iewUnblockCycles;
489 /** Stat for total number of instructions dispatched. */
490 Stats::Scalar iewDispatchedInsts;
491 /** Stat for total number of squashed instructions dispatch skips. */
492 Stats::Scalar iewDispSquashedInsts;
493 /** Stat for total number of dispatched load instructions. */
494 Stats::Scalar iewDispLoadInsts;
495 /** Stat for total number of dispatched store instructions. */
496 Stats::Scalar iewDispStoreInsts;
497 /** Stat for total number of dispatched non speculative instructions. */
498 Stats::Scalar iewDispNonSpecInsts;
499 /** Stat for number of times the IQ becomes full. */
500 Stats::Scalar iewIQFullEvents;
501 /** Stat for number of times the LSQ becomes full. */
502 Stats::Scalar iewLSQFullEvents;
503 /** Stat for total number of memory ordering violation events. */
504 Stats::Scalar memOrderViolationEvents;
505 /** Stat for total number of incorrect predicted taken branches. */
506 Stats::Scalar predictedTakenIncorrect;
507 /** Stat for total number of incorrect predicted not taken branches. */
508 Stats::Scalar predictedNotTakenIncorrect;
509 /** Stat for total number of mispredicted branches detected at execute. */
510 Stats::Formula branchMispredicts;
511
512 /** Stat for total number of executed instructions. */
513 Stats::Scalar iewExecutedInsts;
514 /** Stat for total number of executed load instructions. */
515 Stats::Vector iewExecLoadInsts;
516 /** Stat for total number of executed store instructions. */
517// Stats::Scalar iewExecStoreInsts;
518 /** Stat for total number of squashed instructions skipped at execute. */
519 Stats::Scalar iewExecSquashedInsts;
520 /** Number of executed software prefetches. */
521 Stats::Vector iewExecutedSwp;
522 /** Number of executed nops. */
523 Stats::Vector iewExecutedNop;
524 /** Number of executed meomory references. */
525 Stats::Vector iewExecutedRefs;
526 /** Number of executed branches. */
527 Stats::Vector iewExecutedBranches;
528 /** Number of executed store instructions. */
529 Stats::Formula iewExecStoreInsts;
530 /** Number of instructions executed per cycle. */
531 Stats::Formula iewExecRate;
532
533 /** Number of instructions sent to commit. */
534 Stats::Vector iewInstsToCommit;
535 /** Number of instructions that writeback. */
536 Stats::Vector writebackCount;
537 /** Number of instructions that wake consumers. */
538 Stats::Vector producerInst;
539 /** Number of instructions that wake up from producers. */
540 Stats::Vector consumerInst;
541 /** Number of instructions that were delayed in writing back due
542 * to resource contention.
543 */
544 Stats::Vector wbPenalized;
545 /** Number of instructions per cycle written back. */
546 Stats::Formula wbRate;
547 /** Average number of woken instructions per writeback. */
548 Stats::Formula wbFanout;
549 /** Number of instructions per cycle delayed in writing back . */
550 Stats::Formula wbPenalizedRate;
551};
552
553#endif // __CPU_O3_IEW_HH__
50#include "config/full_system.hh"
51#include "cpu/o3/comm.hh"
52#include "cpu/o3/scoreboard.hh"
53#include "cpu/o3/lsq.hh"
54
55class DerivO3CPUParams;
56class FUPool;
57
58/**
59 * DefaultIEW handles both single threaded and SMT IEW
60 * (issue/execute/writeback). It handles the dispatching of
61 * instructions to the LSQ/IQ as part of the issue stage, and has the
62 * IQ try to issue instructions each cycle. The execute latency is
63 * actually tied into the issue latency to allow the IQ to be able to
64 * do back-to-back scheduling without having to speculatively schedule
65 * instructions. This happens by having the IQ have access to the
66 * functional units, and the IQ gets the execution latencies from the
67 * FUs when it issues instructions. Instructions reach the execute
68 * stage on the last cycle of their execution, which is when the IQ
69 * knows to wake up any dependent instructions, allowing back to back
70 * scheduling. The execute portion of IEW separates memory
71 * instructions from non-memory instructions, either telling the LSQ
72 * to execute the instruction, or executing the instruction directly.
