1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * Copyright (c) 2012-2013 AMD
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 * Korey Sewell
43 */
44
45#ifndef __CPU_O3_FETCH_IMPL_HH__
46#define __CPU_O3_FETCH_IMPL_HH__
47
48#include <algorithm>
49#include <cstring>
50#include <list>
51#include <map>
52#include <queue>
53
54#include "arch/isa_traits.hh"
55#include "arch/tlb.hh"
56#include "arch/utility.hh"
57#include "arch/vtophys.hh"
58#include "base/random.hh"
59#include "base/types.hh"
60#include "config/the_isa.hh"
61#include "cpu/base.hh"
62//#include "cpu/checker/cpu.hh"
63#include "cpu/o3/fetch.hh"
64#include "cpu/exetrace.hh"
65#include "debug/Activity.hh"
66#include "debug/Drain.hh"
67#include "debug/Fetch.hh"
68#include "debug/O3PipeView.hh"
69#include "mem/packet.hh"
70#include "params/DerivO3CPU.hh"
71#include "sim/byteswap.hh"
72#include "sim/core.hh"
73#include "sim/eventq.hh"
74#include "sim/full_system.hh"
75#include "sim/system.hh"
76#include "cpu/o3/isa_specific.hh"
77
78using namespace std;
79
80template<class Impl>
81DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
82 : cpu(_cpu),
83 decodeToFetchDelay(params->decodeToFetchDelay),
84 renameToFetchDelay(params->renameToFetchDelay),
85 iewToFetchDelay(params->iewToFetchDelay),
86 commitToFetchDelay(params->commitToFetchDelay),
87 fetchWidth(params->fetchWidth),
88 decodeWidth(params->decodeWidth),
89 retryPkt(NULL),
90 retryTid(InvalidThreadID),
91 cacheBlkSize(cpu->cacheLineSize()),
92 fetchBufferSize(params->fetchBufferSize),
93 fetchBufferMask(fetchBufferSize - 1),
94 fetchQueueSize(params->fetchQueueSize),
95 numThreads(params->numThreads),
96 numFetchingThreads(params->smtNumFetchingThreads),
97 finishTranslationEvent(this)
98{
99 if (numThreads > Impl::MaxThreads)
100 fatal("numThreads (%d) is larger than compiled limit (%d),\n"
101 "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
102 numThreads, static_cast<int>(Impl::MaxThreads));
103 if (fetchWidth > Impl::MaxWidth)
104 fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
105 "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
106 fetchWidth, static_cast<int>(Impl::MaxWidth));
107 if (fetchBufferSize > cacheBlkSize)
108 fatal("fetch buffer size (%u bytes) is greater than the cache "
109 "block size (%u bytes)\n", fetchBufferSize, cacheBlkSize);
110 if (cacheBlkSize % fetchBufferSize)
111 fatal("cache block (%u bytes) is not a multiple of the "
112 "fetch buffer (%u bytes)\n", cacheBlkSize, fetchBufferSize);
113
114 std::string policy = params->smtFetchPolicy;
115
116 // Convert string to lowercase
117 std::transform(policy.begin(), policy.end(), policy.begin(),
118 (int(*)(int)) tolower);
119
120 // Figure out fetch policy
121 if (policy == "singlethread") {
122 fetchPolicy = SingleThread;
123 if (numThreads > 1)
124 panic("Invalid Fetch Policy for a SMT workload.");
125 } else if (policy == "roundrobin") {
126 fetchPolicy = RoundRobin;
127 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
128 } else if (policy == "branch") {
129 fetchPolicy = Branch;
130 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
131 } else if (policy == "iqcount") {
132 fetchPolicy = IQ;
133 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
134 } else if (policy == "lsqcount") {
135 fetchPolicy = LSQ;
136 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
137 } else {
138 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
139 " RoundRobin,LSQcount,IQcount}\n");
140 }
141
142 // Get the size of an instruction.
143 instSize = sizeof(TheISA::MachInst);
144
145 for (int i = 0; i < Impl::MaxThreads; i++) {
146 decoder[i] = NULL;
147 fetchBuffer[i] = NULL;
148 fetchBufferPC[i] = 0;
149 fetchBufferValid[i] = false;
150 }
151
152 branchPred = params->branchPred;
153
154 for (ThreadID tid = 0; tid < numThreads; tid++) {
154 decoder[tid] = new TheISA::Decoder;
155 decoder[tid] = new TheISA::Decoder(params->isa[tid]);
156 // Create space to buffer the cache line data,
157 // which may not hold the entire cache line.
158 fetchBuffer[tid] = new uint8_t[fetchBufferSize];
159 }
160}
161
162template <class Impl>
163std::string
164DefaultFetch<Impl>::name() const
165{
166 return cpu->name() + ".fetch";
167}
168
169template <class Impl>
170void
171DefaultFetch<Impl>::regProbePoints()
172{
173 ppFetch = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Fetch");
174}
175
176template <class Impl>
177void
178DefaultFetch<Impl>::regStats()
179{
180 icacheStallCycles
181 .name(name() + ".icacheStallCycles")
182 .desc("Number of cycles fetch is stalled on an Icache miss")
183 .prereq(icacheStallCycles);
184
185 fetchedInsts
186 .name(name() + ".Insts")
187 .desc("Number of instructions fetch has processed")
188 .prereq(fetchedInsts);
189
190 fetchedBranches
191 .name(name() + ".Branches")
192 .desc("Number of branches that fetch encountered")
193 .prereq(fetchedBranches);
194
195 predictedBranches
196 .name(name() + ".predictedBranches")
197 .desc("Number of branches that fetch has predicted taken")
198 .prereq(predictedBranches);
199
200 fetchCycles
201 .name(name() + ".Cycles")
202 .desc("Number of cycles fetch has run and was not squashing or"
203 " blocked")
204 .prereq(fetchCycles);
205
206 fetchSquashCycles
207 .name(name() + ".SquashCycles")
208 .desc("Number of cycles fetch has spent squashing")
209 .prereq(fetchSquashCycles);
210
211 fetchTlbCycles
212 .name(name() + ".TlbCycles")
213 .desc("Number of cycles fetch has spent waiting for tlb")
214 .prereq(fetchTlbCycles);
215
216 fetchIdleCycles
217 .name(name() + ".IdleCycles")
218 .desc("Number of cycles fetch was idle")
219 .prereq(fetchIdleCycles);
220
221 fetchBlockedCycles
222 .name(name() + ".BlockedCycles")
223 .desc("Number of cycles fetch has spent blocked")
224 .prereq(fetchBlockedCycles);
225
226 fetchedCacheLines
227 .name(name() + ".CacheLines")
228 .desc("Number of cache lines fetched")
229 .prereq(fetchedCacheLines);
230
231 fetchMiscStallCycles
232 .name(name() + ".MiscStallCycles")
233 .desc("Number of cycles fetch has spent waiting on interrupts, or "
234 "bad addresses, or out of MSHRs")
235 .prereq(fetchMiscStallCycles);
236
237 fetchPendingDrainCycles
238 .name(name() + ".PendingDrainCycles")
239 .desc("Number of cycles fetch has spent waiting on pipes to drain")
240 .prereq(fetchPendingDrainCycles);
241
242 fetchNoActiveThreadStallCycles
243 .name(name() + ".NoActiveThreadStallCycles")
244 .desc("Number of stall cycles due to no active thread to fetch from")
245 .prereq(fetchNoActiveThreadStallCycles);
246
247 fetchPendingTrapStallCycles
248 .name(name() + ".PendingTrapStallCycles")
249 .desc("Number of stall cycles due to pending traps")
250 .prereq(fetchPendingTrapStallCycles);
251
252 fetchPendingQuiesceStallCycles
253 .name(name() + ".PendingQuiesceStallCycles")
254 .desc("Number of stall cycles due to pending quiesce instructions")
255 .prereq(fetchPendingQuiesceStallCycles);
256
257 fetchIcacheWaitRetryStallCycles
258 .name(name() + ".IcacheWaitRetryStallCycles")
259 .desc("Number of stall cycles due to full MSHR")
260 .prereq(fetchIcacheWaitRetryStallCycles);
261
262 fetchIcacheSquashes
263 .name(name() + ".IcacheSquashes")
264 .desc("Number of outstanding Icache misses that were squashed")
265 .prereq(fetchIcacheSquashes);
266
267 fetchTlbSquashes
268 .name(name() + ".ItlbSquashes")
269 .desc("Number of outstanding ITLB misses that were squashed")
270 .prereq(fetchTlbSquashes);
271
272 fetchNisnDist
273 .init(/* base value */ 0,
274 /* last value */ fetchWidth,
275 /* bucket size */ 1)
276 .name(name() + ".rateDist")
277 .desc("Number of instructions fetched each cycle (Total)")
278 .flags(Stats::pdf);
279
280 idleRate
281 .name(name() + ".idleRate")
282 .desc("Percent of cycles fetch was idle")
283 .prereq(idleRate);
284 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
285
286 branchRate
287 .name(name() + ".branchRate")
288 .desc("Number of branch fetches per cycle")
289 .flags(Stats::total);
290 branchRate = fetchedBranches / cpu->numCycles;
291
292 fetchRate
293 .name(name() + ".rate")
294 .desc("Number of inst fetches per cycle")
295 .flags(Stats::total);
296 fetchRate = fetchedInsts / cpu->numCycles;
297}
298
299template<class Impl>
300void
301DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
302{
303 timeBuffer = time_buffer;
304
305 // Create wires to get information from proper places in time buffer.
306 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
307 fromRename = timeBuffer->getWire(-renameToFetchDelay);
308 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
309 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
310}
311
312template<class Impl>
313void
314DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
315{
316 activeThreads = at_ptr;
317}
318
319template<class Impl>
320void
321DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *ftb_ptr)
322{
323 // Create wire to write information to proper place in fetch time buf.
324 toDecode = ftb_ptr->getWire(0);
325}
326
327template<class Impl>
328void
329DefaultFetch<Impl>::startupStage()
330{
331 assert(priorityList.empty());
332 resetStage();
333
334 // Fetch needs to start fetching instructions at the very beginning,
335 // so it must start up in active state.
336 switchToActive();
337}
338
339template<class Impl>
340void
341DefaultFetch<Impl>::resetStage()
342{
343 numInst = 0;
344 interruptPending = false;
345 cacheBlocked = false;
346
347 priorityList.clear();
348
349 // Setup PC and nextPC with initial state.
350 for (ThreadID tid = 0; tid < numThreads; ++tid) {
351 fetchStatus[tid] = Running;
352 pc[tid] = cpu->pcState(tid);
353 fetchOffset[tid] = 0;
354 macroop[tid] = NULL;
355
356 delayedCommit[tid] = false;
357 memReq[tid] = NULL;
358
359 stalls[tid].decode = false;
360 stalls[tid].drain = false;
361
362 fetchBufferPC[tid] = 0;
363 fetchBufferValid[tid] = false;
364
365 fetchQueue[tid].clear();
366
367 priorityList.push_back(tid);
368 }
369
370 wroteToTimeBuffer = false;
371 _status = Inactive;
372}
373
374template<class Impl>
375void
376DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
377{
378 ThreadID tid = pkt->req->threadId();
379
380 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
381 assert(!cpu->switchedOut());
382
383 // Only change the status if it's still waiting on the icache access
384 // to return.
385 if (fetchStatus[tid] != IcacheWaitResponse ||
386 pkt->req != memReq[tid]) {
387 ++fetchIcacheSquashes;
388 delete pkt->req;
389 delete pkt;
390 return;
391 }
392
393 memcpy(fetchBuffer[tid], pkt->getConstPtr<uint8_t>(), fetchBufferSize);
394 fetchBufferValid[tid] = true;
395
396 // Wake up the CPU (if it went to sleep and was waiting on
397 // this completion event).
398 cpu->wakeCPU();
399
400 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
401 tid);
402
403 switchToActive();
404
405 // Only switch to IcacheAccessComplete if we're not stalled as well.
406 if (checkStall(tid)) {
407 fetchStatus[tid] = Blocked;
408 } else {
409 fetchStatus[tid] = IcacheAccessComplete;
410 }
411
412 pkt->req->setAccessLatency();
413 cpu->ppInstAccessComplete->notify(pkt);
414 // Reset the mem req to NULL.