73 * The writeback portion of IEW completes the instructions by waking
74 * up any dependents, and marking the register ready on the
75 * scoreboard.
76 */
77template<class Impl>
78class DefaultIEW
79{
80 private:
81 //Typedefs from Impl
82 typedef typename Impl::CPUPol CPUPol;
83 typedef typename Impl::DynInstPtr DynInstPtr;
84 typedef typename Impl::O3CPU O3CPU;
85
86 typedef typename CPUPol::IQ IQ;
87 typedef typename CPUPol::RenameMap RenameMap;
88 typedef typename CPUPol::LSQ LSQ;
89
90 typedef typename CPUPol::TimeStruct TimeStruct;
91 typedef typename CPUPol::IEWStruct IEWStruct;
92 typedef typename CPUPol::RenameStruct RenameStruct;
93 typedef typename CPUPol::IssueStruct IssueStruct;
94
95 friend class Impl::O3CPU;
96 friend class CPUPol::IQ;
97
98 public:
99 /** Overall IEW stage status. Used to determine if the CPU can
100 * deschedule itself due to a lack of activity.
101 */
102 enum Status {
103 Active,
104 Inactive
105 };
106
107 /** Status for Issue, Execute, and Writeback stages. */
108 enum StageStatus {
109 Running,
110 Blocked,
111 Idle,
112 StartSquash,
113 Squashing,
114 Unblocking
115 };
116
117 private:
118 /** Overall stage status. */
119 Status _status;
120 /** Dispatch status. */
121 StageStatus dispatchStatus[Impl::MaxThreads];
122 /** Execute status. */
123 StageStatus exeStatus;
124 /** Writeback status. */
125 StageStatus wbStatus;
126
127 public:
128 /** Constructs a DefaultIEW with the given parameters. */
129 DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params);
130
131 /** Returns the name of the DefaultIEW stage. */
132 std::string name() const;
133
134 /** Registers statistics. */
135 void regStats();
136
137 /** Initializes stage; sends back the number of free IQ and LSQ entries. */
138 void initStage();
139
140 /** Returns the dcache port. */
141 Port *getDcachePort() { return ldstQueue.getDcachePort(); }
142
143 /** Sets main time buffer used for backwards communication. */
144 void setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr);
145
146 /** Sets time buffer for getting instructions coming from rename. */
147 void setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr);
148
149 /** Sets time buffer to pass on instructions to commit. */
150 void setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr);
151
152 /** Sets pointer to list of active threads. */
153 void setActiveThreads(std::list<ThreadID> *at_ptr);
154
155 /** Sets pointer to the scoreboard. */
156 void setScoreboard(Scoreboard *sb_ptr);
157
158 /** Drains IEW stage. */
159 bool drain();
160
161 /** Resumes execution after a drain. */
162 void resume();
163
164 /** Completes switch out of IEW stage. */
165 void switchOut();
166
167 /** Takes over from another CPU's thread. */
168 void takeOverFrom();
169
170 /** Returns if IEW is switched out. */
171 bool isSwitchedOut() { return switchedOut; }
172
173 /** Squashes instructions in IEW for a specific thread. */
174 void squash(ThreadID tid);
175
176 /** Wakes all dependents of a completed instruction. */
177 void wakeDependents(DynInstPtr &inst);
178
179 /** Tells memory dependence unit that a memory instruction needs to be
180 * rescheduled. It will re-execute once replayMemInst() is called.
181 */
182 void rescheduleMemInst(DynInstPtr &inst);
183
184 /** Re-executes all rescheduled memory instructions. */
185 void replayMemInst(DynInstPtr &inst);
186
187 /** Sends an instruction to commit through the time buffer. */
188 void instToCommit(DynInstPtr &inst);
189
190 /** Inserts unused instructions of a thread into the skid buffer. */
191 void skidInsert(ThreadID tid);
192
193 /** Returns the max of the number of entries in all of the skid buffers. */
194 int skidCount();
195
196 /** Returns if all of the skid buffers are empty. */
197 bool skidsEmpty();
198
199 /** Updates overall IEW status based on all of the stages' statuses. */
200 void updateStatus();
201
202 /** Resets entries of the IQ and the LSQ. */
203 void resetEntries();
204
205 /** Tells the CPU to wakeup if it has descheduled itself due to no
206 * activity. Used mainly by the LdWritebackEvent.