415 delete pkt->req;
416 delete pkt;
417 memReq[tid] = NULL;
418}
419
420template <class Impl>
421void
422DefaultFetch<Impl>::drainResume()
423{
424 for (ThreadID i = 0; i < numThreads; ++i)
425 stalls[i].drain = false;
426}
427
428template <class Impl>
429void
430DefaultFetch<Impl>::drainSanityCheck() const
431{
432 assert(isDrained());
433 assert(retryPkt == NULL);
434 assert(retryTid == InvalidThreadID);
435 assert(!cacheBlocked);
436 assert(!interruptPending);
437
438 for (ThreadID i = 0; i < numThreads; ++i) {
439 assert(!memReq[i]);
440 assert(fetchStatus[i] == Idle || stalls[i].drain);
441 }
442
443 branchPred->drainSanityCheck();
444}
445
446template <class Impl>
447bool
448DefaultFetch<Impl>::isDrained() const
449{
450 /* Make sure that threads are either idle of that the commit stage
451 * has signaled that draining has completed by setting the drain
452 * stall flag. This effectively forces the pipeline to be disabled
453 * until the whole system is drained (simulation may continue to
454 * drain other components).
455 */
456 for (ThreadID i = 0; i < numThreads; ++i) {
457 // Verify fetch queues are drained
458 if (!fetchQueue[i].empty())
459 return false;
460
461 // Return false if not idle or drain stalled
462 if (fetchStatus[i] != Idle) {
463 if (fetchStatus[i] == Blocked && stalls[i].drain)
464 continue;
465 else
466 return false;
467 }
468 }
469
470 /* The pipeline might start up again in the middle of the drain
471 * cycle if the finish translation event is scheduled, so make
472 * sure that's not the case.
473 */
474 return !finishTranslationEvent.scheduled();
475}
476
477template <class Impl>
478void
479DefaultFetch<Impl>::takeOverFrom()
480{
481 assert(cpu->getInstPort().isConnected());
482 resetStage();
483
484}
485
486template <class Impl>
487void
488DefaultFetch<Impl>::drainStall(ThreadID tid)
489{
490 assert(cpu->isDraining());
491 assert(!stalls[tid].drain);
492 DPRINTF(Drain, "%i: Thread drained.\n", tid);
493 stalls[tid].drain = true;
494}
495
496template <class Impl>
497void
498DefaultFetch<Impl>::wakeFromQuiesce()
499{
500 DPRINTF(Fetch, "Waking up from quiesce\n");
501 // Hopefully this is safe
502 // @todo: Allow other threads to wake from quiesce.
503 fetchStatus[0] = Running;
504}
505
506template <class Impl>
507inline void
508DefaultFetch<Impl>::switchToActive()
509{
510 if (_status == Inactive) {
511 DPRINTF(Activity, "Activating stage.\n");
512
513 cpu->activateStage(O3CPU::FetchIdx);
514
515 _status = Active;
516 }
517}
518
519template <class Impl>
520inline void
521DefaultFetch<Impl>::switchToInactive()
522{
523 if (_status == Active) {
524 DPRINTF(Activity, "Deactivating stage.\n");
525
526 cpu->deactivateStage(O3CPU::FetchIdx);
527
528 _status = Inactive;
529 }
530}
531
532template <class Impl>
533void
534DefaultFetch<Impl>::deactivateThread(ThreadID tid)
535{
536 // Update priority list
537 auto thread_it = std::find(priorityList.begin(), priorityList.end(), tid);
538 if (thread_it != priorityList.end()) {
539 priorityList.erase(thread_it);
540 }
541}
542
543template <class Impl>
544bool
545DefaultFetch<Impl>::lookupAndUpdateNextPC(
546 DynInstPtr &inst, TheISA::PCState &nextPC)
547{
548 // Do branch prediction check here.
549 // A bit of a misnomer...next_PC is actually the current PC until
550 // this function updates it.
551 bool predict_taken;
552
553 if (!inst->isControl()) {
554 TheISA::advancePC(nextPC, inst->staticInst);
555 inst->setPredTarg(nextPC);
556 inst->setPredTaken(false);
557 return false;
558 }
559
560 ThreadID tid = inst->threadNumber;
561 predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
562 nextPC, tid);
563
564 if (predict_taken) {
565 DPRINTF(Fetch, "[tid:%i]: [sn:%i]: Branch predicted to be taken to %s.\n",
566 tid, inst->seqNum, nextPC);
567 } else {
568 DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
569 tid, inst->seqNum);
570 }
571
572 DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
573 tid, inst->seqNum, nextPC);
574 inst->setPredTarg(nextPC);
575 inst->setPredTaken(predict_taken);
576
577 ++fetchedBranches;
578
579 if (predict_taken) {
580 ++predictedBranches;
581 }
582
583 return predict_taken;
584}
585
586template <class Impl>
587bool
588DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
589{
590 Fault fault = NoFault;
591
592 assert(!cpu->switchedOut());
593
594 // @todo: not sure if these should block translation.
595 //AlphaDep
596 if (cacheBlocked) {
597 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
598 tid);
599 return false;
600 } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
601 // Hold off fetch from getting new instructions when:
602 // Cache is blocked, or
603 // while an interrupt is pending and we're not in PAL mode, or
604 // fetch is switched out.
605 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
606 tid);
607 return false;
608 }
609
610 // Align the fetch address to the start of a fetch buffer segment.
611 Addr fetchBufferBlockPC = fetchBufferAlignPC(vaddr);
612
613 DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
614 tid, fetchBufferBlockPC, vaddr);
615
616 // Setup the memReq to do a read of the first instruction's address.
617 // Set the appropriate read size and flags as well.
618 // Build request here.
619 RequestPtr mem_req =
620 new Request(tid, fetchBufferBlockPC, fetchBufferSize,
621 Request::INST_FETCH, cpu->instMasterId(), pc,
622 cpu->thread[tid]->contextId(), tid);
623
624 mem_req->taskId(cpu->taskId());
625
626 memReq[tid] = mem_req;
627
628 // Initiate translation of the icache block
629 fetchStatus[tid] = ItlbWait;
630 FetchTranslation *trans = new FetchTranslation(this);
631 cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
632 trans, BaseTLB::Execute);
633 return true;
634}
635
636template <class Impl>
637void
638DefaultFetch<Impl>::finishTranslation(const Fault &fault, RequestPtr mem_req)
639{
640 ThreadID tid = mem_req->threadId();
641 Addr fetchBufferBlockPC = mem_req->getVaddr();
642
643 assert(!cpu->switchedOut());
644
645 // Wake up CPU if it was idle
646 cpu->wakeCPU();
647
648 if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
649 mem_req->getVaddr() != memReq[tid]->getVaddr()) {
650 DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
651 tid);
652 ++fetchTlbSquashes;
653 delete mem_req;
654 return;
655 }
656
657
658 // If translation was successful, attempt to read the icache block.
659 if (fault == NoFault) {
660 // Check that we're not going off into random memory
661 // If we have, just wait around for commit to squash something and put
662 // us on the right track
663 if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
664 warn("Address %#x is outside of physical memory, stopping fetch\n",
665 mem_req->getPaddr());
666 fetchStatus[tid] = NoGoodAddr;
667 delete mem_req;
668 memReq[tid] = NULL;
669 return;
670 }
671
672 // Build packet here.
673 PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
674 data_pkt->dataDynamic(new uint8_t[fetchBufferSize]);
675
676 fetchBufferPC[tid] = fetchBufferBlockPC;
677 fetchBufferValid[tid] = false;
678 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
679
680 fetchedCacheLines++;
681
682 // Access the cache.
683 if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
684 assert(retryPkt == NULL);
685 assert(retryTid == InvalidThreadID);
686 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
687
688 fetchStatus[tid] = IcacheWaitRetry;
689 retryPkt = data_pkt;
690 retryTid = tid;
691 cacheBlocked = true;
692 } else {
693 DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
694 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
695 "response.\n", tid);
696 lastIcacheStall[tid] = curTick();
697 fetchStatus[tid] = IcacheWaitResponse;
698 }
699 } else {
700 // Don't send an instruction to decode if we can't handle it.
701 if (!(numInst < fetchWidth) || !(fetchQueue[tid].size() < fetchQueueSize)) {
702 assert(!finishTranslationEvent.scheduled());
703 finishTranslationEvent.setFault(fault);
704 finishTranslationEvent.setReq(mem_req);
705 cpu->schedule(finishTranslationEvent,
706 cpu->clockEdge(Cycles(1)));
707 return;
708 }
709 DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
710 tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
711 // Translation faulted, icache request won't be sent.
712 delete mem_req;
713 memReq[tid] = NULL;
714
715 // Send the fault to commit. This thread will not do anything
716 // until commit handles the fault. The only other way it can
717 // wake up is if a squash comes along and changes the PC.
718 TheISA::PCState fetchPC = pc[tid];
719
720 DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
721 // We will use a nop in ordier to carry the fault.
722 DynInstPtr instruction = buildInst(tid,
723 decoder[tid]->decode(TheISA::NoopMachInst, fetchPC.instAddr()),
724 NULL, fetchPC, fetchPC, false);
725
726 instruction->setPredTarg(fetchPC);
727 instruction->fault = fault;
728 wroteToTimeBuffer = true;
729
730 DPRINTF(Activity, "Activity this cycle.\n");
731 cpu->activityThisCycle();
732
733 fetchStatus[tid] = TrapPending;
734
735 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
736 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
737 tid, fault->name(), pc[tid]);
738 }
739 _status = updateFetchStatus();
740}
741
742template <class Impl>
743inline void
744DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
745 const DynInstPtr squashInst, ThreadID tid)
746{
747 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
748 tid, newPC);
749
750 pc[tid] = newPC;
751 fetchOffset[tid] = 0;
752 if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
753 macroop[tid] = squashInst->macroop;
754 else
755 macroop[tid] = NULL;
756 decoder[tid]->reset();
757
758 // Clear the icache miss if it's outstanding.
759 if (fetchStatus[tid] == IcacheWaitResponse) {
760 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
761 tid);
762 memReq[tid] = NULL;
763 } else if (fetchStatus[tid] == ItlbWait) {
764 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
765 tid);
766 memReq[tid] = NULL;
767 }
768
769 // Get rid of the retrying packet if it was from this thread.
770 if (retryTid == tid) {
771 assert(cacheBlocked);
772 if (retryPkt) {
773 delete retryPkt->req;
774 delete retryPkt;
775 }
776 retryPkt = NULL;
777 retryTid = InvalidThreadID;
778 }
779
780 fetchStatus[tid] = Squashing;
781
782 // Empty fetch queue
783 fetchQueue[tid].clear();
784
785 // microops are being squashed, it is not known wheather the
786 // youngest non-squashed microop was marked delayed commit
787 // or not. Setting the flag to true ensures that the
788 // interrupts are not handled when they cannot be, though
789 // some opportunities to handle interrupts may be missed.
790 delayedCommit[tid] = true;
791
792 ++fetchSquashCycles;
793}
794
795template<class Impl>
796void
797DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
798 const DynInstPtr squashInst,
799 const InstSeqNum seq_num, ThreadID tid)
800{
801 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
802
803 doSquash(newPC, squashInst, tid);
804
805 // Tell the CPU to remove any instructions that are in flight between
806 // fetch and decode.
807 cpu->removeInstsUntil(seq_num, tid);
808}
809
810template<class Impl>
811bool
812DefaultFetch<Impl>::checkStall(ThreadID tid) const
813{
814 bool ret_val = false;
815
816 if (stalls[tid].drain) {
817 assert(cpu->isDraining());
818 DPRINTF(Fetch,"[tid:%i]: Drain stall detected.\n",tid);
819 ret_val = true;
820 }
821
822 return ret_val;
823}
824
825template<class Impl>
826typename DefaultFetch<Impl>::FetchStatus
827DefaultFetch<Impl>::updateFetchStatus()
828{
829 //Check Running
830 list<ThreadID>::iterator threads = activeThreads->begin();
831 list<ThreadID>::iterator end = activeThreads->end();
832
833 while (threads != end) {
834 ThreadID tid = *threads++;
835
836 if (fetchStatus[tid] == Running ||
837 fetchStatus[tid] == Squashing ||
838 fetchStatus[tid] == IcacheAccessComplete) {
839
840 if (_status == Inactive) {
841 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
842
843 if (fetchStatus[tid] == IcacheAccessComplete) {
844 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
845 "completion\n",tid);
846 }
847
848 cpu->activateStage(O3CPU::FetchIdx);
849 }
850
851 return Active;
852 }
853 }
854
855 // Stage is switching from active to inactive, notify CPU of it.
856 if (_status == Active) {
857 DPRINTF(Activity, "Deactivating stage.\n");
858
859 cpu->deactivateStage(O3CPU::FetchIdx);
860 }
861
862 return Inactive;
863}
864
865template <class Impl>
866void
867DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
868 const InstSeqNum seq_num, DynInstPtr squashInst,
869 ThreadID tid)
870{
871 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
872
873 doSquash(newPC, squashInst, tid);
874
875 // Tell the CPU to remove any instructions that are not in the ROB.