207 */
208 void wakeCPU();
209
210 /** Reports to the CPU that there is activity this cycle. */
211 void activityThisCycle();
212
213 /** Tells CPU that the IEW stage is active and running. */
214 inline void activateStage();
215
216 /** Tells CPU that the IEW stage is inactive and idle. */
217 inline void deactivateStage();
218
219 /** Returns if the LSQ has any stores to writeback. */
220 bool hasStoresToWB() { return ldstQueue.hasStoresToWB(); }
221
222 /** Returns if the LSQ has any stores to writeback. */
223 bool hasStoresToWB(ThreadID tid) { return ldstQueue.hasStoresToWB(tid); }
224
225 void incrWb(InstSeqNum &sn)
226 {
227 if (++wbOutstanding == wbMax)
228 ableToIssue = false;
229 DPRINTF(IEW, "wbOutstanding: %i\n", wbOutstanding);
230 assert(wbOutstanding <= wbMax);
231#ifdef DEBUG
232 wbList.insert(sn);
233#endif
234 }
235
236 void decrWb(InstSeqNum &sn)
237 {
238 if (wbOutstanding-- == wbMax)
239 ableToIssue = true;
240 DPRINTF(IEW, "wbOutstanding: %i [sn:%lli]\n", wbOutstanding, sn);
241 assert(wbOutstanding >= 0);
242#ifdef DEBUG
243 assert(wbList.find(sn) != wbList.end());
244 wbList.erase(sn);
245#endif
246 }
247
248#ifdef DEBUG
249 std::set<InstSeqNum> wbList;
250
251 void dumpWb()
252 {
253 std::set<InstSeqNum>::iterator wb_it = wbList.begin();
254 while (wb_it != wbList.end()) {
255 cprintf("[sn:%lli]\n",
256 (*wb_it));
257 wb_it++;
258 }
259 }
260#endif
261
262 bool canIssue() { return ableToIssue; }
263
264 bool ableToIssue;
265
266 /** Check misprediction */
267 void checkMisprediction(DynInstPtr &inst);
268
269 private:
270 /** Sends commit proper information for a squash due to a branch
271 * mispredict.
272 */
273 void squashDueToBranch(DynInstPtr &inst, ThreadID tid);
274
275 /** Sends commit proper information for a squash due to a memory order
276 * violation.
277 */
278 void squashDueToMemOrder(DynInstPtr &inst, ThreadID tid);
279
280 /** Sends commit proper information for a squash due to memory becoming
281 * blocked (younger issued instructions must be retried).
282 */
283 void squashDueToMemBlocked(DynInstPtr &inst, ThreadID tid);
284
285 /** Sets Dispatch to blocked, and signals back to other stages to block. */
286 void block(ThreadID tid);
287
288 /** Unblocks Dispatch if the skid buffer is empty, and signals back to
289 * other stages to unblock.
290 */
291 void unblock(ThreadID tid);
292
293 /** Determines proper actions to take given Dispatch's status. */
294 void dispatch(ThreadID tid);
295
296 /** Dispatches instructions to IQ and LSQ. */
297 void dispatchInsts(ThreadID tid);
298
299 /** Executes instructions. In the case of memory operations, it informs the
300 * LSQ to execute the instructions. Also handles any redirects that occur
301 * due to the executed instructions.
302 */
303 void executeInsts();
304
305 /** Writebacks instructions. In our model, the instruction's execute()
306 * function atomically reads registers, executes, and writes registers.
307 * Thus this writeback only wakes up dependent instructions, and informs
308 * the scoreboard of registers becoming ready.
309 */
310 void writebackInsts();
311
312 /** Returns the number of valid, non-squashed instructions coming from
313 * rename to dispatch.
314 */
315 unsigned validInstsFromRename();
316
317 /** Reads the stall signals. */
318 void readStallSignals(ThreadID tid);
319
320 /** Checks if any of the stall conditions are currently true. */
321 bool checkStall(ThreadID tid);
322
323 /** Processes inputs and changes state accordingly. */
324 void checkSignalsAndUpdate(ThreadID tid);
325
326 /** Removes instructions from rename from a thread's instruction list. */
327 void emptyRenameInsts(ThreadID tid);
328
329 /** Sorts instructions coming from rename into lists separated by thread. */
330 void sortInsts();
331
332 public:
333 /** Ticks IEW stage, causing Dispatch, the IQ, the LSQ, Execute, and
334 * Writeback to run for one cycle.