876 cpu->removeInstsNotInROB(tid);
877}
878
879template <class Impl>
880void
881DefaultFetch<Impl>::tick()
882{
883 list<ThreadID>::iterator threads = activeThreads->begin();
884 list<ThreadID>::iterator end = activeThreads->end();
885 bool status_change = false;
886
887 wroteToTimeBuffer = false;
888
889 for (ThreadID i = 0; i < numThreads; ++i) {
890 issuePipelinedIfetch[i] = false;
891 }
892
893 while (threads != end) {
894 ThreadID tid = *threads++;
895
896 // Check the signals for each thread to determine the proper status
897 // for each thread.
898 bool updated_status = checkSignalsAndUpdate(tid);
899 status_change = status_change || updated_status;
900 }
901
902 DPRINTF(Fetch, "Running stage.\n");
903
904 if (FullSystem) {
905 if (fromCommit->commitInfo[0].interruptPending) {
906 interruptPending = true;
907 }
908
909 if (fromCommit->commitInfo[0].clearInterrupt) {
910 interruptPending = false;
911 }
912 }
913
914 for (threadFetched = 0; threadFetched < numFetchingThreads;
915 threadFetched++) {
916 // Fetch each of the actively fetching threads.
917 fetch(status_change);
918 }
919
920 // Record number of instructions fetched this cycle for distribution.
921 fetchNisnDist.sample(numInst);
922
923 if (status_change) {
924 // Change the fetch stage status if there was a status change.
925 _status = updateFetchStatus();
926 }
927
928 // Issue the next I-cache request if possible.
929 for (ThreadID i = 0; i < numThreads; ++i) {
930 if (issuePipelinedIfetch[i]) {
931 pipelineIcacheAccesses(i);
932 }
933 }
934
935 // Send instructions enqueued into the fetch queue to decode.
936 // Limit rate by fetchWidth. Stall if decode is stalled.
937 unsigned insts_to_decode = 0;
938 unsigned available_insts = 0;
939
940 for (auto tid : *activeThreads) {
941 if (!stalls[tid].decode) {
942 available_insts += fetchQueue[tid].size();
943 }
944 }
945
946 // Pick a random thread to start trying to grab instructions from
947 auto tid_itr = activeThreads->begin();
948 std::advance(tid_itr, random_mt.random<uint8_t>(0, activeThreads->size() - 1));
949
950 while (available_insts != 0 && insts_to_decode < decodeWidth) {
951 ThreadID tid = *tid_itr;
952 if (!stalls[tid].decode && !fetchQueue[tid].empty()) {
953 auto inst = fetchQueue[tid].front();
954 toDecode->insts[toDecode->size++] = inst;
955 DPRINTF(Fetch, "[tid:%i][sn:%i]: Sending instruction to decode from "
956 "fetch queue. Fetch queue size: %i.\n",
957 tid, inst->seqNum, fetchQueue[tid].size());
958
959 wroteToTimeBuffer = true;
960 fetchQueue[tid].pop_front();
961 insts_to_decode++;
962 available_insts--;
963 }
964
965 tid_itr++;
966 // Wrap around if at end of active threads list
967 if (tid_itr == activeThreads->end())
968 tid_itr = activeThreads->begin();
969 }
970
971 // If there was activity this cycle, inform the CPU of it.
972 if (wroteToTimeBuffer) {
973 DPRINTF(Activity, "Activity this cycle.\n");
974 cpu->activityThisCycle();
975 }
976
977 // Reset the number of the instruction we've fetched.
978 numInst = 0;
979}
980
981template <class Impl>
982bool
983DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
984{
985 // Update the per thread stall statuses.
986 if (fromDecode->decodeBlock[tid]) {
987 stalls[tid].decode = true;
988 }
989
990 if (fromDecode->decodeUnblock[tid]) {
991 assert(stalls[tid].decode);
992 assert(!fromDecode->decodeBlock[tid]);
993 stalls[tid].decode = false;
994 }
995
996 // Check squash signals from commit.
997 if (fromCommit->commitInfo[tid].squash) {
998
999 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1000 "from commit.\n",tid);
1001 // In any case, squash.
1002 squash(fromCommit->commitInfo[tid].pc,
1003 fromCommit->commitInfo[tid].doneSeqNum,
1004 fromCommit->commitInfo[tid].squashInst, tid);
1005
1006 // If it was a branch mispredict on a control instruction, update the
1007 // branch predictor with that instruction, otherwise just kill the
1008 // invalid state we generated in after sequence number
1009 if (fromCommit->commitInfo[tid].mispredictInst &&
1010 fromCommit->commitInfo[tid].mispredictInst->isControl()) {
1011 branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1012 fromCommit->commitInfo[tid].pc,
1013 fromCommit->commitInfo[tid].branchTaken,
1014 tid);
1015 } else {
1016 branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1017 tid);
1018 }
1019
1020 return true;
1021 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
1022 // Update the branch predictor if it wasn't a squashed instruction
1023 // that was broadcasted.
1024 branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
1025 }
1026
1027 // Check squash signals from decode.
1028 if (fromDecode->decodeInfo[tid].squash) {
1029 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1030 "from decode.\n",tid);
1031
1032 // Update the branch predictor.
1033 if (fromDecode->decodeInfo[tid].branchMispredict) {
1034 branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1035 fromDecode->decodeInfo[tid].nextPC,
1036 fromDecode->decodeInfo[tid].branchTaken,
1037 tid);
1038 } else {
1039 branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1040 tid);
1041 }
1042
1043 if (fetchStatus[tid] != Squashing) {
1044
1045 DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1046 fromDecode->decodeInfo[tid].nextPC);
1047 // Squash unless we're already squashing
1048 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1049 fromDecode->decodeInfo[tid].squashInst,
1050 fromDecode->decodeInfo[tid].doneSeqNum,
1051 tid);
1052
1053 return true;
1054 }
1055 }
1056
1057 if (checkStall(tid) &&
1058 fetchStatus[tid] != IcacheWaitResponse &&
1059 fetchStatus[tid] != IcacheWaitRetry &&
1060 fetchStatus[tid] != ItlbWait &&
1061 fetchStatus[tid] != QuiescePending) {
1062 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1063
1064 fetchStatus[tid] = Blocked;
1065
1066 return true;
1067 }
1068
1069 if (fetchStatus[tid] == Blocked ||
1070 fetchStatus[tid] == Squashing) {
1071 // Switch status to running if fetch isn't being told to block or
1072 // squash this cycle.
1073 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1074 tid);
1075
1076 fetchStatus[tid] = Running;
1077
1078 return true;
1079 }
1080
1081 // If we've reached this point, we have not gotten any signals that
1082 // cause fetch to change its status. Fetch remains the same as before.
1083 return false;
1084}
1085
1086template<class Impl>
1087typename Impl::DynInstPtr
1088DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1089 StaticInstPtr curMacroop, TheISA::PCState thisPC,
1090 TheISA::PCState nextPC, bool trace)
1091{
1092 // Get a sequence number.
1093 InstSeqNum seq = cpu->getAndIncrementInstSeq();
1094
1095 // Create a new DynInst from the instruction fetched.
1096 DynInstPtr instruction =
1097 new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1098 instruction->setTid(tid);
1099
1100 instruction->setASID(tid);
1101
1102 instruction->setThreadState(cpu->thread[tid]);
1103
1104 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1105 "[sn:%lli].\n", tid, thisPC.instAddr(),
1106 thisPC.microPC(), seq);
1107
1108 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1109 instruction->staticInst->
1110 disassemble(thisPC.instAddr()));
1111
1112#if TRACING_ON
1113 if (trace) {
1114 instruction->traceData =
1115 cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1116 instruction->staticInst, thisPC, curMacroop);
1117 }
1118#else
1119 instruction->traceData = NULL;
1120#endif
1121
1122 // Add instruction to the CPU's list of instructions.
1123 instruction->setInstListIt(cpu->addInst(instruction));
1124
1125 // Write the instruction to the first slot in the queue
1126 // that heads to decode.
1127 assert(numInst < fetchWidth);
1128 fetchQueue[tid].push_back(instruction);
1129 assert(fetchQueue[tid].size() <= fetchQueueSize);
1130 DPRINTF(Fetch, "[tid:%i]: Fetch queue entry created (%i/%i).\n",
1131 tid, fetchQueue[tid].size(), fetchQueueSize);
1132 //toDecode->insts[toDecode->size++] = instruction;
1133
1134 // Keep track of if we can take an interrupt at this boundary
1135 delayedCommit[tid] = instruction->isDelayedCommit();
1136
1137 return instruction;
1138}
1139
1140template<class Impl>
1141void
1142DefaultFetch<Impl>::fetch(bool &status_change)
1143{
1144 //////////////////////////////////////////
1145 // Start actual fetch
1146 //////////////////////////////////////////
1147 ThreadID tid = getFetchingThread(fetchPolicy);
1148
1149 assert(!cpu->switchedOut());
1150
1151 if (tid == InvalidThreadID) {
1152 // Breaks looping condition in tick()
1153 threadFetched = numFetchingThreads;
1154
1155 if (numThreads == 1) { // @todo Per-thread stats
1156 profileStall(0);
1157 }
1158
1159 return;
1160 }
1161
1162 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1163
1164 // The current PC.
1165 TheISA::PCState thisPC = pc[tid];
1166
1167 Addr pcOffset = fetchOffset[tid];
1168 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1169
1170 bool inRom = isRomMicroPC(thisPC.microPC());
1171
1172 // If returning from the delay of a cache miss, then update the status
1173 // to running, otherwise do the cache access. Possibly move this up
1174 // to tick() function.
1175 if (fetchStatus[tid] == IcacheAccessComplete) {
1176 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1177
1178 fetchStatus[tid] = Running;
1179 status_change = true;
1180 } else if (fetchStatus[tid] == Running) {
1181 // Align the fetch PC so its at the start of a fetch buffer segment.
1182 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1183
1184 // If buffer is no longer valid or fetchAddr has moved to point
1185 // to the next cache block, AND we have no remaining ucode
1186 // from a macro-op, then start fetch from icache.
1187 if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])
1188 && !inRom && !macroop[tid]) {
1189 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1190 "instruction, starting at PC %s.\n", tid, thisPC);
1191
1192 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1193
1194 if (fetchStatus[tid] == IcacheWaitResponse)
1195 ++icacheStallCycles;
1196 else if (fetchStatus[tid] == ItlbWait)
1197 ++fetchTlbCycles;
1198 else
1199 ++fetchMiscStallCycles;
1200 return;
1201 } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1202 // Stall CPU if an interrupt is posted and we're not issuing
1203 // an delayed commit micro-op currently (delayed commit instructions
1204 // are not interruptable by interrupts, only faults)
1205 ++fetchMiscStallCycles;
1206 DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1207 return;
1208 }
1209 } else {
1210 if (fetchStatus[tid] == Idle) {
1211 ++fetchIdleCycles;
1212 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1213 }
1214
1215 // Status is Idle, so fetch should do nothing.
1216 return;
1217 }
1218
1219 ++fetchCycles;
1220
1221 TheISA::PCState nextPC = thisPC;
1222
1223 StaticInstPtr staticInst = NULL;
1224 StaticInstPtr curMacroop = macroop[tid];
1225
1226 // If the read of the first instruction was successful, then grab the
1227 // instructions from the rest of the cache line and put them into the
1228 // queue heading to decode.
1229
1230 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1231 "decode.\n", tid);
1232
1233 // Need to keep track of whether or not a predicted branch
1234 // ended this fetch block.
1235 bool predictedBranch = false;
1236
1237 // Need to halt fetch if quiesce instruction detected
1238 bool quiesce = false;
1239
1240 TheISA::MachInst *cacheInsts =
1241 reinterpret_cast<TheISA::MachInst *>(fetchBuffer[tid]);
1242
1243 const unsigned numInsts = fetchBufferSize / instSize;
1244 unsigned blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1245
1246 // Loop through instruction memory from the cache.
1247 // Keep issuing while fetchWidth is available and branch is not
1248 // predicted taken
1249 while (numInst < fetchWidth && fetchQueue[tid].size() < fetchQueueSize
1250 && !predictedBranch && !quiesce) {
1251 // We need to process more memory if we aren't going to get a
1252 // StaticInst from the rom, the current macroop, or what's already
1253 // in the decoder.
1254 bool needMem = !inRom && !curMacroop &&
1255 !decoder[tid]->instReady();
1256 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1257 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1258
1259 if (needMem) {
1260 // If buffer is no longer valid or fetchAddr has moved to point
1261 // to the next cache block then start fetch from icache.