335 */
336 void tick();
337
338 private:
339 /** Updates execution stats based on the instruction. */
340 void updateExeInstStats(DynInstPtr &inst);
341
342 /** Pointer to main time buffer used for backwards communication. */
343 TimeBuffer<TimeStruct> *timeBuffer;
344
345 /** Wire to write information heading to previous stages. */
346 typename TimeBuffer<TimeStruct>::wire toFetch;
347
348 /** Wire to get commit's output from backwards time buffer. */
349 typename TimeBuffer<TimeStruct>::wire fromCommit;
350
351 /** Wire to write information heading to previous stages. */
352 typename TimeBuffer<TimeStruct>::wire toRename;
353
354 /** Rename instruction queue interface. */
355 TimeBuffer<RenameStruct> *renameQueue;
356
357 /** Wire to get rename's output from rename queue. */
358 typename TimeBuffer<RenameStruct>::wire fromRename;
359
360 /** Issue stage queue. */
361 TimeBuffer<IssueStruct> issueToExecQueue;
362
363 /** Wire to read information from the issue stage time queue. */
364 typename TimeBuffer<IssueStruct>::wire fromIssue;
365
366 /**
367 * IEW stage time buffer. Holds ROB indices of instructions that
368 * can be marked as completed.
369 */
370 TimeBuffer<IEWStruct> *iewQueue;
371
372 /** Wire to write infromation heading to commit. */
373 typename TimeBuffer<IEWStruct>::wire toCommit;
374
375 /** Queue of all instructions coming from rename this cycle. */
376 std::queue<DynInstPtr> insts[Impl::MaxThreads];
377
378 /** Skid buffer between rename and IEW. */
379 std::queue<DynInstPtr> skidBuffer[Impl::MaxThreads];
380
381 /** Scoreboard pointer. */
382 Scoreboard* scoreboard;
383
384 private:
385 /** CPU pointer. */
386 O3CPU *cpu;
387
388 /** Records if IEW has written to the time buffer this cycle, so that the
389 * CPU can deschedule itself if there is no activity.
390 */
391 bool wroteToTimeBuffer;
392
393 /** Source of possible stalls. */
394 struct Stalls {
395 bool commit;
396 };
397
398 /** Stages that are telling IEW to stall. */
399 Stalls stalls[Impl::MaxThreads];
400
401 /** Debug function to print instructions that are issued this cycle. */
402 void printAvailableInsts();
403
404 public:
405 /** Instruction queue. */
406 IQ instQueue;
407
408 /** Load / store queue. */
409 LSQ ldstQueue;
410
411 /** Pointer to the functional unit pool. */
412 FUPool *fuPool;
413 /** Records if the LSQ needs to be updated on the next cycle, so that
414 * IEW knows if there will be activity on the next cycle.
415 */
416 bool updateLSQNextCycle;
417
418 private:
419 /** Records if there is a fetch redirect on this cycle for each thread. */
420 bool fetchRedirect[Impl::MaxThreads];
421
422 /** Records if the queues have been changed (inserted or issued insts),
423 * so that IEW knows to broadcast the updated amount of free entries.
424 */
425 bool updatedQueues;
426
427 /** Commit to IEW delay, in ticks. */
428 unsigned commitToIEWDelay;
429
430 /** Rename to IEW delay, in ticks. */
431 unsigned renameToIEWDelay;
432
433 /**
434 * Issue to execute delay, in ticks. What this actually represents is
435 * the amount of time it takes for an instruction to wake up, be
436 * scheduled, and sent to a FU for execution.
437 */
438 unsigned issueToExecuteDelay;
439
440 /** Width of dispatch, in instructions. */
441 unsigned dispatchWidth;
442
443 /** Width of issue, in instructions. */
444 unsigned issueWidth;
445
446 /** Index into queue of instructions being written back. */
447 unsigned wbNumInst;
448
449 /** Cycle number within the queue of instructions being written back.
450 * Used in case there are too many instructions writing back at the current
451 * cycle and writesbacks need to be scheduled for the future. See comments
452 * in instToCommit().