1262 if (!fetchBufferValid[tid] ||
1263 fetchBufferBlockPC != fetchBufferPC[tid])
1264 break;
1265
1266 if (blkOffset >= numInsts) {
1267 // We need to process more memory, but we've run out of the
1268 // current block.
1269 break;
1270 }
1271
1272 if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1273 // Walk past any annulled delay slot instructions.
1274 Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1275 while (fetchAddr != pcAddr && blkOffset < numInsts) {
1276 blkOffset++;
1277 fetchAddr += instSize;
1278 }
1279 if (blkOffset >= numInsts)
1280 break;
1281 }
1282
1283 MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1284 decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1285
1286 if (decoder[tid]->needMoreBytes()) {
1287 blkOffset++;
1288 fetchAddr += instSize;
1289 pcOffset += instSize;
1290 }
1291 }
1292
1293 // Extract as many instructions and/or microops as we can from
1294 // the memory we've processed so far.
1295 do {
1296 if (!(curMacroop || inRom)) {
1297 if (decoder[tid]->instReady()) {
1298 staticInst = decoder[tid]->decode(thisPC);
1299
1300 // Increment stat of fetched instructions.
1301 ++fetchedInsts;
1302
1303 if (staticInst->isMacroop()) {
1304 curMacroop = staticInst;
1305 } else {
1306 pcOffset = 0;
1307 }
1308 } else {
1309 // We need more bytes for this instruction so blkOffset and
1310 // pcOffset will be updated
1311 break;
1312 }
1313 }
1314 // Whether we're moving to a new macroop because we're at the
1315 // end of the current one, or the branch predictor incorrectly
1316 // thinks we are...
1317 bool newMacro = false;
1318 if (curMacroop || inRom) {
1319 if (inRom) {
1320 staticInst = cpu->microcodeRom.fetchMicroop(
1321 thisPC.microPC(), curMacroop);
1322 } else {
1323 staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1324 }
1325 newMacro |= staticInst->isLastMicroop();
1326 }
1327
1328 DynInstPtr instruction =
1329 buildInst(tid, staticInst, curMacroop,
1330 thisPC, nextPC, true);
1331
1332 ppFetch->notify(instruction);
1333 numInst++;
1334
1335#if TRACING_ON
1336 if (DTRACE(O3PipeView)) {
1337 instruction->fetchTick = curTick();
1338 }
1339#endif
1340
1341 nextPC = thisPC;
1342
1343 // If we're branching after this instruction, quit fetching
1344 // from the same block.
1345 predictedBranch |= thisPC.branching();
1346 predictedBranch |=
1347 lookupAndUpdateNextPC(instruction, nextPC);
1348 if (predictedBranch) {
1349 DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1350 }
1351
1352 newMacro |= thisPC.instAddr() != nextPC.instAddr();
1353
1354 // Move to the next instruction, unless we have a branch.
1355 thisPC = nextPC;
1356 inRom = isRomMicroPC(thisPC.microPC());
1357
1358 if (newMacro) {
1359 fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1360 blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1361 pcOffset = 0;
1362 curMacroop = NULL;
1363 }
1364
1365 if (instruction->isQuiesce()) {
1366 DPRINTF(Fetch,
1367 "Quiesce instruction encountered, halting fetch!\n");
1368 fetchStatus[tid] = QuiescePending;
1369 status_change = true;
1370 quiesce = true;
1371 break;
1372 }
1373 } while ((curMacroop || decoder[tid]->instReady()) &&
1374 numInst < fetchWidth &&
1375 fetchQueue[tid].size() < fetchQueueSize);
1376
1377 // Re-evaluate whether the next instruction to fetch is in micro-op ROM
1378 // or not.
1379 inRom = isRomMicroPC(thisPC.microPC());
1380 }
1381
1382 if (predictedBranch) {
1383 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1384 "instruction encountered.\n", tid);
1385 } else if (numInst >= fetchWidth) {
1386 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1387 "for this cycle.\n", tid);
1388 } else if (blkOffset >= fetchBufferSize) {
1389 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of the"
1390 "fetch buffer.\n", tid);
1391 }
1392
1393 macroop[tid] = curMacroop;
1394 fetchOffset[tid] = pcOffset;
1395
1396 if (numInst > 0) {
1397 wroteToTimeBuffer = true;
1398 }
1399
1400 pc[tid] = thisPC;
1401
1402 // pipeline a fetch if we're crossing a fetch buffer boundary and not in
1403 // a state that would preclude fetching
1404 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1405 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1406 issuePipelinedIfetch[tid] = fetchBufferBlockPC != fetchBufferPC[tid] &&
1407 fetchStatus[tid] != IcacheWaitResponse &&
1408 fetchStatus[tid] != ItlbWait &&
1409 fetchStatus[tid] != IcacheWaitRetry &&
1410 fetchStatus[tid] != QuiescePending &&
1411 !curMacroop;
1412}
1413
1414template<class Impl>
1415void
1416DefaultFetch<Impl>::recvReqRetry()
1417{
1418 if (retryPkt != NULL) {
1419 assert(cacheBlocked);
1420 assert(retryTid != InvalidThreadID);
1421 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1422
1423 if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1424 fetchStatus[retryTid] = IcacheWaitResponse;
1425 retryPkt = NULL;
1426 retryTid = InvalidThreadID;
1427 cacheBlocked = false;
1428 }
1429 } else {
1430 assert(retryTid == InvalidThreadID);
1431 // Access has been squashed since it was sent out. Just clear
1432 // the cache being blocked.
1433 cacheBlocked = false;
1434 }
1435}
1436
1437///////////////////////////////////////
1438// //
1439// SMT FETCH POLICY MAINTAINED HERE //
1440// //
1441///////////////////////////////////////
1442template<class Impl>
1443ThreadID
1444DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1445{
1446 if (numThreads > 1) {
1447 switch (fetch_priority) {
1448
1449 case SingleThread:
1450 return 0;
1451
1452 case RoundRobin:
1453 return roundRobin();
1454
1455 case IQ:
1456 return iqCount();
1457
1458 case LSQ:
1459 return lsqCount();
1460
1461 case Branch:
1462 return branchCount();
1463
1464 default:
1465 return InvalidThreadID;
1466 }
1467 } else {
1468 list<ThreadID>::iterator thread = activeThreads->begin();
1469 if (thread == activeThreads->end()) {
1470 return InvalidThreadID;
1471 }
1472
1473 ThreadID tid = *thread;
1474
1475 if (fetchStatus[tid] == Running ||
1476 fetchStatus[tid] == IcacheAccessComplete ||
1477 fetchStatus[tid] == Idle) {
1478 return tid;
1479 } else {
1480 return InvalidThreadID;
1481 }
1482 }
1483}
1484
1485
1486template<class Impl>
1487ThreadID
1488DefaultFetch<Impl>::roundRobin()
1489{
1490 list<ThreadID>::iterator pri_iter = priorityList.begin();
1491 list<ThreadID>::iterator end = priorityList.end();
1492
1493 ThreadID high_pri;
1494
1495 while (pri_iter != end) {
1496 high_pri = *pri_iter;
1497
1498 assert(high_pri <= numThreads);
1499
1500 if (fetchStatus[high_pri] == Running ||
1501 fetchStatus[high_pri] == IcacheAccessComplete ||
1502 fetchStatus[high_pri] == Idle) {
1503
1504 priorityList.erase(pri_iter);
1505 priorityList.push_back(high_pri);
1506
1507 return high_pri;
1508 }
1509
1510 pri_iter++;
1511 }
1512
1513 return InvalidThreadID;
1514}
1515
1516template<class Impl>
1517ThreadID
1518DefaultFetch<Impl>::iqCount()
1519{
1520 //sorted from lowest->highest
1521 std::priority_queue<unsigned,vector<unsigned>,
1522 std::greater<unsigned> > PQ;
1523 std::map<unsigned, ThreadID> threadMap;
1524
1525 list<ThreadID>::iterator threads = activeThreads->begin();
1526 list<ThreadID>::iterator end = activeThreads->end();
1527
1528 while (threads != end) {
1529 ThreadID tid = *threads++;
1530 unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1531
1532 //we can potentially get tid collisions if two threads
1533 //have the same iqCount, but this should be rare.
1534 PQ.push(iqCount);
1535 threadMap[iqCount] = tid;
1536 }
1537
1538 while (!PQ.empty()) {
1539 ThreadID high_pri = threadMap[PQ.top()];
1540
1541 if (fetchStatus[high_pri] == Running ||
1542 fetchStatus[high_pri] == IcacheAccessComplete ||
1543 fetchStatus[high_pri] == Idle)
1544 return high_pri;
1545 else
1546 PQ.pop();
1547
1548 }
1549
1550 return InvalidThreadID;
1551}
1552
1553template<class Impl>
1554ThreadID
1555DefaultFetch<Impl>::lsqCount()
1556{
1557 //sorted from lowest->highest
1558 std::priority_queue<unsigned,vector<unsigned>,
1559 std::greater<unsigned> > PQ;
1560 std::map<unsigned, ThreadID> threadMap;
1561
1562 list<ThreadID>::iterator threads = activeThreads->begin();
1563 list<ThreadID>::iterator end = activeThreads->end();
1564
1565 while (threads != end) {
1566 ThreadID tid = *threads++;
1567 unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1568
1569 //we can potentially get tid collisions if two threads
1570 //have the same iqCount, but this should be rare.
1571 PQ.push(ldstqCount);
1572 threadMap[ldstqCount] = tid;
1573 }
1574
1575 while (!PQ.empty()) {
1576 ThreadID high_pri = threadMap[PQ.top()];
1577
1578 if (fetchStatus[high_pri] == Running ||
1579 fetchStatus[high_pri] == IcacheAccessComplete ||
1580 fetchStatus[high_pri] == Idle)
1581 return high_pri;
1582 else
1583 PQ.pop();
1584 }
1585
1586 return InvalidThreadID;
1587}
1588
1589template<class Impl>
1590ThreadID
1591DefaultFetch<Impl>::branchCount()
1592{
1593#if 0
1594 list<ThreadID>::iterator thread = activeThreads->begin();
1595 assert(thread != activeThreads->end());
1596 ThreadID tid = *thread;
1597#endif
1598
1599 panic("Branch Count Fetch policy unimplemented\n");
1600 return InvalidThreadID;
1601}
1602
1603template<class Impl>
1604void
1605DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1606{
1607 if (!issuePipelinedIfetch[tid]) {
1608 return;
1609 }
1610
1611 // The next PC to access.
1612 TheISA::PCState thisPC = pc[tid];
1613
1614 if (isRomMicroPC(thisPC.microPC())) {
1615 return;
1616 }
1617
1618 Addr pcOffset = fetchOffset[tid];
1619 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1620
1621 // Align the fetch PC so its at the start of a fetch buffer segment.
1622 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1623
1624 // Unless buffer already got the block, fetch it from icache.
1625 if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])) {
1626 DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1627 "starting at PC %s.\n", tid, thisPC);
1628
1629 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1630 }
1631}
1632
1633template<class Impl>
1634void
1635DefaultFetch<Impl>::profileStall(ThreadID tid) {
1636 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1637
1638 // @todo Per-thread stats
1639
1640 if (stalls[tid].drain) {
1641 ++fetchPendingDrainCycles;
1642 DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1643 } else if (activeThreads->empty()) {
1644 ++fetchNoActiveThreadStallCycles;
1645 DPRINTF(Fetch, "Fetch has no active thread!\n");
1646 } else if (fetchStatus[tid] == Blocked) {
1647 ++fetchBlockedCycles;
1648 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1649 } else if (fetchStatus[tid] == Squashing) {
1650 ++fetchSquashCycles;
1651 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1652 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1653 ++icacheStallCycles;
1654 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1655 tid);
1656 } else if (fetchStatus[tid] == ItlbWait) {
1657 ++fetchTlbCycles;
1658 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1659 "finish!\n", tid);
1660 } else if (fetchStatus[tid] == TrapPending) {
1661 ++fetchPendingTrapStallCycles;
1662 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1663 tid);
1664 } else if (fetchStatus[tid] == QuiescePending) {
1665 ++fetchPendingQuiesceStallCycles;
1666 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1667 "instruction!\n", tid);
1668 } else if (fetchStatus[tid] == IcacheWaitRetry) {
1669 ++fetchIcacheWaitRetryStallCycles;
1670 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1671 tid);
1672 } else if (fetchStatus[tid] == NoGoodAddr) {
1673 DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1674 tid);
1675 } else {
1676 DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1677 tid, fetchStatus[tid]);
1678 }
1679}
1680
1681#endif//__CPU_O3_FETCH_IMPL_HH__