453 */
454 unsigned wbCycle;
455
456 /** Number of instructions in flight that will writeback. */
457
458 /** Number of instructions in flight that will writeback. */
459 int wbOutstanding;
460
461 /** Writeback width. */
462 unsigned wbWidth;
463
464 /** Writeback width * writeback depth, where writeback depth is
465 * the number of cycles of writing back instructions that can be
466 * buffered. */
467 unsigned wbMax;
468
469 /** Number of active threads. */
470 ThreadID numThreads;
471
472 /** Pointer to list of active threads. */
473 std::list<ThreadID> *activeThreads;
474
475 /** Maximum size of the skid buffer. */
476 unsigned skidBufferMax;
477
478 /** Is this stage switched out. */
479 bool switchedOut;
480
481 /** Stat for total number of idle cycles. */
482 Stats::Scalar iewIdleCycles;
483 /** Stat for total number of squashing cycles. */
484 Stats::Scalar iewSquashCycles;
485 /** Stat for total number of blocking cycles. */
486 Stats::Scalar iewBlockCycles;
487 /** Stat for total number of unblocking cycles. */
488 Stats::Scalar iewUnblockCycles;
489 /** Stat for total number of instructions dispatched. */
490 Stats::Scalar iewDispatchedInsts;
491 /** Stat for total number of squashed instructions dispatch skips. */
492 Stats::Scalar iewDispSquashedInsts;
493 /** Stat for total number of dispatched load instructions. */
494 Stats::Scalar iewDispLoadInsts;
495 /** Stat for total number of dispatched store instructions. */
496 Stats::Scalar iewDispStoreInsts;
497 /** Stat for total number of dispatched non speculative instructions. */
498 Stats::Scalar iewDispNonSpecInsts;
499 /** Stat for number of times the IQ becomes full. */
500 Stats::Scalar iewIQFullEvents;
501 /** Stat for number of times the LSQ becomes full. */
502 Stats::Scalar iewLSQFullEvents;
503 /** Stat for total number of memory ordering violation events. */
504 Stats::Scalar memOrderViolationEvents;
505 /** Stat for total number of incorrect predicted taken branches. */
506 Stats::Scalar predictedTakenIncorrect;
507 /** Stat for total number of incorrect predicted not taken branches. */
508 Stats::Scalar predictedNotTakenIncorrect;
509 /** Stat for total number of mispredicted branches detected at execute. */
510 Stats::Formula branchMispredicts;
511
512 /** Stat for total number of executed instructions. */
513 Stats::Scalar iewExecutedInsts;
514 /** Stat for total number of executed load instructions. */
515 Stats::Vector iewExecLoadInsts;
516 /** Stat for total number of executed store instructions. */
517// Stats::Scalar iewExecStoreInsts;
518 /** Stat for total number of squashed instructions skipped at execute. */
519 Stats::Scalar iewExecSquashedInsts;
520 /** Number of executed software prefetches. */
521 Stats::Vector iewExecutedSwp;
522 /** Number of executed nops. */
523 Stats::Vector iewExecutedNop;
524 /** Number of executed meomory references. */
525 Stats::Vector iewExecutedRefs;
526 /** Number of executed branches. */
527 Stats::Vector iewExecutedBranches;
528 /** Number of executed store instructions. */
529 Stats::Formula iewExecStoreInsts;
530 /** Number of instructions executed per cycle. */
531 Stats::Formula iewExecRate;
532
533 /** Number of instructions sent to commit. */
534 Stats::Vector iewInstsToCommit;
535 /** Number of instructions that writeback. */
536 Stats::Vector writebackCount;
537 /** Number of instructions that wake consumers. */
538 Stats::Vector producerInst;
539 /** Number of instructions that wake up from producers. */
540 Stats::Vector consumerInst;
541 /** Number of instructions that were delayed in writing back due
542 * to resource contention.
543 */
544 Stats::Vector wbPenalized;
545 /** Number of instructions per cycle written back. */
546 Stats::Formula wbRate;
547 /** Average number of woken instructions per writeback. */
548 Stats::Formula wbFanout;
549 /** Number of instructions per cycle delayed in writing back . */
550 Stats::Formula wbPenalizedRate;
551};
552
553#endif // __CPU_O3_IEW_HH__